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Abstract—On the basis of the P-T partition function, Landau theory of phase transitions, and thermodynamics
of solid solutions, an equation of state for minerals was derived. It is based on the standard principle of the min-
imization of the Gibbs thermodynamic potential (G) of a mineral in an equilibrium state. For a substance with .
a A-transition, the Gibbs free energy is defined as a function of temperature (7), pressure (P), and ordering
parameter (X,). The equilibrium mole fraction of ordered particles (X,) is determined from the condition G =
AP, T, X;) = min. Application to the system coesite—stishovite—x-quartz—B-quartz demonstrated that the equa-
tion allows the representation of experimental data within errors and shows good extrapolation characteristics.
The equation is efficient for designing internally consistent thermodynamic databases.

INTRODUCTION

The equations of state provide a basis for the
description of substance behavior at high temperature
and pressure. Hence, they are equally important for
petrologists and Earth physics specialists (e.g.,
Zharkov and Kalinin, 1968; Polyakov and Kuskov,
1994). In a recent exhaustive review, Saxena (1992)
discussed the physical principles of equations of state
and modern approaches to their derivation and applica-
tion (see also Polyakov and Kuskov, 1994).

A number of publications are dedicated to the deri-
vation of an equation of state for various crystalline
phases from their vibration spectra (Saxena, 1992;
Polyakov and Kuskov, 1994). Unfortunately, the vibra-
tion spectra of the majority of minerals are extremely
complex and poorly understood. Because of this, for
the construction of internally consistent thermody-
namic databases, petrologists (Karpov et al., 1976; Hel-
geson et al., 1978; Berman, 1988; Holland and Powell,
1990; Saxena et al., 1993) use the standard expression
of the molar Gibbs free energy in the form:

T
AG(P,T) = AH,-TS, + j[cp,,(r)]dr

T()
T P (1)
_T j [Cp,(T)/T}dT + j[V(P, T)14P,

TO P [

where P is pressure; T is temperature; G(7, P) is the
molar Gibbs free energy at given P and T; AH, and S,
are the enthalpy of formation and entropy, respectively,

of the matter at reference temperature 7, and pressure
P,; Cp,(T) is the heat capacity as a function of temper-
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ature at reference pressure P,; and V(P, T) is the vol-
ume of the substance as a function of temperature and
pressure. The form of the functions Cp (T) and V(P, T)
is selected empirically; power expansion series are nor-
mally used and allow the approximation of experimen-
tal data on phase equilibria and (or) thermochemical
measurements for a number of minerals with a reason-
able degree of accuracy.

In many cases, the application of thermodynamic
databases (Karpov et al., 1976; Helgeson et al., 1978;
Berman, 1988; Holland and Powell, 1990) and inter-
nally consistent systems of mineralogical thermome-
ters and barometers (Perchuk, 1969, 1989a, 1989b,
1990; Gerya and Perchuk, 1990, 1992, 1994;
INFOREX-4.0; Perchuk and Gerya, 1992) resulted in a
considerable advance in the understanding of the phys-
icochemical conditions of formation of igneous (e.g.,
Frolova et al., 1992) and metamorphic (e.g., Perchuk
et al., 1989, 1994, 1995, 1996, 1998) rocks.

One drawback of such a petrologic approach is the
poor extrapolation characteristics of the power expan-
sion series (Berman, 1988; Richet et al., 1992) for the
description of the thermodynamic properties of miner-
als and fluids. Perchuk and Gerya (1997) used the Lan-
dau theory of phase transitions together with the Mar-
gules thermodynamic formalism to derive a relatively
simple and efficient equation of state for fluids in a very
wide range of P-T parameters. This equation ade-
quately reproduces the P-V-T properties of gases in the
experimentally studied region and shows good extrap-
olation characteristics. A similar approach can be used
for crystalline phases, which is demonstrated below by
the example of SiO,.
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DERIVATION OF THE GIBBS FREE ENERGY
EQUATION FOR MINERALS

In general, the Gibbs potential, G of any substance
is a function of temperature, 7, pressure, P, and an
ordering parameter, 1. The equilibrium value of n at P
and T corresponds to the minimum of the Gibbs free
energy:

G = f(P,T,n) = min,

where 1 is the dimensionless parameter quantitatively
(e.g., from O to 1) characterizing a change in the struc-
ture of the substance due to a phase transition (Landau
and Lifshitz, 1995, pp. 502-572). The choice of the
ordering parameter depends on the nature of the sub-
stance. For example, for minerals of a variable compo-
sition, it is a function of component concentrations on
certain structural positions.

