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Abstract

We have designed a 2D thermal–mechanical code, incorporating both a characteristics based marker-in-cell method and
conservative finite-difference (FD) schemes. In this paper we will give a detailed description of this code. The temperature
equation is advanced in time with the Lagrangian marker techniques based on the method of characteristics and the temperature
solution is interpolated back to an Eulerian grid configuration at each timestep. This marker approach allows for the accurate
portrayal of very fine thermal structures. For attaining a high relative accuracy in the solution of the matrix equations associated
with both the momentum and temperature equations, we have employed the direct matrix inversion technique, which becomes
feasible with the advent of very large shared-memory machines. Our conservative finite-difference schemes allow us to capture
sharp variations of the stresses and thermal gradients in problems with a strongly variable viscosity and thermal conductivity.
We have tested this code with numerous examples drawn from Rayleigh–Taylor instabilities, the descent of a stiff object
into a medium with a lower viscosity, viscous heating and flows with non-Netwonian rheology. We have also benchmarked
successfully with variable viscosity convection for lateral viscosity contrast up to 108. We have delineated the regions in
thermal problems where the diffusive nature of the temperature equation changes from its parabolic character locally to a
non-linear hyperbolic-like equation due to the presence of variable thermal conductivity. Finally we discuss the applicability
of this marker-based and finite-difference technique to other evolutionary equations in geophysics.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Today, as modeling of geomechanics is entering a
new millennium, geoscientists are faced with more re-
alistic situations in lithospheric and mantle dynamics.
These new difficulties arise from the need to model
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with great fidelity the significant finite deformation
in strongly viscous rocks at cold temperatures to
contrasting rheological properties across fault zones
(Kameyama et al., 1999; Regenauer-Lieb et al., 2001;
Kameyama and Kaneda, 2002) and transport proper-
ties involving vapor or volatiles (e.g.,Woods, 1999;
Richard et al., 2002). The rheology of crustal and
mantle rocks depends strongly on the temperature,
strain-rate, volatile content, grain size and the hy-
drostatic pressure (e.g.,Ranalli, 1995; Karato, 1997).
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These extenuating physical and dynamical circum-
stances imposed by the sharply varying viscosity and
volatiles indeed represent a major challenge for the
momentum equation in geodynamics, unlike those
found in the oceanographic or atmospheric sciences.
In the limit of creeping flow or the zero Reynolds
number regime, the momentum equation becomes
a highly non-linear elliptic partial differential equa-
tion primarily because of non-linear constitutive
relationship between the stress and strain-rate ten-
sors, unlike the other areas in fluid mechanics (e.g.,
Batchelor, 1967; Balmforth and Provenzale, 2001).
The solution of these elliptic partial differential equa-
tions has remained a chief computational challenge
in solid-earth geophysics (Yuen et al., 2000a,b) be-
cause of the ill-conditioned nature of the matrix with
vastly varying magnitude in the elements due to
the large variations in the rheological properties of
rocks. Various types of methods have been devised
for solving the elliptic equation for variable viscos-
ity. A popular method has been the multigrid method
(Wesseling, 1992; Moresi and Solomatov, 1995). An-
other non-linearity, not often appreciated up to now
in geomechanical-modeling, is that due to variable
thermal conductivity in the energy equation. The ther-
mal conductivity of crustal and mantle rocks depends
on the temperature and pressure (Hofmeister, 1999)
and endows the temperature equation with a strong
non-linearity from the square of the∇T term near the
boundary layers (Dubuffet and Yuen, 2000; Dubuffet
et al., 2000, 2002) which greatly exacerbates numer-
ical difficulties, produces numerical instabilties and
requires more grid points than for constant thermal
conductivity situations (Van den Berg et al., 2001). All
transport properties of rocks including viscosity, con-
ductivity vary strongly with chemical composition or
mineralogy. Similar types of quadractic non-linearity
involving the gradient of volatile content, are also
found in convection equations with volatile or vapor
transport (e.g.,Woods, 1999; Richard et al., 2002)
Thus, they cause sharp fronts involving multicompo-
nent flows in geological situations, especially when
the transport of volatiles is also included in the gov-
erning equations in mantle convection (Fountaine
et al., 2001; Richard et al., 2002).

From a general geophysical standpoint, we should
consider at least three important elements for modeling
these kinds of flows:

1. the ability to conserve stresses under conditions
involving sharply discontinuous viscosity distribu-
tion;

2. the ability to conserve heat and chemical fluxes
in the face of sharply varying conductivity, trans-
port coefficient and temperature gradients at
the thermal or chemical boundary layers with
temperature-dependent conductivity and non-linear
transport coefficient, such as in vapor flow at
mid-ocean ridges (Fountaine et al., 2001);

3. the ability to conserve scalar quantities with mul-
tiscale properties, such as temperature field, chem-
ical species, and density in flows with a strongly
advection character, i.e., high Peclet number.

