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Abstract. We present a novel approach for modeling subduction using
a Multipole-accelerated Boundary Element Method (BEM). The present
approach allows large-scale modeling with a reduced number of elements
and scales linearly with the problem size. For the first time the BEM
has been applied to a subduction model in a spherical planet with an
upper-lower mantle discontinuity, in conjunction with a free-surface mesh
algorithm.
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1 Introduction

Geodynamics at the planetary scale is an inherently multiscale problem exhibit-
ing very large variations in viscosity and spatial scales. In a nearly isoviscous
system, convection occurs through finger-like, cylindrically symmetric Rayleigh-
Taylor instabilities [1]. In contrast, highly viscous plates do not sink, but drift
laterally and sink asymmetrically at zones known as subduction zones. This
subduction process is the driving mechanism of plate tectonics. A self-consistent
model of plate tectonics involves flows at planetary scales (the pacific plate is over
10000km wide) strongly coupled to small scale dynamics, such as trench fault
lubrication (lithospheric shear-zones are thought to be 100m to 1km thick [2]).

Recent numerical results [3,4] have shown that the potential energy of the
sinking plate is mostly dissipated through the interaction of the plate and the
upper mantle. Accordingly a dynamic interaction between distinct slabs and the
sharp viscosity transition at 660km depth could be caused by mantle back flow.
There is a debate as to whether, for example, these processes modify the kine-
matics, shape and stress state of the trenches of the ring of fire around the Pacific
plate, or whether each subduction system can be considered independently.

The present work introduces a novel numerical approach based on a Fast Mul-
tipole (FM) extension of the Boundary Element Method(BEM). The resulting
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technique is much more efficient than the classical Finite Element (FE) or Fi-
nite Difference (FD) methods usually employed in geodynamics. We apply the
present method to the simulation of subduction at the planetary scale.

This paper is structured as follows. In Sect. 2, we summarize our approach
and present several resolution and scaling tests on a Beowulf cluster with up to
64 processors. In Sect. 3 then, we show how the Boundary Element Method for
the solution of viscous flows can be adapted to subduction modeling. The results
of models at the global scale are shown in Sect. 4.

2 Simulation of Stokes Flow

2.1 Governing Equations

We consider the Stokes equation for a steady, highly viscous flow

∇ · σ + ρb = 0 (1)

where σ = −∇P +µ∇2u is the stress tensor; b, the body force; P , the pressure;
u, the velocity field and µ, the dynamic viscosity.

The Stokes equation can be recast into a variety of integral equations. We
follow here the formulation of [5], to which we refer for further details. We
denote as D is the domain where (1) holds and we write

ui(xo) =
1

8πµ

∫

D
σik(x)nkGij(x,xo)dS(x) +

1
8π

∫

D
ui(x)nkTijk(x,xo)dS(x)

(2)
where Gij and Tijk are the steady, Green’s functions for velocity and stress
respectively, also known as the Stokeslet and the Stresslet

Gij(x − xo) =
δij

r
+

x̂ix̂j

r3 ; x̂ = x − xo and r = |x̂| (3)

Tijk(x − xo) = −6
x̂ix̂j x̂k

r5 . (4)

In turn, (2) is cast into a form more appropriate for quasi-steady multiphase
flows in the presence of a gravity field. Hence for x ∈ Si we obtain

1 + λi

2
u(x) −

N∑

j

1 − λj

8π

∫ PV

Sj

n · T · u dS = − 1
8πµ0

N∑

j

∫

Sj

G · ∆f dS , (5)

where PV denotes the principal value of the integral, µ0 is the viscosity of the
mantle, taken as a reference and λi = µi/µ0 and∆f is a normal stress jump that
accounts for gravity

∆f = ∆ρb · xn . (6)
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2.2 Numerical Method

The surfaces Si and the supported quantities u, ∆f , . . . are discretized with
panels. The boundary integral equation (5) thus becomes a linear system

((1 + λ)/2 + T)U = F . (7)

Many approaches rely to the construction of the matrix; this scales as N2
panels

both memory- and computation time-wise though, making it impractical for
large systems.

We use a fast multipole method (FMM)[6,7,8] for the evaluation of the inte-
grals in (5). The FMM scales as N log(N), which is far more tractable and still
allows the use of a Generalized Minimized Residual method (GMRES) or any
Krylov space based method that does not rely on the storage of the full matrix.

