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a b s t r a c t

Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer
from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry
of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous
effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such
fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection
studies. Here we propose a new approach that we term the “spherical annulus,” which is a 2D slice that
bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate
system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling
Annulus geometry is retained in this approximation since the Jacobian function remains proportional to the square of the
radius. We present example calculations to show that the behavior of convection in the spherical annulus
compares favorably against calculations performed in other 2D annular domains when measured relative
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. Introduction

Although 3D numerical modeling studies of mantle convection
ontinue to become more practical as computing hardware power
nd software capabilities increase, a survey of the recent litera-
ure shows that 2D models are still predominantly employed. It is
lear that increased computing power has not yet (and will never
ave) supplanted the traditional role of 2D studies, which is to
ush models further in terms of extreme parameter values and raw
patial resolution than is possible in 3D given the same comput-
ng capabilities. Many results from 2D studies, because they are at
he frontier of resolution and extreme values of parameters, con-
inue to lay the foundation for fundamental new understanding
hich is usually only modified in second-order ways by subse-

uent 3D modeling studies. 2D models also serve as an efficient
ay to conduct exploratory studies which help lay the foundation

or deciding how to maximize the efficiency of covering a more
parse parameter space in 3D. Moreover, complex 2D models that
equired super-computers only a decade ago can now be run effi-

iently on a standard desktop or laptop computer without the need
o employ larger computing facilities.

An important aspect of mantle convection that is difficult to
ccurately capture in 2D is that it takes place in a curved 3D
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ional (3D) spherical shell.
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pherical geometry. 2D studies of mantle convection in a curved
omain between an inner and outer boundary at fixed radii (termed
n “annulus”) are largely restricted to cylindrical/polar or axi-
ymmetric spherical coordinate representations, and the choice
etween these domains is mostly motivated by the kind of study
ne is interested in pursuing. Cylindrical models have the advan-
age that they do not contain inherent boundaries or axes of
ymmetry, and the full circle can be spanned by the model domain.
s van Keken (2001) argued, one of the main problems in cylindri-
al annular models is that the relative volume of material contained
n the inner portion of the domain is larger than in the case of a
pherical shell because the areas of the inner and outer boundaries
cale as radius rather than the square of radius. His proposed solu-
ion is to scale the inner and outer surface areas of the cylinder by
ltering their relative radii so that it is equal to the area ratio of
he spherical shell. In other words, roc/ric = r2

os/r2
is, where roc and

ic are the inner and outer radius of the cylinder and ros and ris
or the sphere, the uniqueness of which is enforced by equating
he shell thickness, roc − ric = ros − ris. The consequence of apply-
ng this scaling is a smaller inner radius, yielding what appears to
e a smaller than usual core. This approach is popular, and for many
pplications this method should satisfactorily mitigate some of the

dverse consequences of utilizing cylindrical domains.

Still, problems can occur with a re-scaled inner and outer
adius if the subject of investigation is sensitive to changes in the
ffective aspect ratio of the annulus. For example, the thermal evo-
ution models used by van Keken (2001) to compare the re-scaled

http://www.sciencedirect.com/science/journal/00319201
http://www.elsevier.com/locate/pepi
mailto:hernlund@gmail.com
dx.doi.org/10.1016/j.pepi.2008.07.037
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Fig. 1. Comparison between the 2D approximations for rigid body translations on the surface of a sphere (left) and a cylinder (right), with the circular 2D slice of interest
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ndicated by dashed lines. Arrows are shown to indicate a divergent motion such a
etting. In both cases, the angular velocity vector �ω describing the 2D lateral moti
e oriented perpendicular to the slice. The primary difference between the two de
urvature, while a cylinder has only one degree of curvature.

ylindrical annulus with the axi-symmetric spherical case were
djusted to maintain a similar aspect ratio at the top surface. How-
ver, when the full annulus (or half annulus) is modeled, there is less
ffective lateral separation between objects at the base of the re-
caled cylindrical shell than is actually the case in a spherical shell.
his leads to “crowding” of structures near the inner portion of the
nnulus around the smaller core. While such crowding does indeed
ccur in a spherical shell, and is enhanced relative to a cylinder, it is
nherently a 3D phenomenon that cannot be projected solely into a
ingle lateral dimension. Examples where such crowding might be
roblematic are studies of the stability of a dense chemical layer at
he base of the mantle (e.g., Nakagawa and Tackley, 2004b) or the
ffects of phase transitions upon the stability of a lower thermal
oundary layer (e.g., Nakagawa and Tackley, 2004a).