Besides these factors, there are other challenges
which are also quite potent, such as phase transi-
tions and its rheological consequences of a dramatic
softening from grain-size reduction from nucleation
processes in phase transformation (e.g.,Riedel and
Karato, 1997). We aim to demonstrate in this work
that all of these requirements can be achieved by
using a marker-in-cell algorithm (e.g.,Brackbill and
Ruppel, 1986; Brackbill et al., 1988; Brackbill, 1991;
Oran and Boris, 1987; Moresi et al., 2003) combining
conservative finite-difference (FD) scheme with an
arbitrary order in accuracy, an Eulerian/Lagrangian
primitive variable formulation based on moving mark-
ers which combine both the control volume method
(e.g., Patankar, 1980; Albers, 2000) and the accu-
rate trajectories behind the concept of the method of
characteristics (Malevsky and Yuen, 1991).

Recent advances in hardware technology with the
distributed-shared-memory architecture on supercom-
puters have prompted us (i) to use large number
(106–108) of markers allowing high-resolution char-
acterization of complex model geometry (e.g.,Ten
et al., 1999) and (ii) to look again at direct solvers,
such as the Gaussian elimination or Cholesky decom-
position (Malevsky and Yuen, 1992) for 2D problems
because of its prowess in terms of superior relative
accuracy over iterative solvers used in many variable
viscosity codes (e.g.,Moresi and Solomatov, 1995;
Tackley, 1996). Recent innovations in the machine
architecture on the IBM-SP4, CRAY-1X and the
Japanese NEC machines have put at least 16 Gbytes
of shared memory available on a single node. Within
the next 2 years the next generation of these machines
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will offer 64–128 Gbytes on a single node. It is there-
fore our challenge to prepare for the onslaught of
these ultra-lage distributed-shared-memory architec-
ture. The anticipation of these coming technological
innovations has figured prominently in our computa-
tional strategy laid out in this paper.

In Section 2we will provide in some details the
implementation of these algorithms on conservative
finite-difference schemes for modeling flows with
variable viscosity and conductivity. We then move to
a description of the marker scheme combined with
this conservative finite-difference method and the
novel treatment of the temperature equation by this
hybrid scheme combining the best of the Lagrangian
and Eulerian approaches. We then demonstrate in
Section 3by some benchmarks the efficacy of our hy-
brid method and present the results on various types
of flows characterized by variable viscosity, viscous
heating and variable thermal conductivity. The final
section will be our discussion and conclusions.

2. Basic background of the numerical
modeling scheme

2.1. Principal equations

In this section we will describe in detail the numer-
ical implementation of the fundamental conservation
equations of mass, momentum and energy and the con-
stitutive relationships between stress and strain-rate
needed for modeling geomechanical problems in the
two-dimensional creeping flow regime. They will be
applicable in convective heat-transfer problems in-
volving multiphase viscous fluids in the presence of a
gravitational body force term. This set of partial dif-
ferential equations comprises, first of all, the Stokes
equations of slow flow where the inertial terms are
dropped.Eqs. (1) and (2)are the second-order elliptic
equations in the velocity field (v).

∂σxx

∂x
+ ∂σxz

∂z
= ∂P

∂x
− ρ(T, C)gx, (1)

∂σzz

∂z
+ ∂σxz

∂x
= ∂P

∂z
− ρ(T, C)gz. (2)

σxx = 2ηεxx

σxz = 2ηεxz

σzz = 2ηεzz

εxx = ∂vx

x

εxz = 1

2

(
∂vx

∂z
+ ∂vz

∂x

)

εzz = ∂vz

∂z

This is followed by the constitutive relationship be-
tween the stress (σ) and strain-rate (ε), where the
transport coefficientη represents the viscosity, which
depends on the temperature (T), pressure (P), chem-
ical components (C) and strain-rate.