A multipole method exploits the decay of the kernel to convolve and makes a
controlled approximation. More explicitly, let us compute

u(xo) =
∫

D
G(xo − x)ρ(x)dV (x) . (8)

We consider the contribution from Di, a part of D that is far enough from our
evaluation point xo and proceed with a Taylor expansion of the kernel G about
xc ∈ Di

u(xo) =
∫

Di

G(xo − x)ρ(x)dV (x)

$
∫

Di

(G(xo − xc) − ∇G(xo − xc) · (xo − xc) + . . .) ρ(x)dV (x)

$ G(xo − xc)
∫

Di

ρ(x)dV (x)

−∇G(xo − xc) ·
∫

Di

(xo − xc)ρ(x)dV (x) + . . . (9)

We note that the equation involves successive moments of the ρ distribution in
Di . The FMM algorithm thus sorts the sources in a tree structure whose cells
contain the moment integrals–or multipoles– and carries out a field evaluation
through a tree traversal. The refinement of the interactions is determined by a
tree traversal stopping criterion based on a prescribed tolerance. The reader is
referred to [6,7,8] for further details.

The present FMM code can handle convolutions with the Green’s functions
for the Poisson equation, the Stokeslet or the Stresslet. It employs up to the
second order moments of the source distributions (quadrupoles).

2.3 Performances

The FMM-BEM drastically improves the computational cost of the method.
Figure 1(a) shows the computation time of a time step for a viscous sphere
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(a) Complexity (b) Parallel efficiency

Fig. 1. Fast Multipole Method: performance plots

under gravity for several tolerances and resolutions. For the coarse resolutions,
the method displays the nominal N2 scaling of a direct interaction code. This is
attributed to the relatively few elements and tree cells. The scaling then quickly
approaches a nearly linear one (N log(N)) for the finer resolutions.

The FMM-BEM has been parallelized using MPI. Figure 1(b) shows the paral-
lel efficiency tested on a Opteron cluster with Quadrics connections. The scaling
is very good up to 64 CPUS, still keeping 90% of efficiency. In its current imple-
mentation the FMM-BEM uses a shared tree, thus reducing the communication
load at the expense of memory requirements.

3 Modeling Subduction with FMM-BEM

Subduction is the process through which a highly viscous (O(102)µUM) and
heavier plate (1 − 3%) enters into the earth. Analytical and numerical models
[9,10] have shown that the process is mainly controlled by the interaction of
the lithosphere with the surface and is one-sided, characterized by an unsub-
ducted plate overlapping the subducting plate. We assume that three funda-
mental forces control the subduction process: the lithosphere-mantle-air/water
buoyancy difference, the viscous resistance of the mantle to the plate motion and
the resistance to bending and stretching of the lithosphere itself.

Buoyancy difference arises from the density difference between the bottom and
the top of the plate, of the mantle and air/water, respectively. This property is
critical in subduction as it prevents the unsubducted plate from sinking straight
down [11].

The drag force exerted by the less viscous (µUM) mantle on the lithosphere
dissipates most of the energy [3,4] and controls the speed of the process. Con-
sequently intraplate interaction might be mostly controlled by induced mantle
flow.

The resistance to bending and stretching of the lithosphere itself is controlled
by its very diverse and complex inner rheology. Simplified models of the inter-
nal distribution of strength of an oceanic lithosphere display a peak at 30-40km
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depth, triggering the concept of lithospheric strength controlled by a stiff core
[12,2,3]. In this work, the overall resistance to bending and stretching will be
parameterized by an effective uniform layer with a viscosity two orders of mag-
nitude higher than the mantle and an effective thickness of 80km.

In order to appropriately model subduction, we have implemented a novel
adaptive mesh algorithm which modifies the shape of the earth surface directly
on top of the lithosphere. More explicitly, the algorithm adapts this free-surface
to the lithospheric topography up to to a depth of half of the lithospheric thick-
ness. The results of Sect. 4 show that this method automatically creates a phys-
ically consistent buoyancy force. The density difference between the mantle and
ocean self-consistently sustains the unsubducted lithosphere as on the Earth but
lets the upper surface of the lithosphere free to deform in a full free surface set-
ting. Numerically, the method requires only one parameter, the critical distance
hcrit between the boundary elements of the Earth surface and of the lithosphere
surface. If the distance is too low, instabilities arises during the computation and
if it is too high the uplifting force is not properly calculated. Tests have shown
that the critical distance hcrit has to be no less than half of the element size
of the Earth surface, but not more than 20% of the lithosphere thickness. The
method is therefore more effective at a relatively high resolution, which is made
affordable by the FMM-BEM.