While the surface area ratio problem is not present in the spher-
cal axi-symmetric coordinate representation, a bias in the lateral
imension is built into the coordinate basis itself that leads to a vari-
ty of anomalous and undesirable effects that render many types
f modern mantle convection studies useless. For example, edge
ffects occur due to a fundamental geometrical bias: the lateral
oundary at the poles must be a “reflecting” (zero normal flux, zero
angential stress) impermeable boundary because it is an axis of
ymmetry. These intrinsic “side walls” affect the pattern and loca-
ion of upwelling and downwelling flow, an effect that is not present
n a real 3D spherical shell. Also problematic is the change in the
acobian of this coordinate system as material moves along a tra-
ectory of constant radius (such as the inner and outer boundaries):
or a non-zero angular velocity, material must undergo pure shear

eformation, inducing stresses that are not always an intended
art of the model. This occurs because material subjected to an
xi-symmetric flow must move along lines of constant longitude,
hich are further apart at the equator than at higher latitudes. This

nability for objects to attain a rigid body lateral motion in the axi-

b
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v
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along a mid-ocean ridge as well as convergent motion such as a subduction zone
the slice is directed along the axes of the coordinate systems if they are taken to

ions is that motions on a sphere are projected onto a surface with two degrees of

ymmetric representation immediately discounts the possibility of
ttaining plate-like motions at the surface, and would complicate
he implementation of stress-dependent rheologies.

We note that there do exist exceptions for cases in which axi-
ymmetry is quite justified in 2D convection calculations. First, the
odeling of approximately axi-symmetric objects alone, such as

pwelling plumes, is best captured in axi-symmetric 2D models,
nd no other 2D coordinate representation can be considered com-
arable. Second, it is well-established that convective motions in
spherical shell at low Rayleigh numbers (just above critical) do

xhibit steady axi-symmetric solutions (Zebib et al., 1980; Schubert
nd Zebib, 1980). However, as Rayleigh number is increased to mod-
rate values, axi-symmetric solutions are no longer stable (Zebib
t al., 1983) and the preferred planform of convective motions
ecomes tetrahedral or cubic in arrangement (Bercovici et al., 1989;
atcliff et al., 1995). At Rayleigh numbers similar to those expected

n Earth’s mantle, the planform is completely three-dimensional
nd highly time-dependent (Glatzmaier et al., 1990; Bercovici et
l., 1992; Schubert et al., 2001). Because the characteristics and sta-
ility of axi-symmetric solutions in spherical shell convection have
een well and thoroughly investigated, this example is less relevant
or modern mantle convection modeling studies.

Here we introduce the “spherical annulus,” a simple method for
erforming mantle convection calculations in an annular domain
hat does not have the radial scaling problems of the cylindrical
olar coordinate system, while at the same time retaining the full
eriodicity and lateral uniformity of a simple cylindrical polar rep-
esentation. The coordinate system is obtained geometrically as a

isection of the 3D spherical shell, and the governing equations are
btained by identifying the slice with the equator of a 3D spheri-
al polar coordinate system and eliminating terms that depend on
ariations in latitude. We present a suite of calculations comparing
his and all other available annular methods with those obtained in
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fully 3D convection calculation, and demonstrate that the spheri-
al annulus yields superior results without requiring any re-scaling
f the dimensions of the shell.

. Model formulation

The geometry of the present scenario is summarized schemat-
cally in Fig. 1, with the case of a sphere compared to that of a
ylinder. A 2D slice is obtained after bisecting the 3D sphere or
ylinder with a plane, and in the latter case the normal to the plane
s taken parallel to the cylinder’s axis so that the domain remains
ircular in shape. In order to obtain a phenomenological reduction
rom 3D to 2D, two assumptions are made. First, variations in quan-
ities that may be cast as dependent variables in a direction normal
o the planar slice are ignored. Second, a kinematic restriction is
eeded, and we require the vorticity (defined as �ω = �∇ × �v, where