The conservation of mass is given by the continuity
equation in which we keep density to be a constant in
all terms except for the buoyancy force, where both
temperature and volatile content come into play. This
level of truncation is known as the Boussinesq ap-
proximation on which most mantle convection codes
were built on (e.g.,Moresi and Solomatov, 1995;
Trompert and Hansen, 1996; Albers, 2000)

∂vx

∂x
+ ∂vz

∂z
= 0. (3)

As part of our new computational strategy, instead
of using the Eulerian frame of reference, we have
elected to go to the Lagrangian frame of reference
for temperature equation, and the extended Boussi-
nesq approximation (Christensen and Yuen, 1985) has
been used to take into account adiabatic and viscous
heating contributions. These two terms are deemed
significant in many important tectonic situations, such
as mountain-belt collision (Kincaid and Silver, 1996).
The temperature equation (Eq. (4)) is a second-order
in space and first-order in time and it is non-linear in
T because of the variable thermal conductivity.

ρCp

(
DT

Dt

)
= ∂qx

∂x
+ ∂qz

∂z
+Hr +Ha +Hs, (4)

qx = k(T, P)×
(
∂T

∂x

)
,

qz = k(T, P)×
(
∂T

∂z

)
,

Hr = const,
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Ha = Tα
[
vx

(
∂P

∂x

)
+ vz

(
∂P

∂z

)]
≈ Tαρ[vxgx + vzgz],

Hs = σxxεxx + σzzεzz+ 2σxzεxz,

whereDT/Dt represents the substantive time deriva-
tive and we have used markers here to follow the
temporal development of both the temperature field
and the chemical components field, as they are being
advected by the common velocity field. Other nota-
tions inEqs. (1)–(4)are:x andzdenotes, respectively,
the horizontal and vertical coordinates, inm, vx and
vz are components of the velocity vector in m s−1; t
time in s; σxx, σxz, σzz are components of the vis-
cous deviatoric stress tensor in units of Pa;εxx, εxz,
εzz are components of the strain-rate tensor in s−1;
P the pressure in Pa;T the temperature in K;qx and
qz are horizontal and vertical heat fluxes in W m−2; η
the effective viscosity in Pa s, depending on pressure,
temperature and strain-rate (e.g.,Ranalli, 1995); ρ the
density in kg m−3, depending on chemical composi-
tion, phase assemblage (e.g., presence of dense min-
erals, melt, e.g.,Gerya et al., 2001, 2002), pressure
and temperature;gx andgz denote components of the
vector of acceleration within the gravity field for the
x–z 2D coordinate system, m s−2; k(T, P) is the vari-
able thermal conductivity coefficient in W m−1 K−1,
depending on the temperature and pressure;Cp the
isobaric heat capacity in J kg−1 K−1; Hr, Ha, andHs
denote, respectively, radioactive, adiabatic and shear
heating production in W m−3 (for simplicity of cal-
culation ofHa slight deviations of dynamic pressure
gradients∂P/∂x and∂P/∂z fromρgx andρgz values are
neglected).

2.2. Computational strategy with markers

In order to achieve the goals set out in geo-modeling
as outlined in the introduction, we have designed
a conservative finite-difference scheme over an
irregularly-spaced staggered grid in an Eulerian grid
configuration (Fig. 1). The irregularly spaced grid is
extremely useful in handling geodynamical situations
with multiple-scale character, such as in a subduct-
ing slab and the wedge flow above it (e.g.,Davies
and Stevenson, 1992). This Eulerian FD method is
then combined with the moving marker technique

Fig. 1. Schematic representation of non-regular rectangular stag-
gered Eulerian grid used for numerical solution ofEq. (1)–(4). gx
andgz are components of gravitational acceleration in thex–z co-
ordinate frame. Different symbols correspond to the nodal points
for different scalar properties, vectors and tensors.i, i+ 1/2, etc.
and j, j+1/2, etc. indexes represent the staggered grid and denote,
respectively, the horizontal and vertical positions of four different
types of nodal points. Many variables (vx, vz, σxx, σxz, σzz, εxx,
εxz, εzz, P, T, η, ρ, k, Cp, etc.), up to around 25 at grid point, are
part of the voluminous output in this code.

or the Lagrangian approach, shown inFig. 2, to
solve Eqs. (1)–(4). We show inFig. 3 a schematic
flow-chart for updating at each timestep the evo-
lutionary equations contained in (1)–(4). We have
solvedEqs. (1)–(4)based on a combination of finite
control volume method (e.g.,Patankar, 1980; Albers,
2000), combined with an arbitrary order of accu-
racy in the finite-difference discretization (Fornberg,
1995) and method of characteristics (e.g.,Malevsky
and Yuen, 1991; De Smet et al., 2000) implemented
via the moving marker technique (e.g.,Hockney and
Eastwood, 1981; Christensen and Yuen, 1984;
Weinberg and Schmeling, 1992; Schott and
Schmeling, 1998; Gerya et al., 2000). The steps are as
follows (detailed explanation of these steps is given in
Sections 2.3–2.5):
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Fig. 2. Schematic representation of geometrical relations used for the adopted first-order of accuracy interpolation schemes of a parameter
B (a) from the markers to Eulerian nodes and (b) from Eulerian nodes back to markers. Each marker holds information concerning
the temperatureT, position coordinates, three components of the strain tensor, representing the deformation history and the chemical
componentsC.

