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Introduction: Mafic minerals are key components 
when  trying  to  understand  the  geological  history  of 
planetary bodies like Mars.  Indeed,  their presence in 
igneous rocks is directly related to mantle properties 
and crystallization conditions. They also partially con-
trol the nature of the alteration products which could 
be formed later on. In this respect detection of olivine 
and pyroxenes, and characterization of their respective 
composition,  is  an  important  step that  must  be  done 
carefully.

Because of the Fe2+ electronic transition effect, hy-
perspectral remote sensing in visible/near-infrared is a 
very powerful  tool  to achieve this objective.  Indeed, 
olivine and pyroxenes have characteristics absorption 
features in the 1 and 2 µm domains [1,2]. During the 
last decade, imaging spectrometers onboard spacecraft 
have acquired huge amount of such data and it is actu-
ally challenging to process them both quickly and effi-
ciently.

Several techniques aim at deconvolving absorption 
bands in terms of mineralogy (e.g. linear unmixing, ra-
diative transfer modeling).  Modified Gaussian Model 
can also be used to quantitatively estimate the chemi-
cal  composition of  each mineral  in a rock.  Such ap-
proach has been successfully applied on OMEGA data 
[3].  However,  the  results  obtained  with  those  tech-
niques are basically not accurate enough, these meth-
ods are time consuming and efforts are still done to de-
velop new algorithms. This is why we test in this study 
the ability of neural networks to detect and character-
ize mafic signatures on unknown laboratory spectra.

Neural  network  implementation: A  neural  net-
work is a mathematical operator which takes a vector 
of  scalars  as  input  and  outputs  another  vector  of 
scalars.  In our case,  the input vector is the spectrum 
and the output vector is the mineralogic composition 
(percentage of olivine, clinopyroxene and orthopyrox-
ene, cf. figure 1). Neural networks are made of weight-
ed  and  non-linear  connexions  from the  input  to  the 
output, typically performing a small number of opera-
tions. This technique is sometimes used to obtain a re-
sult in very non-linear problems.

Before using a neural network on unknown prob-
lems,  it  has  to  be  trained  on  known  problems  in  a 
“learning phase”. The network first “learns” to repro-
duce a sufficiently correct output vectors using a set of 

spectra  obtained  on  synthetic  samples  with  known 
compositions (the training set). The connexions of the 
network start from a random state and are organized 
by the learning algorithm following a uniform gradient 
descent in the error space. At the end of the learning 
phase, the neural network is able to give a correct an-
swer on all the training set. The training is usually the 
computationally time-consuming phase (about 10 min-
utes on a single CPU machine in our case).

Second,  once  trained,  the  neural  network  can  be 
used on an unknown spectrum and output a composi-
tion. The answer of a neural network is almost instan-
taneous  (less  than  a  second  on  the  same  machine, 
mainly due to input/output on the hard drive).

We use the multilayer perceptron feedforward ap-
proach, with an error extended back-propagation learn-
ing algorithm [4]. To ensure an homogeneous cover-
age of the output space, we assigned more weight to 
the most singular spectra in the back-propagation rou-
tine.

Training and testing  data  sets: Our neural  net-
work has been trained on a set of 190 spectra, some of 
them being representative of mixtures while others are 
representative of mono-mineral  samples with various 
chemical compositions (mafic minerals only). Because 
of the lack of available laboratory measurements, very 
few ternary mixtures are included in the learning set.

All the spectra come from the Brown/RELAB li-
brary. Most of them have already been used in [5] to 
improve MGM approach and a reference list  of  RE-
LAB files  can  be  found  there.  We select  the  wave-
length range between 0.46 and 2.60 µm while keeping 
full spectral resolution (6.6 nm). We remove the first 
order approximation of each spectrum to give an input 
signal as flat as possible to the neural network. 

To test our neural network, we choose to use spec-
tra of SNCs as those meteorites may be the most repre-
sentative samples of Mars surface measurable in labo-
ratory. SNCs have been intensively studied and their 
mineralogical  compositions  are  well  known (e.g.  [6] 
and references therein). We here used a set of 11 spec-
tra,  representative  of  the different  families  of  SNCs. 
One should note that for ALH77005 and EET79001, 3 
spectra are analyzed while not knowing exactly which 
phase of the meteorite is actually measured.



Results on SNCs: Figures 1 and 2 show the results 
of the neural network on the testing set (spectra of the 
SNCs’ meteorites).  To explore the reproductibility of 
the solution, we trained 10 identical  neural  networks 
with different initial neural weights. All networks used 
here have only one hidden layer with 40 neurons. The 
figures show that the outputs of the networks (repre-
sented by colored points) are focused in different lo-
calized areas for each spectrum.

The figure 1 shows the outputs of the network as 
the OL-CPX-OPX compositions of the tested spectra 
compared to the average range expected for each mete-
orite (from [6]). The network is clearly able to detect 
pure and mixed compositions with a satisfactory repro-
ductibility. Discrepencies can nevertheless occur, espe-
cially when a mineral is much less abundant than the 
other.  This may be directly related to the absorption 
features which could be masked in a mixture spectra 
and implies as other deconvolution techniques to take 
detection thresholds into account.

Figure  2  shows  the  chemical  composition  of 
clinopyroxenes  and  olivines  detected  in  each  mete-
orite,  using  an  other  version  of  the  neural  network, 
trained  for  chemical  composition only.  Work  is  still 
ongoing  considering  the  orthopyroxene  component. 
Though the tested samples have similar CPX composi-
tions, the neural network is still able to distinguish ten-
dencies within the spectra. Localized compositional ar-
eas are clearly identified and all of them fall within the 
expected  trends  from  laboratory  measurements  [6]. 
However,  iron  content  in  olivine  is  almost  always 
overestimated (10 to 20%).

The  composition  of  meteorites  with  very  low 
clinopyroxene contents are very scattered and thus not 
depicted in the top part of the figure 2 (similarly, we 
plot  only high olivine  content  outputs  in the bottom 
line). The scattering of the outputs of the network actu-
ally seems to be a good indicator of mineralogic en-
richment and provides a way to quantify the uncertain-
ty of the output of the neural network.

Conclusion: The neural network we developed in 
this  study  show promising  results  on  SNCs.  Indeed, 
only using laboratory data as a training set (i.e. partial 
coverage  of  the  whole  range  of  possibility),  we  are 
able to detect and characterize each mineral phase in 
an unknown spectrum.

In a next step, we will implement our neural net-
work on an automated procedure which will analyze 
individually each pixel of a CRISM image. This im-
plies to deal with some additional  difficulties (noise, 
weak absorption features, complex photometry). Then, 
we should  be able to process  very  quickly and effi-
ciently large amounts of data required to do Martian 
global “high resolution” geology.
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Fig.  1:  SNCs  modal  compositions  estimated  using  
neural  networks  (dots)  compared  to  literature  
(squares, from [6]). Neural network is tested with dif-
ferent initial neural weights so several dots are report-
ed for each SNCs (see text for details). When different  
spectra  exist  for  one  SNC, results  are  distinguished  
using labels around the colored fields.

Fig. 2: Chemical compositions of two individual mafic  
minerals  in  SNCs  estimated  using  neural  networks  
(dots) and compared to literature (dashed lines, from  
[6]). The composition of clinopyroxenes is depicted on  
the top triangle and olivine composition is shown on  
the bottom line. Clinopyroxene modal abundances in  
the meteorites are also reported.