� is the gradient vector and �v is the velocity field) of any motions at
he location of the slice to be parallel to the direction normal to the
lice itself. For material at the slice, this second condition implies
hat there is no flow in a direction normal to the plane of the slice.
hese conditions are sufficient to reduce the equations governing
antle convection in the 3D sphere and cylinders to a 2D annular

omain.
The essential differences between the equations following the

pherical and cylindrical reductions will arise from the fact that
n the former case we will neglect terms that measure variations
n latitude while in the latter case variations in the axial direction
re ignored. Thus in the slice through the sphere, a second degree
f curvature is implied in the neglected third dimension that is
ot carried through in the cylindrical case. The same holds true

n the spherical axi-symmetric case, where the slice contains the
oles of the spherical coordinate system and variations in longitude
re ignored. Although this may be conceptually difficult to under-
tand at first, another way to represent this graphically (Fig. 2) is
o present a circular 2D grid and assign it a “virtual” thickness that

easures the implied direction of variations that are neglected in
he third dimension.

The full 3D governing equations in the infinite Prandtl num-
er approximation for both the sphere and cylinder are listed in
chubert et al. (2001). In the spherical case, we neglect terms con-
aining a derivative with respect to the latitude angle � and set the
atitudinal component of velocity to zero, i.e., v� = 0. In the cylin-
rical case, we neglect terms containing a derivative with respect
o the axial direction z, and set the axial component of velocity
o zero, i.e., vz = 0. We then find that, for a common radius coor-
inate r and an angular coordinate � (equivalent to the longitude

n the sphere), the reduced governing equations can be expressed
ogether for both cases using a parameter d, such that d = 1 for the
ylindrical case and d = 2 for the spherical case. We denote vr and
� as the radial and angular components of velocity, t as the time
ariable, � as the mass density, and g as the acceleration of gravity.
onservation of mass is then given by,

∂�

∂t
+ 1

rd

∂

∂r
(rd�vr) + ∂

∂�

[
�

(v�

r

)]
= 0. (1)

he radial component of the momentum equation is,

1
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(rd�rr) + 1

r
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− ��� + ���
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hile the angular component of momentum is,
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he deviatoric stresses � are given by,
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r� = �

[
1
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+ r

∂

∂r

(v�

r

)]
. (7)

here � is the dynamic viscosity and k0 is a bulk viscosity that
eparts from the Stokes approximation. Note that the deviatoric
tress ��� must be retained in the spherical reduction, since it
ontains terms other than those that would arise from latitude
ariations alone. The energy equation can be found by the same
rocedure,
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(8)

here e is the energy density, T is the temperature, K is the thermal
onductivity,

= Hi + ˚, (9)

s the sum of internal heat production terms Hi and the viscous
issipation function,

= 2�
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(10)

he equations have deliberately been left in a more general form
s a reference, although in practice it is usually necessary to make
urther simplifications, such as referal to a reference state under,
.g., an anelastic or Boussinesq approximation. Boundary condi-
ions are obtained straightforwardly by various restrictions placed
n temperature, velocity, and/or the deviatoric stress.

The above equations hold for the cylindrical reduction to 2D
hen d = 1 and the spherical reduction when d = 2, and therefore

he value of d may be thought of as an effective degree of curvature.
ote that the difference between these cases is almost exclusively
ttributed to a factor of rd (i.e., r or r2 for the cylindrical or spherical
ase) in the divergence terms of the governing equations. This is the
ell-known Jacobian factor, measuring the variation in a differen-

ial element of volume for the coordinate system. In this manner,

he effective relative volume of material at the top and bottom of an
nnular domain in the 2D spherical case retains the same scaling as
he full 3D sphere. Note also that, due to this term, further reduc-
ions to a one-dimensional radial description yield the same result
s the full 3D reduction to 1D, and therefore any reference state
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Fig. 2. Illustration of what is meant by the “virtual” thickness J/r of a 2D circular slice
through a 3D grid. In the constant thickness case (A), representative of a cylindrical
model with effective Jacobian J = r, the virtual thickness is constant everywhere.
For a variable thickness in the angular direction (B), representative of a spherical
axi-symmetric grid with effective Jacobian J = r2 sin �, the virtual thickess depends
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not appear in vRMS. In general, the spherical annulus consistently
yields Nu and vRMS that are closer to values obtained in the full 3D
spherical shell than in the cylindrical cases. Indeed, the spherical
annulus is often better at obtaining appropriate values than the
axi-symmetric case, with the exception of cases where Ra = 104,