In a crystalline substance, the atoms are closely
packed and oscillate near definite equilibrium posi-
tions. Such a system possesses 3N vibrational degrees
of freedom, where N is the number of atoms. Mechan-
ically, it may be regarded as a combination of 3N inde-
pendent quantum oscillators, each corresponding to a
separate independent oscillation (Landau and Lifshitz,
1995).The equilibrium value of the Gibbs free energy
of the system of quantum oscillators under constant T
and P can be calculated on the basis of the 7—P partition
function (Boguslavskii, 1961; Kubo, 1965):

G = —kTIn(Y), 2
where

r=Y _[ exp{-[E(V) + PVI/kT}dV,  (3)
i

Y is the statistical sum, k is Boltzmann’s constant, V is
the volume of the system, and E(V) is the energy of the
system in the ith quantum state as a function of volume.
The exact form of the function E,(V) is not known and
empirical approximations are used for its representa-
tion. If in any ith quantum state at a given P, there is a
unique value of the system volume V{P) with the non-
zero probability, then

Jexp{—[E,.(V) + PV)/kT}dV = exp{-H{(P)/kT}(4)
(1]
where

H(P) = E(P)+PV(P),
E(P) = Ei[V(P)],

H{P), E(P), and V(P) are the enthalpy (more precisely,
its microscopic analog), energy, and volume of the sys-
tem, respectively, in the ith quantum state as a function
of P. Let us introduce then the effective volume V,(P)
and corresponding H,(P) and E(P), such that equation
(4) will hold if in the ith quantum state at a given P the
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fluctuations of the system volume V are allowed rela-
tive to V(P). Substituting equation (4) simplifies statis-
tical sum (3) to

Y = Zexp[—Hi(P)/kT]. 5

Normalizing partition function (2) relative to the
state of zero-point vibrations, we get

G = Go(P)-kTIn(Yy), (6)

where

Y, = Zexp[—AH,-(P)/kT],
AH(P) = H(P)—-Hy(P) = AE(P)+ PAV(P),
Hy(P) = Eo(P) + PVy(P),
AE(P) = E.‘(P)"EO(P),
AV(P) = V(P)-Vo(P),
Go = Hy(P)-TS,

Y, is the statistical sum normalized with respect to the
state of zero-point vibrations; Gy(P), Hy(P), Ei(P), and
Vo(P) are the Gibbs free energy, enthalpy, energy, and
volume of the system, respectively, in the state of zero-
point vibrations expressed as functions of pressure; S,
is the entropy of the system in the sate of zero-point
vibrations (according to the Nernst law, S; = O for
ordered crystals); AH(P), AE(P), and AV{P) are the
enthalpy, energy, and volume effects, respectively, of
the transition of the system from the state of zero-point
vibrations to the ith quantum state. Taking into account
the independence of oscillators, AH(P), AE(P), and
AV{P) in (6) may be expanded with respect to the num-

ber of oscillators and the statistical sum Y, becomes:

3N
Yo = []Yos )

where
M
Yo = 3 expl-AH(P)/kT},
J

Yy, is the statistical sum for the ith oscillator normalized
with respect to the state of zero-point vibrations; M is
the number of energy levels for the ith oscillator;
AH{P), AE(P), and AV(P) are the enthalpy, energy,
and volume effects, respectively, of the transition of the
ith oscillator from the state of zero-point vibrations into
the jth energy level as functions of pressure. To calcu-
late Y, assume that each of the oscillators is character-
ized by the infinite number of energy levels and the val-
No. 6
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ues AH(P), AE(P), and AV,(P) are proportional to the
level index (7). In this case,

AH(P) = jAHo(P), (8)
Yoi = 1/{1 —exp[-AH(P)/kT1}, 9)
where
AH;o(P) = AEo(P) +AV;o(P),

AH(P), AE(P), and AVy(P) are enthalpy, energy, and
volume effects due to transition of the ith oscillator
between neighboring energy levels. According to (8)
and (9), an increase in the system volume at increasing
temperature at constant pressure is proportional to an
increase in the number of phonons. This volume incre-
ment compensates the increase of thermal pressure,
which is also proportional to the number of phonons.
Thus, equations (8) and (9) are physically justified.
Taking into account (9), equation (6) is recast as

G = Ho(P)—' TSO
3N
+kTY In{1- exp[-AHo(P)/kT]}.

i

(10)

If N = VvN,, where N, is the Avogadro number and v
is the number of atoms in the mineral unit cell, and the
values of AH,, are identical for large groups of oscilla-
tors within the whole pressure range, equation (10) can
be rearranged as

