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Introduction

Here we present a benchmark study for the convection-driven magnetohydrodynamic dynamo problem in
a rotation spherical shell with ”pseudo-vacuum” magnetic boundary condition.

1 MHD equations

The chosen form of the non-dimensionalised magnetohydrodynamic equations is:



(
Ro

∂

∂t
− E∇2

)
~u = Ro~u× (∇× ~u) + (∇× ~B)× ~B + q RaT ~r − ~̂z × ~u−∇P̂ ,(

∂

∂t
−∇2

)
~B = ∇× (~u× ~B),(

∂

∂t
− q∇2

)
T = −~u ·∇T,

(1)

∇ · ~B = 0, ∇ · ~u = 0 (2)

Length r → (d = ro − ri) r, Time t→ d2/η t, Magnetic B → (2Ωρ0µ0η)
1
2 B, Temperature T → ∆T T (3)

with dimensionless parameters:

Magnetic Rossby number Ro = η/(2Ωd2),
Ekman number E = ν/(2Ωd2),

Modified Rayleigh number Ra =
g α∆T d

2Ωκ
,

Roberts number q = κ/η.

(4)

Ratio ro/ri = 0.35 in used for simulations in this report. Together with the definition of the unit length d
it gives ri = 7/13, ro = 20/13.

2 Boundary and initial conditions

2.1 Magnetic boundary condition

The form of the magnetic boundary condition is:

Bθ = Bφ = 0|ri,ro , (5)

ri and ro denote inner and outer radii of the spherical shell. This represents equating of the tangential to
the spherical boundary surface component of the magnetic field to zero. Physically it means that the radial

component of the current on boundaries is zero (
(
∇× ~B

)
r

∣∣∣
ri,ro

= 0 ). The locality of this condition is

an advantage in finite difference numerical schemas.

The condition on Br can be extracted from the differential form of the Gauss’s law for magnetism:

∇ · ~B = 0. (6)

If tangential components of the field are zero (eq.(5)), this law in spherical coordinates contains only radial
component of the field:

∂

∂r
(r2Br) = 0|ri,ro , (7)

or simply: (
2 + r

∂

∂r

)
Br = 0|ri,ro . (8)

1



2.2 Initial magnetic field

The initial magnetic field is:

Br =
1√
2

5

8

−48 ri ro + (4 ro + ri (4 + 3 ro)) 6r − 4(4 + 3 (ri + ro)) r
2 + 9 r3

r
cos θ,

Bθ = − 1√
2

15

4

(r − ri) (r − ro) (3 r − 4)

r
sin θ,

Bφ =
1√
2

15

8
sinπ(r − ri) sin 2θ.

(9)

It is easy to see that Bθ = Bφ = 0 at ri and ro, the condition
∂

∂r
(r2Br) = 0|ri,ro is satisfied as well (see

eq.(7)).

Figure 1: Initial magnetic field, meridional slices

2.3 Initial temperature field and boundary conditions

Initial temperature is the same as in Christensen et al. (2001)

T =
rori
r
− ri +

21√
17920π

(1− 3x2 + 3x4 − x6) sin4 θ cos 4ϕ, (10)

where x = 2r−ri−ro. This describes a conductive state with a perturbation of harmonic degree and order
four super-imposed.

Temperature is fixed on boundaries : T (ri) = 1, T (ro) = 0.
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Figure 2: Initial temperature, equatorial and meridional slices

2.4 Initial velocity field and boundary conditions

Initial velocity is zero. No-slip and non-penetrating boundary conditions are imposed.

3 Numerical method

Spherical harmonic expansion on spherical surfaces(L degrees and M orders), finite differences in the radial
direction(N-points on Chebyshev grid), adaptive predictor-corrector semi-implicit time-stepping algorithm
are used.

4 The benchmark study

In this section we describe steady (where the magnetic energy is constant in time) dynamo which can be
suitable for a benchmark study. Parameters are suggested by Harder and Hansen (2005).

The solution has fourfold symmetry in longitude and is symmetric about equator. In one of the calculations
fourfold symmetry was used to restrict spherical harmonics expansion and accordingly the computer time
(the run with the lowest resolution 50/32/29, see table (1)).

In order to compare results obtained at different resolutions and control convergence, resolution is defined
as the third root of the number of degrees of freedom for each scalar variable:

R = N1/3 (L (2M + 1)−M2 +M + 1)1/3. (11)

4.1 Requested data

Global averages and local data at specific points are requested from the simulations.
Global data.
The solution can be expressed in the form (~u, ~B, T ) = f(r, θ, ϕ − ω t). Angular speed ω, magnetic and
kinetic energies, which are defined as:

Emag =
1

2Ro

∫
B2 dV (12)

Ekin =
1

2

∫
u2 dV . (13)
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are requested.
Local data.
A point where local data are to be taken is fixed in the drifting reference frame. We take a point at a mid
depth (r = (ri + ro)/2) in the equatorial plane (θ = π/2) whose φ-coordinate is given by the conditions

ur = 0 and
∂ur
∂ϕ

> 0. For this point uφ, Bθ and T are requested.