1. Solving 2DEqs. (1)–(3)by directly inverting the
global matrix with a Gaussian elimination method,
which is chosen because of its programming sim-
plicity, stability and high accuracy.

2. Calculating the non-linear shear- and adiabatic
heating termsHs(i,j) and Ha(i,j) at the Eulerian
nodes.

3. Calculating (DT/Dt)(i,j) values at the Eulerian
nodes by an explicit scheme.

4. Defining an optimal time step�t for temperature
equation. We use a minimum time step value satis-
fying the following conditions: given absolute time
step limit on the order of a minimal characteristic
timescale for the modelled processes; given relative
marker displacement step limit (typically 0.1–0.2
of minimal grid step) corresponding to calculated
velocity field (see Step 1); given absolute nodal
temperature change limit (typically 1–20 K) corre-
sponding to calculated explicit (DT/Dt)(i,j) values
(see Step 3).

5. Solving the non-linear temperature equation im-
plicitly by a direct Gaussian inversion method.

6. Interpolating calculated nodal temperature changes
(see Step 6 atFig. 3) from the Eulerian nodes to the
markers and calculating new marker temperatures
(tTm).

7. Using a fourth-order in space/first-order in time ex-
plicit Runge–Kutta scheme for advecting all mark-
ers throughout the mesh according to the globally
calculated velocity fieldv (see Step 1).

8. Calculating globally the scalar physical properties
(ηm, ρm, Cm, Cpm, km, C, etc.) from the markers.

9. Interpolating temperature and other scalar proper-
ties, such asC, Cp, from the markers to Eulerian
nodes. Returning to Step 1 at the next timestep.

We have implemented the above computational al-
gorithm in a new computer code, called I2VIS, which
is written in the C—computer language in order to
facilitate post-processing. This code has been devel-
oped on the basis of our previous thermo-mechanical
code based on finite-differences, (I2), which employed
finite-difference method over a half-staggered grid and
used the marker technique (Gerya et al., 2000).

2.3. Interpolation of scalar fields, vectors and tensors

According to our algorithmic approach the temper-
ature field and other scalar properties (η, ρ, Cp, C, k,
etc.) are represented by scalar values ascribed for the
multitudinous markers initially distributed on a fine
regular marker mesh with a small (≤1/2 of marker
grid distance) random displacement (Fig. 2). The ef-
fective values of all these parameters at the Eulerian
nodal points are interpolated from the markers at each
time step. An average number of markers per grid
cell commonly vary fromn × (100–102) depending
on the complexity of model geometry (e.g.,Brackbill,
1991; Ten et al., 1999; Gerya et al., 2003). The fol-
lowing standard first-order of accuracy scheme (e.g.,
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Fig. 3. Flow chart representing the adopted computational strategy used in the programming of the computer code I2VIS. Panel for Step
6 shows the scheme for interpolating the calculated temperature changes from the Eulerian grid to the moving markers.

Fornberg, 1995) is used to calculate an interpolated
value of a parameterB(i,j) for ij th-node using val-
ues (Bm) ascribed to all markers found in the four
surrounding cells (Fig. 2a)

B(i,j) =
∑
m Bmwm(i,j)∑
m wm(i,j)

, (5)

wm(i,j) =
[

1-
�xm

�x(i−1/2)

]
× 1 −�zm/�z(j−1/2)

�x(i−1/2) ×�z(j−1/2)
,

where wm(i,j) represents a statistical weight of
mth-marker at the ij th-node; �xm/�x(i−1/2) and
�zm/�z(i−1/2) are normalized distances from
mth-marker toij th-node. In the case of non-uniform
Eulerian grid, we use a two-dimensional bisectioning
method to determine the corresponding grid cell in
which the marker is located (Fig. 2a). For interpo-
lating the nodes along the margins we use only the
markers found inside an Eulerian grid independent
of the boundary conditions. The slight inaccuracy
of interpolation for marginal nodes is compensated
by our increasing the grid resolution at the bound-
aries. The use of a higher-order accurate interpolation
schemes produces undesirable numerical fluctuations
in scalar, vector and tensor properties interpolated
in the proximity of sharp transitions. For example,

negative values of viscosity are calculated at the fixed
Eulerian nodes at thermal boundary layers with sharp
(>103) viscosity contrast, by using a second-order FD
scheme (e.g.,Fornberg, 1995).