GS = HS—TSg

. (D
+RTY ¢;in{1-exp[-AH,/RT1},

where

R = kNA,
C;, = Ni/NA’ ZC; = 3V,

R = 1.987 cal/mol/K; Hs and s;’ are the molar enthalpy
and entropy of the mineral in the state of zero-point

vibrations (assuming that 32 is independent of P); n is
the number of oscillator groups with different vibration
parameters AH,y; H; is the number of oscillators in the
ith group; c; is the statistical weight of the ith group;
AH; is the enthalpy effect of the transition between

neighboring energy levels for the ith group (calculated
for N4 oscillators).

The application of equation (11) requires incorpora-
tion of pressure dependencies of Hg and AHj;. This can
PETROLOGY Vol. 6
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be made using the expressions
P
H, = H + J'VsdP, (12)
Py
P
AH, = AHY + j AV,dP, (13)

Py

. 0 .
where P, is the reference pressure; H; is the molar

enthalpy of the solid at 0 K and Py; AHS,- is the value of

AH at Pg; V, is the molar volume of the solid at 0 K as
a function of pressure; and AV; is the volume effect of
the transition between neighboring energy levels for the
ith group of oscillators as a function of pressure (calcu-
lated for N, oscillators). Assuming that in the state of
zero-point vibrations the pressure dependency of the
system volume V/ is given by the Murnaghan equation,
which is often used to describe the isothermic P-V

ptoperties of crystalline phase in a wide pressure range.
Then,

Vs = Va(Po+9) /(P +9)'", (14)

where v? is the molar volume at 0 K and Py; ¢ is the

parameter characterizing the average effect of attractive
interactions between atoms within the whole pressure
interval; and the exponent 1/5 stems from the assump-
tion that the potential energy of repulsive interactions
between atoms is proportional to the fourth degree of
the apparent volume occupied by them. The parameter
AV, characterizes a small (AV; < V,) change in the sys-
tem volume V, related to the energetic transitions of
oscillators of the ith group. Expressing this change as
an apparent small increment to V; similar to (14) gives

1/5

AV, = AVo(Py+ )"/ (P+ )", (15)

where AVSI is the value of the parameter at P;. The

pressure dependencies of H; and AH; may be found

from equations (14) and (15) taking into account (12)
and (13):

H, = H + V¥, (16)

AH,, = AHY + AV Y, a7

where

1/5

¥ = 5/4(Py+0) [P+ )"~ (Py+ 0)*°1.
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Standardizing equation (11) relative to T, and P,
and substituting (16) and (17) give

G, = HTUPO - TSTOPO

+ Y cARTIn[1 - exp(-AH,./RT)]

i=1
—AHY(1 =T/ To)exp(-AH ./ RT,) /(1
~exp(~AHY/RT,)1- RTn[1
—exp(-AHY/RT,) ]} + VoW,

(18)

where
Stopy = ~(3G,/0T)p, = S;+ 3 c;

X {AHY/Toexp(-AHY/RTg)/[ 1
~ exp(~AHg;/RTy)]
~RIn[1-exp(-AH/RT)1},

Hyp, = Grp, + ToSt,p, = H?"' zciAHgi
X exp(~AH/RTy)/[1 — exp(~AHY/RTy)1,

Grp, = Hy ~ToS, + RToY ¢,

xIn{1-exp[-AHg/RTo)} = Hyp —ToSt.p.,

and Gy p , Hyp, , and Sy p are the Gibbs free energy,

enthalpy, and entropy, respectively, of one mole of the
substance at the reference parameters, 7, and P,. As the

vibration spectra of real materials are complex, the total
number of parameters ¢;, AH.?,' , and AV?,- in equation
(18) may be very large. For a simplified description of

the thermodynamic properties of substances, equation
(18) may be used with the lowest » and empiric coeffi-

cients ¢;, AH?,- , and AV?,- . These coefficients may be

regarded as generalized characteristics of n groups of
oscillators differing significantly in transition energies.