Table 1
Basal heated, isoviscous convection

Ra Geometry 〈Nu〉 	Nupeak–peak 〈vRMS〉 	(vRMS)pk–pk

104 3D 3.85 Steady 42.3 0
Spherical annulus 4.18 Steady 37.7 0
Axi-symmetric 4.01 Steady 41.0 0
Scaled cylindrical 3.99 Steady 35.6 0

105 3D 7.27 0.5 160 11
Spherical annulus 7.39 0.3 160 14
Axi-symmetric 7.26 3.2 159 100
Scaled cylindrical 6.2 2.1 165 90

106 3D 15.9 1.3 625 80
Spherical annulus 14.4 3.4 640 275
n the angular location in the grid and the radius. In the variable radial thickness
ase (C) with effective Jacobian J = r2, the virtual thickness increases with distance
rom the center of the grid without any angular dependence.

rofiles obtained for the spherical 2D reduction will be identical to
hose applicable in a full 3D sphere. These advantages gained in the
D spherical reduction are not shared by the cylindrical reduction,
ence the need for other remedies such as re-scaling of the inner
nd outer radii.

. Example calculations

In order to explore how well a spherical annulus description
erforms in mantle convection calculations, we have conducted
est cases using a modified version of STAG3D (Tackley, 1996),
ow called STAGYY (Tackley, 2008, this volume) which has also
een modified to run cases using the spherical annulus formula-
ion. STAG uses a finite volume formulation to solve the governing
quations, however, the spherical annulus may be implemented
ith all the usual types of modeling technique employed in other

D geometries. In our test cases, we use a nominal Earth-like
uter/inner shell radius ratio of 1.22, and we run several kinds of
ases using the spherical annulus, the 2D cylindrical annulus with
he scaling of inner radius proposed by van Keken (2001), the 2D
pherical axi-symmetric annulus, as well as the full 3D spherical
hell using the same code and underlying numerical methodology.

e believe the uniformity of resolution and numerical techniques

pplied in each instance will minimize numerical influences that
ight otherwise confound a systematic comparison of this kind.
All test cases are for purely thermal convection assuming the

oussinesq approximation. In this case density fluctuations are

〈
r
l
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aken negligibly small in all terms except the buoyancy, the dissipa-
ion function is nil, and mass conservation is replaced by the simpler
ondition �∇ · �v = 0. Solutions of the governing equations obtained
y integrating forward in time tend to a statistically steady-state
hose characteristics depend only on the style of heating, the

mposed boundary conditions, and Rayleigh number, which we
efine as,

a = �0˛g	T(ro − ri)
3


�0
, (11)

or bottom-heated convection cases with isothermal inner and
uter radii ri and ro and,

a = �0˛gHi(ro − ri)
5

K
�0
, (12)

or purely internally heated convection cases with an insulating
nner radius. Here, �0 is a reference state density, ˛ is the thermal
xpansivity (assumed constant), 	T is the super-adiabatic tem-
erature change, 
 is the thermal diffusivity (assumed constant),
nd �0 is a reference viscosity. Combinations of Ra = 104, 105, and
06, together with purely bottom-heating or internal-heating, and
sing both isoviscous and temperature-dependent viscosities were
un to explore a variety of parameter values and conditions. In the
emperature-dependent viscosity cases, the non-dimensionalized
iscosity varies by 6 orders of magnitude and is given by,

′ = exp[13.8156(0.5 − T ′)], (13)

here T ′ is the non-dimensional temperature such that T ′ = 0 at
= ro and in bottom heated cases is T ′ = 1 at r = ri. The refer-
nce viscosity �0 corresponds to an intermediate non-dimensional
alue for temperature of T ′ = 0.5.

Typical temperature fields obtained after achieving statisti-
ally steady-state conditions in all test cases are summarized in
ig. 3. The basic characteristics of convection in all these instances
as already been well-studied, and here we focus on compara-
ive differences in solutions obtained using the different modeling
pproaches. In Tables 1–4 we list diagnostic output quantities such
s RMS velocity vRMS and Nusselt number Nu (the ratio of radial heat
ransfer relative to that in a purely conductive state at rest), as well
s fluctuations in these quantities for time-dependent results. Net
otation is removed in the models, so that this contribution does
Axi-symmetric 13.7 6.0 520 500
Scaled cylindrical 14.4 5.5 613 460