For the same reason we have used a standard first-
order of accuracy (e.g.,Fornberg, 1995) procedure for
the reversed problem of interpolating the scalar prop-
erties (including calculated temperature changes),
vectors and tensors from the corresponding Eulerian
nodal points (see different types of Eulerian nodes
in Fig. 1) back to the markers and other geometrical
points (e.g., other nodes). The values of a parameter
B defined in four Eulerian nodes surrounding a given
marker (Fig. 2b) are used for calculating an effective
value of the parameterB for mth-marker as follows:

Bm =
[
1 − �xm

�x(i−1/2)

]
×

[
1 − �zm

�z(j−1/2)

]
× B(i,j)

+
[

�xm

�x(i−1/2)

]
×

[
1 − �zm

�z(j−1/2)

]
× B(i−1,j)

+
[
1 − �xm

�x(i−1/2)

]
×

[
�zm

�z(j−1/2)

]
× B(i,j−1)

+
[

�xm

�x(i−1/2)

]
×

[
�zm

�z(j−1/2)

]
×B(i−1,j−1), (6)
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where Bm denote the value of parameterB for
mth-marker. Scheme (6) is used uniformly, when we
interpolate the velocity, stresses, strain-rates, pressure,
temperature and other properties from nodal points to
markers. Since our staggered grid represents, in fact,
the superposition of four simple rectanugular grids
corresponding to different scalar fields, vectors and
tensor (see four different symbols for gridpoints in
Fig. 1), these Eulearian grids are used individually
for interpolating the respective field variables.

The standard first-order interpolation schemes yield
equally good results in cases (1)–(4) comparing to
more complex, higher-order (e.g.,Fornberg, 1995) in-
terpolation schemes.

2.4. Finite-difference schemes for discretizing the
momentum and continuity equations

Apart of the stability and superior accuracy by com-
parison to the non- and half-staggered grids staggered
grid shown inFig. 1 is ideally suitable for the dis-
cretization of the momentum and continuity equations
(e.g.,Fornberg, 1995). We used a standard formal pro-
cedure (e.g.,Patankar, 1980; Oran and Boris, 1987;
Fornberg, 1995; Albers, 2000) for the formulation of
FD scheme representing momentumEqs. (1) and (2)
in a conservative form: (i) momentum equation is for-
mulated in term of derivatives of stress components,
(ii) these derivatives are discretized by using first-order
accurate schemes, (iii) different stress components are
ascribed to the specificσxx/σzz/P- andσxz-nodes of
the grid (see, respectively, open and solid squares in
Fig. 1) located between pairs ofvx- andvz-nodes of
the grid (see, respectively, solid and open circles in
Fig. 1) and (iv) identical formulations of stress compo-
nents are used in discretizing momentumEq. (1) and
(2) in vx- andvz-nodes. The following FD scheme is
a discretized form for representingEqs. (1)–(3)to a
first-order accuracy in the control volume representa-
tion (e.g.,Patankar, 1980; Albers, 2000), which allows
for the conservation of the viscous stresses between
the vx- and vz-nodes (seeFig. 1 for the indexing of
the grid points):[
∂σxx

∂x

]
(i,j+1/2)

+
[
∂σxz

∂z

]
(i,j+1/2)

−
[
∂P

∂x

]
(i,j+1/2)

= −1

2
[ρ(i,j) + ρ(i,j+1)] × gx(i,j+1/2) (7)

[
∂σxx

∂x

]
(i,j+1/2)

= 2[σxx(i+1/2,j+1/2) − σxx(i−1/2,j+1/2)]

�x(i−1/2) +�x(i+1/2)
,

[
∂σxz

∂z

]
(i,j+1/2)

= σxz(i,j+1) − σxz(i,j)

�z(j+1/2)
,

[
∂P

∂x

]
(i,j+1/2)

= 2[P(i+1/2,j+1/2) − P(i−1/2,j+1/2)]

�x(i−1/2) +�x(i+1/2)
,

wherei, i+1/2 andj, j+1/2 indexes denote, respec-
tively, the horizontal and vertical positions of nodal
points corresponding to the different physical param-
eters (Fig. 1) within the staggered grid (Wesseling,
1992).[
∂σzz

∂z

]
(i+1/2,j)

+
[
∂σxz

∂x

]
(i+1/2,j)

−
[
∂P

∂z

]
(i+1/2,j)

= −1

2
[ρ(i,j) + ρ(i+1,j)] × gz(i+1/2,j), (8)