If the disordering of a mineral at increasing temper-
ature results in a A-transition, the dependency on the
ordering parameter | must be incorporated into equa-
tion (18). This will be made by the thermodynamic
analysis of the ordering process in the most general
form

aA+bB+...+dD = q, (19)

where A, B, ..., D are disordered particles; o =
AB,...D, is the ordered particle, and a, b, ..., d are the
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stoichiometric coefficients. The condition of intracrys-
talline equilibrium for reaction (19) is given by

AG,,; = RTIn(K,,)) + AGoy + AGS,y = 0, (20)
where
Koy = Xof (X3 X5...Xp),
Xp+Xp+...+Xp+X, =1,

X4, Xg, ..., Xp are the mole fractions of the disordered
particles A, B, ..., D, respectively; X, is the mole frac-
tion of the ordered particle o; K,,,; is in principle similar
to the equilibrium constant of a chemical reaction sim-

ilar to (19); AG((,),d and AG;,, are the changes of partial

standard and excess energies due to reaction (19),
respectively. The Gibbs free energy increment relative
to the ordered state (X, = 1) is then

GO. = {RT[XAlnXA + XBln(XB) +...+ XDln(XD)
+XgIn(X)1-AGh J(1-X)/Z (1)
+Go M1+ X(Z-1)],

where Z =a + b + ... +d is the normalizing factor; G,
is the excess integral molar energy of mixing of ordered
and disordered particles.

For the equilibrium state of the system, taking into
account (18) and (21), we obtain

G0 = Gy +¢,G, = min, (22)

where G, , , is the molar Gibbs free energy of a mineral
with a A-transition; c, is the number of degrees of free-
dom of the mineral unit cell in ordering reaction (19),
and the degree of ordering of the substance is uniquely
defined by the ordering parameter 1} = X. ,

Substituting (16) and the Margules equation, the
sum of the two latter terms in equation (21) may be
rewritlen as

~AGy (1 =X}/ Z+ Gy = ~AGoy(1-X,)/Z
m . 23)
£ Y W (1- X)X,
j=1
where

Wi = Wi+ W)¥,
AG,y = AHpyu + AV, ¥,

AH((,),,, and A V,?,d are the enthalpy and volume effects,
respectively, of the ordering reaction at Pyand T=0 K;
W are the Margules parameters. Assume that at a cer-
tain level of oscillator energy, m depending upon X,
there is a change in the volume and enthalpy effects of

PETROLOGY Vol. 6
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transitions between neighboring energy levels. The sta-
tistical sums Yy, in (7) become

Yo, = 1/{[1-exp(-AH,,/kT)]
X[1—exp(-AHg/kT)1/{[1 - exp(-AH;3/kT)]
+exp(-AH; /kT)[exp(-AH;3/kT) (24)
—exp(-AH,/kT)]1}},

where AH,, is the enthalpy effect of energy transitions
(AH,) from the zero level to level (m — 1) typical of the
ordered phase; AHg is the enthalpy effect of energy
transitions (AHy) from level m typical of the disordered
phase; AH,, is the enthalpy effect of transition from the
zero level to level m as a function of X,,.. AH;, expansion
to a power series with respect to X, gives

M
AHp = Y AHp(X,),

j=0

(25)

where AH),; are the expansion coefficients.

Using equations (17)~(25), we obtain the equation
of the molar Gibbs free energy of a mineral with a A-
transition standardized with respect to the ordered state
X.=1)

Giva = G+ cyGy = HTOP(,_TSTOPO"'ZCI‘

i=1

X{RTIn{[1-exp(-AH,/RT)]
X[1-exp(-AH;3/RT)1/{[1- exp(-AH,;3/kT)]
+exp(-AH,;,/RT)[exp(-AH sig/ RT)

~ exp(-AH ;o/RT)1}} = AHY o (1 - T/ T,)

(26)
X exp(~AH o/ RTo)/[1 - exp(~-AH ./ RT)]

~RTIn[1-exp(-AH o /RT)]1} + V¥
+ ca{RT[XA In(X,)+ XpIn(Xp) + ... + XpIn(X,)
+ X In(Xy)1 - AGY ,(1-X,)/Z

+ > Wi~ Xa)(Xa)f}/ll +X.(Z-1)] = min,
i=1
where
0 0
AHg, = AHgo + AV, Y,
AH,;5 = AHgy +AV?.‘|3\I',
PETROLOGY Vol. 6
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M
AHg, = Z (AHgin + Avgilj‘P)(Xu)’
j=0

and AH,,, AHg, and AH,;,; are the values of AH,,,
AH g, and AH ), ; calculated for N, oscillators. The mean-
B Aj A o
ing of all the other parameters in (26) is evident from
the derivation of the previous equations.