Nu〉 and 〈vRMS〉 denote time-averaged values once a statistically steady-state is
eached. The 	 quantities give the peak-to-peak range of fluctutation during the
ast part of each run.
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Fig. 3. Comparison of temperature variations for statistically steady-state Boussinesq convection experiments in (from left to right in each group of four) fully 3D spherical,
2D spherical annulus, 2D spherical axi-symmetric, and 2D rescaled cylindrical geometries. Cases are run using the code StagYY (Tackley, 2008, this volume) for the spherical
cases and Stag3D for the cylindrical cases. Cases are either completely basally heated (left panel) or completely internally heated with an insulating inner boundary (right
panel). The top 3 rows are isoviscous cases, while the bottom 2 rows have temperature-dependent viscosity with 6 orders of magnitude variation between T ′ = 0 and T ′ = 1.
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role, limiting convection to small temperature variations at the very
bottom of the upper boundary layer that give rise to small scale
downwellings. In this scenario, a limiting regime might be reached
he temperature-based Rayleigh number is indicated for each row. The internal h
ux as the basal-heated cases with the same temperature-based Rayleigh number,

soviscous), H = 5.0 (Ra = 105�(T)), H = 10.0 (Ra = 106�(T)); the conventional inter
s the same in all geometries, at 32 radial points by 256 points per 2� of azimuth, e

here it can be seen that the 3D spherical shell produces roughly
xi-symmetric solutions, as expected.

All 2D representations suffer the largest disagreements with the
D spherical shell when convection is internally heated, and the

lanform of convection itself becomes highly 3D and is dominated
y instability of the upper thermal boundary layer. The best agree-
ent between the 2D models and the 3D shell in internally heated

ases occur for Ra = 106 with temperature-dependent viscosity. In

able 2
asal heated, temperature-dependent viscosity convection

a1/2 Geometry 〈Nu〉 	Nupeak–peak
a 〈vRMS〉 	(vRMS)pk–pk

05 3D 6.30 0 405 5
Spherical annulus 5.71 0.1 463 90
Axi-symmetric 5.07 0.2 450 210
Scaled cylindrical 4.97 0.1 495 200

06 3D 9.7 0 1804 100
Spherical annulus 10.1 0.1 1390 780
Axi-symmetric 10.45 0.1 1370 1040
Scaled cylindrical 10.4 0.1 1850 1200

a1/2 is the Rayleigh number defined using the viscosity at T = 0.5.
a Surface Nu: the CMB Nu fluctuates much more.
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rate for internally heated cases is set such that they have the same surface heat
ly H = 3.4 (Ra = 104 isoviscous), H = 6.6 (Ra = 105 isoviscous), H = 14.0 (Ra = 106

ated Rayleigh number is obtained by the product (Ra × H). The numerical resolution
for the isoviscous Ra = 106 cases, which have double this resolution.

his regime the high viscosity of the cold “lid” plays an important
or large viscosity contrast and Ra where the scaling behavior in

able 3
nternally heated, isoviscous convection

a Geometry 〈T〉 〈vRMS〉 	(vRMS)pk–pk

04 3D 0.311 23.3 0
Spherical annulus 0.308 23.5 0
Axi-symmetric 0.330 25.8 0
Scaled cylindrical 0.319 22.8 0

05 3D 0.322 60.5 7
Spherical annulus 0.349 78.5 36
Axi-symmetric 0.357 87.0 65
Scaled cylindrical 0.384 77.0 75

06 3D 0.337 180 10
Spherical annulus 0.350 265 160
Axi-symmetric 0.349 270 225
Scaled cylindrical 0.380 268 350

T〉 is the volume-averaged temperature.
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Table 4
Internally heated, temperature-dependent viscosity convection

Ra1/2 Geometry 〈T〉 〈vRMS〉 	(vRMS)pk–pk

105 3D 0.587 93 4
Spherical annulus 0.611 135 70
Axi-symmetric 0.610 142 95
Scaled cylindrical 0.623 148 90

106 3D 0.665 565 65
Spherical annulus 0.667 575 300
Axi-symmetric 0.666 560 390
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Scaled cylindrical 0.690 650 430

a1/2 is the Rayleigh number defined using the viscosity at T = 0.5. 〈T〉 is the volume-
veraged temperature.

he spherical annulus and axi-symmetric cases are the same as in
D. However, the re-scaled cylinder performs poorly in this kind of
etting in all cases. In the internally heated cases it is also apparent
hat vRMS is typically larger in the 2D descriptions than in 3D cases.
his is because the strength of 3D flows need not be as great to
ransfer a given amount of heat given the extra degree of freedom
n motions. The 2D cases also show more time-dependence than 3D
ases run with the same parameters, although the spherical annu-
us fares better than the axi-symmetric and re-scaled cylinder in all
ases when compared to 3D results.