[
∂σzz

∂z

]
(i+1/2,j)

= 2[σzz(i+1/2,j+1/2) − σzz(i+1/2,j−1/2)]

�z(j−1/2) +�z(j+1/2)
,

[
∂σxz

∂x

]
(i+1/2,j)

= σxz(i+1,j) − σxz(i,j)

�x(i+1/2)
,

[
∂P

∂z

]
(i+1/2,j)

= 2[P(i+1/2,j+1/2) − P(i+1/2,j−1/2)]

�z(j−1/2) +�z(i+1/2)
,

and[
∂vx

∂x

]
(i−1/2,j−1/2)

+
[
∂vz

∂z

]
(i−1/2,j−1/2)

= 0; (9)

where

σxx(i−1/2,j+1/2)

= 1
2[η(i−1,j) + η(i−1,j+1) + η(i,j) + η(i,j+1)]

× εxx(i−1/2,j+1/2)

σxx(i+1/2,j+1/2)

= 1
2[η(i,j) + η(i,j+1) + η(i+1,j) + η(i+1,j+1)]

× εxx(i+1/2,j+1/2)
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σxz(i,j) = 2η(i,j)εxz(i,j),

σxz(i,j+1) = 2η(i,j+1)εxz(i,j+1),

σxz(i+1,j) = 2η(i+1,j)εxz(i+1,j),

σzz(i+1/2,j−1/2)

= 1
2[η(i,j−1) + η(i,j) + η(i+1,j−1) + η(i+1,j)]

× εzz(i+1/2,j−1/2)

σzz(i+1/2,j+1/2)

= 1
2[η(i,j) + η(i,j+1) + η(i+1,j) + η(i+1,j+1)]

× εzz(i+1/2,j+1/2)

εxx(i−1/2,j+1/2) =
[
∂vx

∂x

]
(i−1/2,j+1/2)

εxx(i+1/2,j+1/2) =
[
∂vx

∂x

]
(i+1/2,j+1/2)

εxz(i,j) = 1

2

[
∂vx

∂z
+ ∂vz

∂x

]
(i,j)

,

εxz(i,j+1) = 1

2

[
∂vx

∂z
+ ∂vz

∂x

]
(i,j+1)

,

εxz(i+1,j) = 1

2

[
∂vx

∂z
+ ∂vz

∂x

]
(i+1,j)

,

εzz(i+1/2,j−1/2) =
[
∂vz

∂z

]
(i+1/2,j−1/2)

εzz(i+1/2,j+1/2) =
[
∂vz

∂z

]
(i+1/2,j+1/2)

In the FD formulation ofEqs. (7) and (8)the stress
is decomposed into a product of the viscosity and the
strain-rate. The latter is formulated, using an arbitrary
order accurate FD scheme (Fornberg, 1995) for the
derivatives of velocity. This formulation is also used
in finite difference treatment of seismic wave propaga-
tion (Virieux, 1986). First-order accurate FD scheme
for these derivatives most suitable for problems with
sharply varying viscosity are written as[
∂vx

∂x

]
(i−1/2,j−1/2)

= vx(i,j−1/2) − vx(i−1,j−1/2)

�x(i−1/2)
,

[
∂vx

∂x

]
(i−1/2,j+1/2)

= vx(i,j+1/2) − vx(i−1,j+1/2)

�x(i−1/2)
,

[
∂vx

∂x

]
(i+1/2,j+1/2)

= vx(i+1,j+1/2) − vx(i,j+1/2)

�x(i+1/2)
,

[
∂vx

∂z

]
(i,j)

= 2[vx(i,j+1/2) − vx(i,j−1/2)]

�z(j−1/2) +�z(j+1/2)
,

[
∂vx

∂z

]
(i,j+1)

= 2[vx(i,j+3/2) − vx(i,j+1/2)]

�z(j+1/2) +�z(j+3/2)
,

[
∂vx

∂z

]
(i+1,j)

= 2[vx(i+1,j+1/2) − vx(i+1,j−1/2)]

�z(j−1/2) +�z(j+1/2)
,

[
∂vz

∂x

]
(i,j)

= 2[vz(i+1/2,j) − vz(i−1/2,j)]

�x(i−1/2) +�x(i+1/2)
,

[
∂vz

∂x

]
(i,j+1)

= 2[vz(i+1/2,j+1) − vz(i−1/2,j+1)]

�x(i−1/2) +�x(i+1/2)
,

[
∂vz

∂x

]
(i+1,j)

= 2[vz(i+3/2,j) − vz(i+1/2,j)]