4.2 Results

Parameters are the same as in the Christensen et al. (2001) benchmark Case 1, in our non-dimensionalisation:

E Ra q Ro

0.5 · 10−3 32.50 5 10−4

Results of the integration are on the figure (3). Requested data of the simulation are in the table (1). It
is plotted on the figure (4). The run should be integrated long enough to obtain desired precision.

N L M uϕ Bθ T Emag Ekin ω dt
50 32 29 -58.0792 0.9860 0.4261 79849.4 14892.8 3.7656 1.6272e-05
80 42 42 -58.1670 0.9931 0.4259 80076.3 14847.3 3.7510 1.5903e-05
96 48 48 -58.1705 0.9935 0.4259 80076.2 14846.9 3.7489 1.6108e-05
96 60 53 -58.1796 0.9929 0.4260 80074.7 14847.2 3.7490 1.5779e-05
128 64 64 -58.1786 0.9930 0.4259 80072.7 14846.9 3.7489 1.5795e-05
200 100 100 -58.1786 0.9930 0.4259 80072.7 14846.5 3.7488 1.5741e-05

Table 1: Requested data.
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Figure 3: Diagnostics.
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4.2.1 Field structure of the steady solution

The snapshot is taken in the region where the dynamo is steady. Meridional sections are in the plane of
the benchmark point (defined in seq.(4.1)).
Meridional sections:

Equatorial sections:
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4.2.2 Timestep

Timestep is adaptive and in principle can change, but at the steady state it is almost constant. Dependence
of the timestep on the resolution is on the fig.(5).
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Figure 5: Timestep.

5 Conclusions

The steady drifting dynamo satisfying ”pseudo-vacuum” magnetic boundary conditions together with the
recipe to achieve it are presented. Due to the subcriticality the proper initial condition is required, the
example of which is given in analytical form. The solution has fourfould and equatorial symmetries which
can be useful to reduce cpu load during benchmarking.
Properties of dynamos obeying pseudo-vacuum and insulating boundary conditions are largely different.
Comparison with the insulating case in Christensen et al. (2001) shows that the switch between the bound-
ary conditions affects the direction and the speed of the drift, repartition of the kinetic and magnetic
energies, geometry of fields.
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A Magnetic boundary condition in spectral form

Magnetic vector ~B can be written in terms of the toroidal and poloidal scalar fields, T and P :

~B = ∇× (T~r) + ∇×∇× (P~r) (14)

Projections of the magnetic field on the axes of the spherical coordinate system can be obtained directly
from the scalar fields P and T : 

Br = −r∇2
1P

Bθ =
1

sin θ

∂T

∂φ
+

1

r

∂

∂r

(
r
∂P

∂θ

)
Bφ = −∂T

∂θ
+

1

r sin θ

∂

∂r

(
r
∂P

∂φ

) (15)

where

∇2
1f =

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
= − l(l + 1)

r2
(16)

Here we used the fact that the toroidal and poloidal scalars can be decomposed in spherical harmonics of
the form:

Ŷ m
l (θ, φ) = Pml (cos θ)eimφ (17)

Boundary condition (5) with the use of equations (15) can be satisfied by keeping toroidal scalar T = 0 on
boundaries and:

∂(Pr)

∂r
= 0

∣∣∣∣
r=ri,ro

. (18)

The same equation, but expanded, is: (
∂

∂r
+

1

r

)
P = 0

∣∣∣∣
r=ri,ro

. (19)

B Magnetic initial condition in spectral form

Spectral form of the initial magnetic field is:
T 0
2 =

1√
2

5

4
sinπ (r − ri),

P 0
1 =

1√
2

5

16
(−48 ri ro + (4 ro + ri (4 + 3 ro)) 6r − 4(4 + 3 (ri + ro)) r

2 + 9 r3).
(20)

C Magnetic initial condition in the form of the vector potential


Ar =

1√
2

15

16
r sin[π(r − ri)] cos(2θ) + f1(r) +

∫
(Aθ(r, θ) + r

∂Aθ(r, θ)

∂r
)dθ

Aθ = f2(r, θ)

Aφ =
1√
2

5

16
[−48riro + (4ro + ri(4 + 3ro))6r − 4(4 + 3(ri + ro))r

2 + 9r3] sin θ +K/(r sin θ)

where ~B = ∇× ~A; f1, f2 are arbitrary functions; K is an arbitrary constant.1

1Courtesy to David Cébron for this form of the initial field.
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