4 Results

The simplest implementation of subduction at the global scale in a uniform Earth
is obtained using only two surfaces, one delimiting the Earth surface and the
second the lithosphere-mantle boundary. A slightly more sophisticated model,
employing three surfaces, allows modeling the interaction with the 660km dis-
continuity. We use the boundary integral form of (5), usually employed for solv-
ing the interaction between immersed distinct bodies, translating this setting to
a bounded problem by orienting the normal of the Planet surface inwards, as
sketched in Fig. 2.

The reference viscosity µ0 of (5) is the upper mantle effective viscosity µUM;
λ1 = µOcean/µUM is virtually null, being the ratio between the viscosities of

Fig. 2. Subduction model: geometry and parameters
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Fig. 3. Left: subduction of a plate 20 times more viscous then the mantle. Right:
subduction of a plate 100 time more viscous then the mantle and interacting with a
sharp viscous discontinuity at 660km, arrows represent the velocity vector.
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ocean (water) and the upper mantle; λ2 = µLitho/µUM is the ratio between the
lithosphere and upper mantle viscosities; λ3 = µLM/µUM is the ratio between
the lower and upper mantle viscosities. We define ∆f on surfaces 1, 2 and 3 in the
same fashion; they are respectively equal to the difference between ocean (water)
and upper mantle densities, the difference between the lithosphere and upper
mantle densities and the difference between lower and upper mantle densities

∆f1 = (ρOcean − ρUM) g r n
∆f2 = (ρLitho − ρUM) g r n
∆f3 = (ρLM − ρUM) g r n

where r is the length of x, g is the gravity acceleration (10m2/s) and gravity is
assumed constant and radial b = −g x/r.

The solution of equation 5 with the parameters described above is shown in
Fig. 3. In the left column, four frames of the time evolution of subduction for a
lithosphere 3% heavier and 20 times more viscous than the mantle are shown.
Surface topography is amplified by a factor of 10 in order to better show the
efficiency of the adaptive mesh algorithm to embed the buyancy force and self-
consistently let the planetary surface deform. Buoyancy sustains the lithosphere
but allows the trench to freely migrate and the plate to freely move horizontally.
At the beginning a 45 degrees dip is set, then the model evolves toward an
almost vertical slab subduction, the dynamics accelerates, the trench retreat
diminishes and the horizontal migration of the plate accelerates. Other models
not shown here have been performed for two and more lithospheres just adding
a new surface for each of them to equation 5.

The right column of Fig. 3 shows four frames of the evolution of a lithosphere
100 times more viscous than the upper mantle subducting in an Earth with the
660km (UM-LM) discontinuity. As for the first case, the plate is free to change
shape and migrate horizontally and the trench evolves freely. Confirming results
of laboratory experiments, the higher viscosity ratio and the presence of the
upper-lower mantle discontinuity causes a lower subduction velocity but a much
larger trench retreat than the first case. The arrows represent velocities, showing
a slight forward motion for the plate while wedge velocities are much stronger.
Finally, we note that the poloidal components of the velocities are dominant.

5 Conclusions

We have presented a novel computational approach for modeling subduction
using a fast multipole acceleration of the boundary elements method. We have
shown that the code scales linearly with the problem size for large sizes (more
than 103 elements) and shows a very good parallel behavior that is promising for
larger systems. An adaptive mesh algorithm has been developed for reproducing
the buoyancy force, within a free surface setting. Exploiting this innovation,
for the first time FMM-BEM has been employed for modeling subduction at the
planetary scale. Finally, illustrative examples have been presented for subduction
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in a viscously uniform Earth and in an Earth with the upper lower mantle
viscosity discontinuity. Future work includes a comprehensive investigation of
the roles played by the plate geometry, the lithosphere-mantle and upper-lower
mantle differential properties and the study of the interaction of subducting
plates.
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