�x(i+1/2) +�x(i+3/2)
,

[
∂vz

∂z

]
(i−1/2,j−1/2)

= vz(i−1/2,j) − vz(i−1/2,j−1)

�z(j−1/2)
,

[
∂vz

∂z

]
(i+1/2,j−1/2)

= vz(i+1/2,j) − vz(i+1/2,j−1)

�z(j−1/2)
,

[
∂vz

∂z

]
(i+1/2,j+1/2)

= vz(i+1/2,j+1) − vz(i+1/2,j)

�z(j+1/2)
,

We invert for the global matrix by a highly accu-
rate, direct (Gaussian) method for the simultaneous
solution of momentumEqs. (7) and (8), and conti-
nuity Eq. (9) also combined with linear equations
describing the boundary conditions for the velocity.
We would like to emphasize that continuityEq. (9)
with the velocity vectors as the variables is solved
directly to machine accuracy with the direct matrix
inversion method, thus obviating the usual need of
using the streamfunction formulation or other means
of incompressibility. In what follows, the momen-
tum Eqs. (7) and (8)are solved forvx(i,j+1/2) and
vz(i+1/2,j), respectively, while the continuityEq. (9)
is solved forP(i−1/2,j−1/2). Incompressible continuity
Eq. (9) does not initially containP(i−1/2,j−1/2) and
the solution is guaranteed by the order of processing
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during the inversion of the global matrix (seeFig. 1
for indexing):Eq. (9)for pressure in a given cell (e.g.,
P(i−1/2,j−1/2), seeFig. 1), is processed afterEqs. (7)
and (8) for all surroundingvx- and vz-nodes (e.g.,
vx(i−1,j−1/2), vx(i,j−1/2), vz(i−1/2,j−1) andvz(i−1/2,j),
see Fig. 1). Accordingly, the overall numbering of
P(i−1/2,j−1/2), vx(i,j+1/2) andvz(i+1/2,j) for the global
matrix defining the order of processing of respective
equations is done as follows:

Mmatrix = 3(i×Nlines + j) for P(i−1/2,j−1/2),

Mmatrix = 3(i×Nlines + j)+ 1 for vx(i,j+1/2),

Mmatrix = 3(i×Nlines + j)+ 2 for vz(i+1/2,j),

where Mmatrix is the parameter index in the global
matrix andNlines is the total number of horizontal lines
for the grid (seeFig. 1for the positions of these lines).

The relative accuracy of solving the momentum and
continuity equations commonly vary from 10−15 to
10−13 depending on the viscosity variations. However,
in several cases lower (10−6) accuracy has been ob-
tained, as a result of strong sharp variations in the
viscosity (e.g., for some models with≥106 viscosity
contrast for the adjacent nodes).

2.5. Numerical techniques for solving temperature
equation

Malevsky and Yuen (1991)developed a characteri-
stics-based method for solving the temperature
equation to avoid the numerical oscillations from
advection at the high Rayleigh number regime. This
method, however, requires an increasing amount of
operations for tracing characteristics back to an ini-
tial temperature distribution in the case of strongly
chaotic advection pattern. To avoid this problem,
we have implemented a characteristics based marker
technique commonly used for advection of material
field properties, such as the density, viscosity, chem-
ical composition etc. (e.g.,Hockney and Eastwood,
1981; Weinberg and Schmeling, 1992; Schott and
Schmeling, 1998; De Smet et al., 2000; Gerya et al.,
2000). According to this approach the temperature
field is represented by temperature values (Tm) as-
signed for the multitudinous markers initially dis-
tributed on a fine marker mesh (seeSection 2.3). The
effective temperatureT(i,j) field at the Eulerian nodes

is then interpolated from the markers at each time
step, using relation (5). The effective temperatures
at the boundary nodes are then replaced by values
satisfying the thermal boundary conditions.

We used a standard formal procedure (e.g.,
Patankar, 1980; Oran and Boris, 1987; Fornberg,
1995; Albers, 2000) for the formulation of FD scheme
representing temperatureEq. (4) in a conservative
form: (i) temperature equation is formulated in term
of derivatives of heat fluxes, (ii) these derivatives are
discretized by using first-order accurate schemes, (iii)
different heat fluxes are ascribed to the specificqx- and
qz-nodes of the grid (see, respectively, open and solid
circles inFig. 1) located between the pairs ofT-nodes
of the grid (see solid squares inFig. 1) and (iv) identi-
cal formulations of heat fluxes are used in discretizing
temperatureEq. (4)in T-nodes. The calculation of the
temporal changes in the temperature at the Eulerian
nodes is based on the following implicit first-order FD
scheme representingEq. (4) in a conservative (e.g.,
Oran and Boris, 1987) form, which allows for the
conservation of the heat fluxes between theT nodal
points (seeFig. 1 for the indexing of the grid points):