If the heat expansion coefficient does not change at

the A-transition, equation (26) taking into account (18)
becomes

n
Gsio = G+¢,Gy = HTOPO_TSTOPO+ZCi

i=1

x {RTIn[1 - exp(-AH;/RT)] - AH>(1-T/T,)
x exp(~AHy/ RT,)/[1 - exp(~AH'/RTy)]

—RTIn[1-exp(-AHSY/RT)1}+ V¥ (27

+ ca{RT[XA In(X,) + XpIn(Xp) + ... + XpIn(Xp)

+XoIn(X,)1-AG,,,(1-X,)/Z
M
+ ) W1~ Xa)(Xa)’}/[l +Xo(Z-1)] = min,

j=1

where AH; = AHY, + AV W.

Expressions (26) and (27) are equations of the
Gibbs free energy of a mineral with a A-transition as a
function of P, T, and X,,. To calculate the thermody-
namic properties of the mineral, the equilibrium value
of X, should be found from equation (20) correspond-
ing to the minimum of Gibbs free energy in (26) or
(27). The expression for the calculation of changes in
the standard and excess Gibbs free energies in equation
(20) may be obtained from equations (26) or (27)-using
the Gibbs—Duhem relation.

Equations (18) and (26) or (27) are the desired equa-
tions of state. They may be used to calculate internally
consistent thermodynamic constants and create ther-
modynamic databases.

TESTING

The efficiency of the derived equations was ana-
lyzed with the system coesite—stishovite—a-quartz—B-
quartz, which was often used as a test system for vari-
ous equations of state (Kuskov and Fabrichnaya, 1987;
Swamy et al., 1994; Dorogokupets, 1995). The stan-
dard state conditions were Ty =0 K and P, = 1 bar. Such
a choice allowed us to simplify equations (18) and (26)
and to check the accuracy of the representation of exper-
imental data in a low-temperature region (0-298 K). The
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Calculated parameters of equation (28) for coesite and stishovite and equation (30) for quartz

Parameter Units Quartz Coesite Stishovite
Hrp* cal/mol ~219329.61** -218442.65 ~209254.14

174 cal/bar/mol 0.539924 0.490793 0.334656
¢ bar 71662 217664 612340

AV? cal/bar 0.00074714 0.00037909 0.00055788
¢ 1.42569 1.44913 0.28816
AHy, cal 305.49 343.15 281.81

c 3.50283 3.71385 2.73177
AHg cal 934.83 979.94 919.28

& 4.07148 3.83702 5.98007
AHg, cal 2502.38 2504.76 1922.40
AHZ,, cal -630.28

AV cal/bar -0.030554

w cal 3407.29

w" cal/bar 0.151422

AH e cal 3094.80

Av e cal/bar 0.057862

* Enthalpy of formation from elements at 7y = 0 K and Py = 1 bar.

** The value Hr, p ~of quartz was taken such that its enthalpy of formation at 298.15 K was —217678 cal/mol (~910.7 kJ/mol) re-com-

mended by CODATA (1978).

derivation of internally consistent thermodynamic data
was performed by the nonlinear least squares method.
The thermodynami¢ processing of the experimental
data was carried out cyclically with the quality control
of reproduced parameters. The calculation procedure
allowed us to approximate the measured parameters
within experimental ierrors. For the testing of the equa-
tions, the requirement was prescribed of a precise
description of the thermodynamic properties of miner-
als within the wide range of temperature and pressure
at n = 3 and the empirical values of the weights c; and
parameters AH,;, AV, in (18) and AHy,, AVy,,
AHgg, AVyg, AHpy,, and AVyy; in (26).

The thermodynamic properties of coesite and
stishovite were derived using equation (18) with a fixed
value of the parametgr AV?,- = AV? (i.e., independent
of i). At the chosen [, and P, values, the generalized
equation for the calchlation of the Gibbs free energies

of coesite and stishovite is:

3
G, = Hrp+ ), G:RT
i=1

xIn{1-exp[—(AHY + AVW)/RT]} + V0.

(28)

The calculated values of the ten parameters of equation
(28) for these minerals are shown in the table.

The processing and modeling of quartz thermody-
namic properties in the vicinity of the A-transition
using equations (19)—(26) demonstrated that the pro-
cess of its ordering is specified by the intracrystalline
reaction

38i0,(Qtzp) = Si304(Q1z,). (29

This inference agrees with the results obtained for
quartz by other researchers (e.g., Castex and Madon,
1995; Spearing et al., 1992). For the simplest mixing

PETROLOGY Vol. 6 No.6 1998
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Fig. 1. Variations of the ordering parameter X and thermodynamic properties of quartz with temperature and pressure.
Calculated by equation (30) with parameters from the table. Numbers on the isolines are pressure in kilobars.