. Discussion and concluding remarks

The reduction from 3D to 2D given here for both the spheri-
al and cylindrical cases raises interesting questions regarding how
nformation from a 3D domain may be retained in a more restricted
ormulation within a 2D slice. Indeed, it appears that any coordi-
ate system that has a circular cross-section for a particular value of
ne of three variables can be reduced to a 2D section in this manner
henever variations in the neglected third dimension are omitted

nd motions normal to the plane of the slice are set to be zero. The
ylinder and sphere are then only special cases of a more general
lass of reductions from 3D to 2D. However, information regarding
he neglected third dimension is still retained in the 2D equations,
articularly with respect to the Jacobian function (see the Appendix
for a more detailed description). The influence of the Jacobian is
ost relevant in the divergence terms relating to conservation of
ass, momentum, and energy, and therefore it is not surprising that

he spherical annulus out-performs the cylindrical annulus when
omparing to a full 3D spherical shell.

It is interesting to note that there exists a subset of the orthog-
nal spherical harmonics basis functions that corresponds to a
eduction from a 3D sphere to a 2D spherical annulus at the equator.
his is the subset for which (−1)l = (−1)m, where l is the harmonic
egree and m is the azimuthal degree. Stated more simply, this
estriction calls for m odd when l is odd, or m even when l is even. For
hese values, derivatives of the spherical harmonic basis functions
ith respect to latitude vanish at the equator, even though they

xhibit variations further away from the equator into the northern
nd southern hemisphere. The implication is that the restriction
o the 2D spherical annulus is compatible with 3D variations in

ost of the sphere, but of a restricted nature near the equatorial
lane. Indeed, by expanding azimuthal variations in quantities at
given depth as a Fourier spectrum, one might in principle obtain
stimates of equivalent harmonic degrees that would be obtained
n a fully spherical spectrum. However, this will be inherently

nder-determined because the only information one has regard-

ng harmonic degree l that might correspond to a given m obtained
olely by expanding the Fourier components in an equatorial path
or for that matter, any other great circle, so long as the coordinate
ystem is aligned such that it is the equator) is the usual condition

J

�

�
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≥ m. Nevertheless, this kind of perspective could yield estimates
r bounds upon the behavior expected in the full sphere.

For completeness, one needs to interpret what kinds of struc-
ure are implied in the third dimension by the 2D plume or other
tructures obtained in the spherical annular representation. The
implest answer is that these are sheet-like structures, just as with a
D cylindrical representation, but with a slight additional degree of
urvature in the third dimension that causes them to wrap around
he sphere into either hemisphere. However, the geometry of the
phere is such that one cannot plausibly imagine making a continu-
tion of the implied sheet-like structures away from the equatorial
lice such that they extend and wrap around all the way to the poles
f the sphere in either hemisphere. Thus we can only imagine struc-
ures being sheet-like in the vicinity of the equatorial plane, and
hat the structure becomes 3D further into either hemisphere in a
ay that is completely unconstrained by the variations in the plane

tself, as with the spherical harmonic representations mentioned
bove. Note that this is exactly the same as the usual approxima-
ion of 2D geometry at ridges or subduction zones, which are at
est only locally 2D and sheet-like into the 3rd dimension in a way
hat follows the curvature of Earth’s surface.

To summarize, we have presented the spherical annulus, a new
ethod for modeling mantle convection in a 2D annular domain in
way that retains the best characteristics of cylindrical coordinates
hile also saving intrinsic terms in the governing equations related

o spherical geometry. The radii of the domain boundaries need
ot be re-scaled in order to produce spherical behavior. Numerical
odels of mantle convection show that it is competitive with 2D

xi-symmetric models in the manner in which important diagnos-
ic parameters scale with respect to convective vigor and variable
iscosity. In fact, in almost every case the spherical annulus per-
ormance is superior to that of the 2D axi-symmetric domain, with
he exception of isoviscous convection at very low convective vigor.
n all cases presented here, the spherical annulus fares better than
he re-scaled cylindrical domain. We hope the mantle convection

odeling community finds the spherical annulus to be a useful tool
n future 2D modeling studies.
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ppendix A