(a) Isobars of temperature dependencies of the mole fraction of ordered quartz (X;). (b) Isobars of the temperature dependencies of
quartz molar heat capacity. (c) Isobars of the temperature dependencies of quartz molar volume. (d) Negative correlation ¢=—0.987)

between the mole fraction of ordered quartz (X) and the mean square displacement (MSD) of oxygen atoms along axes /-3 (Kihara,
1990) at P=1 bar and 7= 600-1100 K.
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model [m = 1 in equation (23)] and ¢, = 1, the equation
of the Gibbs free energy of quartz is
3

G, o(Q12) = HT0P0+ZchT

i=1
X In{[1-exp(-AH;,/RT)]
x {1 - exp(-AH 3/ RT)}/{[1 — exp(-AH;3/kT)]
+exp(-AH,/ RT)exp(-AH,;3/RT) 30)

—exp(-AH;/RT)]}} + V¥
+ {RT[X,In(Xy) + Xgln(Xg)] - AGo,y(1 - X5)/3
+ W XX, }/(1 +2X,) = min,

where
AH,, = AHS + AVYW,
AHgp = AH,,
0 2 0
AHS). = AHX;‘XG'FAVS;\‘P,
W = W +W)¥,
AGY, = AHg + AV, Y,
Xa+XB = ],

and Xj is the mole fraction of disordered quartz. The
calculated values of all the parameters of equation (30)
are shown in the table.

Figure 1a shows variations of X, with T and P. It is
seen that two equilibrium phases with different propor-
tions of ordered and disdrdered quartz particles occur
along the line of the phase transition. Equilibrium (29)
is attained both between the phases and within each of
them. The miscibility gap expands with increasing
pressure (the calculated aritical point of the solvus has
a negative pressure value). Below this pressure, only a
hypothetical homogenous phase is possible, the order-
ing parameter of which X, must change continuously
with temperature (Fig. 1a). The heat capacity and ther-
mal expansion coefficient must show maxima at the
highest absolute X, /9T values (Figs. 1a, 1b). At pres-
sures above the critical point, the transition between
phases is accompanied by a discrete change in X,
(Fig. 1a) and quartz thermodynamic functions (Figs. 1b
and 1c). It is known (Heaney et al., 1994) that immedi-
ately near the region of phase transition, quartz experi-
ences complex changes of the crystal structure related
to the formation of an incommensurate phase. In deriv-
ing equation (30), we did #ot address the problem of the
thermodynamic description of this phenomenon,
because it occurs in a vefy narrow temperature range
and its physical nature is jot completely known. It may
be assumed that the energy effect of these transforma-
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tions in the quartz structure is incorporated in a cumu-

lative form in the parameters AHg,d and Avg,d of

equation (30). Figure 1d shows the negative linear cor-
relation of the ordering parameter X, and the mean
square displacement of oxygen atoms in the quartz
structure near the A-transition. The high correlation
coefficient (r = 0.9868) demonstrates that the calcu-
lated decrease of X, with increasing temperature
(Fig. 1a) directly reflects changes in mutual atom posi-
tions in the quartz structure. In other words, the param-
eter X, is a precise quantitative characteristic of the
degree of ordering for a phase with a A-transition.

The thermodynamic constants of quartz, coesite,
and stishovite presented in the table were obtained on the
basis of the following experimental data (Figs. 2-5):

— measurements of low- and high-temperature heat
capacity of quartz (Fig. 2a), coesite (Fig. 3a), and
stishovite (Fig. 4a);

— volume of quartz (Figs. 2b and 2c), coesite
(Figs. 3b and 3c), and stishovite (Figs. 4b and 4c) as
functions of temperature and pressure;

— data on the adiabatic compression of quartz
(Fig. 2d);

— relative enthalpies of quartz (Fig. 2e) and coesite
(Fig. 3d);

- solution enthalpy for the coesite—quartz reaction
(Fig. 5a);

— and data on the phase transitions a-quartz—f-
quartz (Fig. 5b), coesite—quartz (Fig. 5c), and coesite—
stishovite (Fig. 5d).

During the processing of the data, we used the rec-
ommendations of Richet et al. (1992) for the estimation
of measurement accuracies.

For the data of adiabatic calorimetry, the following
errors were accepted for heat capacity estimates: £10-
20% (below 10 K) and £0.2% (above 10 K), whereas,
for the results of differential scanning calorimetry, 1%
was accepted below 1000 K and £5% above 1000 K.