The commonly used equations of motion for mantle convec-
ion in the infinite Prandtl number approximation can be written
sing a generalized Euclidean tensor component representation
e.g., Sokolnikoff, 1951),

��̇ij),j − Gijp,j + �gi = 0, (14)

˙ ij = Gjkvi
,k + Gikvj

,k
+ 
Gijvk

,k, (15)

cp(Ṫ + viT,i) = (JKGijT,i),j + H, (16)

˙ + (�vj),j = 0, (17)

hich upon expanding covariant derivatives explicitly become:
−1∂j(J��̇ij) + ��̇jk� i
jk − Gij∂jp + �gi = 0, (18)

˙ ij = [Gjk∂kvi + Gik∂kvj + 
GijJ−1∂k(Jvk)] + vl(Gjk� i
lk + Gik� j

lk
), (19)

cp(Ṫ + vi∂iT) = J−1∂j(JKGij∂iT) + H, (20)



5 Earth a

�

w
r
e
d
b
a
o
t
e
e
T
t
a
w
c
r
p
t
t
n
m
s
p
a
m
r
1

i
o
v
t
v
d
g
m
c

u
3
t
b
r
p
o

R

B

B

G

N

N

R

S

S

S

T

T

v
Phys. Earth Planet. Interiors 124, 119–130.

Zebib, A., Schubert, G., Straus, J.M., 1980. Infinite Prandtl number thermal convection
4 J.W. Hernlund, P.J. Tackley / Physics of the

˙ + J−1∂j(J�vj) = 0, (21)

here ∂j is shorthand notation for the partial derivative ∂/∂xj with
espect to a spatial coordinate xj (here, a raised index does not imply
xponentiation), a comma preceeding an index denotes covariant
ifferentiation with respect to that coordinate index, J is the Jaco-
ian, � is the viscosity, �̇ij(= �̇ji) measures the strain-rate, � i

jk
(= � i

kj
)

re Christoffel symbols of the second kind (i.e., projected derivatives
f the basis vectors), Gij(= Gji) is the contravariant metric tensor, p is
he isotropic pressure, � is the density, gi is the gravitational accel-
ration, 
 is a bulk viscosity factor (
 = k0/� + 2/3, where k0 is an
xcess bulk viscosity), cp is the specific heat at constant pressure,
is the temperature, K is the isotropic thermal conductivity, H is

he internal rate of heat generation (including viscous dissipation),
nd an over dot on a quantity (e.g., Ṫ) represents a partial derivative
ith respect to time t only. Note that covariant (lowered indices) or

ontravariant (raised indices) tensor components are not generally
eferred to a unit basis, and thus do not represent the “physical com-
onents” of the quantities of interest. Repeated indices in the same
erm, if one is lowered and the other raised, implies summation over
he components. Eqs. (18)–(21) are valid in any curvilinear coordi-
ate system, whether orthogonal or non-orthogonal, although they
ust also be supplemented by an appropriate scalar equation of

tate � = �(p, T), rheological model � = �(p, T, . . .), and thermal
hysical models for K = K(p, T, . . .) and cp = cp(p, T, . . .). Addition-
lly, the form of the equations will depend upon J, Gij and � i

jk
, which

ay be obtained from the usual fundamental tensor transformation
elations for the particular coordinates to be employed (Sokolnikoff,
951).

The kind of reduction from 3D to a 2D planar slice proposed
n the present manuscript involves retaining the exact same form
f Eqs. (14)–(21) as in the full 3D coordinate system by fixing the
alue of – and neglecting variations with respect to – one of the
hree coordinate variables. Additionally, we also assume that the

elocity and gravity vectors have no component in the neglected
imension (i.e., if the neglected coordinate variable is x3, then v3 =
3 = 0) in order that the corresponding neglected component of the
omentum equation also vanishes. The Jacobian and remaining

omponents of the metric tensor stay in the governing equations

Z

nd Planetary Interiors 171 (2008) 48–54

nchanged, even though they retain properties arising from the full
D coordinate variations. This is the reason why a reduction from
he 3D cylinder to a 2D circular slice differs from a circular slice
isecting the 3D sphere: the Jacobian terms in the full sphere are
etained in the latter case, which in turn retains intrinsic scaling
roperties relevant to the spherical geometry and the two degrees
f curvature of its boundaries.
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