The accuracy of the initial data for the measurement
of relative enthalpy by the method of mixing calorime-
try was estimated as +1%

The comparison of results of volume measurements
for silica polymorphs from various sources allowed us
to estimate the accuracy of the unit-cell volumes of
quartz, coesite, and stishovite within the whole temper-
ature and pressure interval as £0.3%. The large error is
due to a considerable scatter of measurements from
various experimental series. For example, the measure-
ments of quartz molar volume at standard state condi-
tions (7 = 298 K and P = 1 atm) range from 22.63 cm®
(Burnham, 1965) to 22.81 ¢m?® (Glinnemann et al.,
1992); coesite molar volume, from 20.50 cm? (Bassett
and Barnett, 1970) to 20.67 cm? (Robie et al., 1967);
and stishivite molar volume, from 13.99 cm?® (Bassett
and Barnett, 1970) to 14.05 cm? (Liu et al., 1974; Endo
etal., 1986).
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Fig. 2. Comparison of the calculated values of quartz thermodynamic properties with experimental data. Calculated by equation (30)
with parameters from the table.

(a) Heat capacity at constant pressure. Calorimetric data after (1) (Hemingway ef al., 1991); (2) (Gurevich and Khlyustov, 1979);

(3) (Watanabe, 1982); (4) (Gronvold et al., 1989); (5) (Akaogi et al., 1995): (6) (Hemingway, 1987); and (7) calculated parameters
using data from the table.

(b) Temperature dependence of molar volume. (1) Calculated using data from the table; (2) (Jay, 1933); (3) (Ackermann and Sorell,
1974); (4) (Danielsson et al., 1976); (5) (Lager et al., 1982); (6) (Kihara, 1990); and (7) (Carpenter et al., 1998).

(c) Pressure dependence of molar volume. (1) Calculated using data from the table; (2) (Vaidyaer al., 1973); (3) (Olinger and Hal-

leck, 1974); (4) (Jorgensen, 1978); (5) (" Amouret al., 1979); (6) (Levien et al., 1980); (7) (Hazen et al., 1989); and (8) (Glinnemann
etal., 1992).

(d) Adiabatic compression. (1) Calculated using parameters from the table; (2) 298, (3) 800, (4) 1000, and (5) 1300 K (Boehleret
al., 1979; Boehler, 1982).

(e) Relative molar enthalpy. (1) Calculated using data from the table and (2) (Richetet al., 1982). -
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Fig. 3. Comparison of the calculated values of the coesite thermodynamic properties with experimental data.

Calculated by equation (28) using parameters from the table.

(a) Heat capacity at constant pressure. (1) Calculated using data from the table; (2) (Holmer al., 1967); and (3) (Akaogi e? al., 1995).
(b) Temperature dependence of molar volume. (1) Calculated using data from the table; (2) (Galkinet al., 1987); and (3) (Smyth
et al., 1987). Bars show errors in volume determination of £0.3%.

(¢) Pressure dependence of molar volume. (1) Calculated using data from the table; (2) (Bassett and Barnett, 1970); and (3) (Levien
and Prewitt, 1981). Bars show errors in volume and pressure determinations of£0.3 and 5%, respectively.

(d) Relative molar enthalpy. (1) Calculated using data from the table; (2) (Holmet al., 1967); (3) (Akaogi and Navrotsky, 1984); and
(4) (Akaogi et al., 1995).
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Fig. 4. Comparison of the calculated values of the stishovite thermodynamic properties with experimental data.
Calculated by equation (28) using parameter from the table.
(a) Heat capacity at constant pressure. (1) Calculated using data from the table; (2) (Holmet al., 1967); and (3) (Akaogi et al., 1995).

(b) Temperature dependence of molar volume. (1) Calculated using data from the table at P = | bar; (2) calculated using data from
the table at 105 kbar; (3) (Doroshev et al., 1987, 1 bar); (4) (Endo et al., 1986, 1 bar); and (5) (Suito et al., 1996, 105 kbar). Bars
show errors in volume determinations of $:0.3%.

(c) Pressure dependence of molar volume. (1) Calculated using data from the table; (2) (Bassett and Barnett, 1970); (3) (Liu et al.,
1974); (4) (Olinger, 1976); (5) (Sato, 1977); (6) (Tsuchida and Yagi, 1989); (7) Rosset al., 1990); and (8) (Suito et al., 1996).

PETROLOGY Vol.6 No.6 1998



522 GERYA et al.
g al (a)
B2 r !
S £ o
£06 2F — C—
s S -—i——q — o3
a8 1 : . [ ad
E o | —5
= 1 1 1 1 1 i
968 970 972 974 976 978 980 982
Temperature, °C
40 -
(b) o
301
-g i o-quartz ; é
;5 20F il
g --0--3
A i —g—4
L B e §
& 10 e
- 7
O 1 1 1 i 1 1
500 700 900 1100 1300 1500
Temperature, °C
45
©
40
5 35 Coesite ol
= A2
g 30F o3
2 o4
&"3 251 x3
g +6
20l o-quartz <7
—38
15 4 1 1 t - | 1 i 1
200 400 600 800 1000 1200 1400 1600 1800
Temperature, °C
150
i @ I
130} I =Ty
Stishovite e
3
£ 110f e} & _{
© 90“§ P = £y
=} i . Al —=——
2 *J = o Coesite 02 —x—7
& 70 3 —+—8
i 4 %9
50 1 ! | i A 10
500 1000 1500 2000 2500 3000

Temperature, °C

The accuracy of pressure determination was taken to
be no better than £5%. For all other measured parame-
ters, the accuracy: given by the authors was accepted.

In Figs. 2-5, the calculating results using equations
(28) and (29) are compared with the initial data. It is

evident that our thermodynamic formalism correctly
reproduces the experimental relationships.

The extrapolation characteristics of the model were
checked by application to the experimental data that
were not involved in the processing. Figure 4c demon-
strates good agreement between the stishovite volume
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Fig. 5. Comparison of the calculated parameters of the phase transitions in the system coesite-stishovite-ct-quartz—f-quartz with
experimental data. Calculated by equations (28) and (30) using parameters from the table.

(a) Enthalpy of the quartz—coesite phase transition. (1-4) Calorimetric data (error bars show scatter in enthalpy measurements and
temperature errors of £1°C): (1) (Holm et al., 1967); (2) (Akaogi and Navrotsky, 1984); (3) (Kuskover al., 1991); (4) (Akaogi et al.,
1995); and (5) calculated using data from the table.

(b) Phase transition at-quartz—~B-quartz. (1) Experimental data (Cohen and Klement, 1967) with error bars for pressure determina-
tions of £5%. (2-7) Results of processing of the experimental data: (2) (Gibson, 1928); (3) (Yoder, 1950); (4) (Koster van Groos and
Ten Heege, 1978); (5) (Mirwald and Massone, 1980b); (6) (Shen et al., 1993); and (7) calculated using parameters from the table.

(c) Phase transition quartz—coesite. (1-8) Experimental data (filled symbols show coesite stable, open symbols, quartz stable; also
shown are pressure errors of +5% and reversed equilibria): (1) (Bose and Ganguly, 1995); (2) (Ishbulatov and Kosyakov, 1990); (3)
(Bohlen and Boettcher, 1982); (4) (Mirwald and Massone, 1980a, 1980b); (5) (Akella, 1979) corrected by Mirwald and Massone
(1980a); (6) (Boyd and England, 1960), nominal pressure corrected using the equation of Gasparik and Newton (1984) for the tem-
perature dependency of friction correction; (7) (Kitthara and Kennedy, 1964); and (8) calculated using parameters from the table.

(d) Coesite-stishovite phase transition. (1-3) Experimental data (solid symbols show coesite stable, open symbols, stishovite stable;
also shown are error bars for pressure determination of £5% and reversal experiments): (1) (Serghiouer al., 1995); (2) (Zhang et al.,
1996); (3) (Zhang et al., 1993). (4-10) Results of the processing of the experimental data: (4) calculated using parameters from the
table; (5) (Zhang et al., 1993); (6) (Seghiou ef al., 1995); (7) (Akimoto and Syono, 1969); (8) (Suito, 1977); (9) (Yagi and Akimoto,
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1976); and (10) (Zhang et al., 1996).

extrapolated using equation (28) to a pressure of 800 kb
and independent experimental data (Tsuchida and Yagi,
1989). The calculated temperature dependency of
quartz volume (Fig. 2b) is also quite consistent with

recent independent determinations (Carpenter et al.,
1998).

CONCLUSION

On the basis of the 7-P partition function, the Lan-
dau theory of phase transitions, and thermodynamics of
solid solutions an equation of state was derived for min-
erals. It is based on the principle of the minimum of the
Gibbs free energy in the equilibrium state of a crystal-
line phase at given temperature and pressure. The equa-
tion of state allows description of the thermodynamic
properties of minerals within experimental error and
shows good extrapolation characteristics. Together
with the similar equation of state for dense gases
(Gerya and Perchuk, 1997) equations (18), (26), and
(27) may be used as a basis for the development of
internally consistent thermodynamic databases for use
in petrology.
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