ρ(i,j)Cp(i,j)

[
DT

Dt

]
(i,j)

−
[
∂qx

∂x

]
(i,j)

−
[
∂qz

∂z

]
(i,j)

= Hr(i,j) +Ha(i,j) +Hs(i,j), (10)[
DT

Dt

]
(i,j)

=
1T(i,j) − T(i,j)

�t
,

[
∂qx

∂x

]
(i,j)

= 2[1qx(i+1/2,j) − 1qx(i−1/2,j)]

�x(i−1/2) +�x(i+1/2)
,

[
∂qz

∂z

]
(i,j)

= 2[1qz(i,j+1/2) −1 qx(i,j−1/2)]

�z(j−1/2) +�z(j+1/2)
,

1qx(i−1/2,j) = 1

2
[k(i−1,j) + k(i,j)] ×

[
∂(1T)

∂x

]
(i−1/2,j)

;

1qx(i+1/2,j) = 1

2
[k(i,j) + k(i+1,j)] ×

[
∂(1T)

∂x

]
(i+1/2,j)

;

1qz(i,j−1/2) = 1

2
[k(i,j−1) + k(i,j)] ×

[
∂(1T)

∂z

]
(i,j−1/2)

;

1qz(i,j+1/2) = 1

2
[k(i,j) + k(i,j+1)] ×

[
∂(1T)

∂z

]
(i,j+1/2)

;
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Ha(i,j) = T(i,j)α(i,j)ρ(i,j)[vx(i,j)gx(i,j) + vz(i,j)gz(i,j)];

Hs(i,j) = σxx(i,j)εxx(i,j) + σzz(i,j)εzz(i,j)

+ 2σxz(i,j)εxz(i,j);
where indexes 1 denote values for the next time in-
stant to be reached by the time-stepping and�t is
the optimal time step (see above, inSection 2.2);
Hr(i,j), Ha(i,j), Hs(i,j), α(i,j), ρ(i,j), Cp(i,j), σxx(i,j),
εxx(i,j), σzz(i,j), εzz(i,j), σxz(i,j), εxz(i,j), vx(i,j), and
vz(i,j) are values of the corresponding parameters for
the ij -node: scalar properties are interpolated from
the markers using relation (5), vectors and tensors are
also interpolated from the corresponding surrounding
nodes fromEq. (6). In the FD formulation ofEq. (10)
the heat fluxes are decomposed into a product of the
thermal conductivity and the temperature gradients.
These quantities are formulated by using an arbitrary
order accurate method FD (Fornberg, 1995) for the
derivatives of the temperature. First-order accurate
FD schemes for these derivatives most suitable for
problems with strongly varying thermal conductivity
are[
∂(1T)

∂x

]
(i−1/2,j)

=
1T(i,j) − 1T(i−1,j)

�x(i−1/2)
;

[
∂(1T)

∂x

]
(i+1/2,j)

=
1T(i+1,j) − 1T(i,j)

�x(i+1/2)[
∂(1T)

∂z

]
(i,j−1/2)

=
1T(i,j) − 1T(i,j−1)

�z(j−1/2)
;

[
∂(1T)

∂z

]
(i,j+1/2)

=
1T(i,j+1) − 1T(i,j)

�z(j+1/2)
.

In the absence of strong heat sourcesHr(i,j), Ha(i,j)
and Hs(i,j) implicit scheme ofEq. (10) is uncondi-
tionally stable (e.g.,Oran and Boris, 1987). If strong
heat sources are present timestep�t is optimized us-
ing standard (e.g.,Oran and Boris, 1987) criteria (see
Step 4 inSection 2.2).

For solving the temperature equations with
non-linearities present we invert directly by a global
matrix with a high accuracy direct (Gaussian) method.
The matrix also contains the linear equations associ-
ated with the thermal boundary conditions. The over-
all numbering of1T(i,j) for the global matrix defining

the order of processing of respective equations is done
as follows:

Mmatrix = i×Nlines + j,

where Mmatrix is the parameter index in the global
matrix andNlines the total number of horizontal lines
for the grid (seeFig. 1for the positions of these lines).
The relative accuracy of the inverted solution spans
between 10−15 and 10−13.

The changes in the effective temperature field for
the Eulerian nodes are calculated as

�T(i,j) = 1T(i,j) − T(i,j). (11)

Correspondent temperature increments for markers
�Tm are then interpolated from the nodes using rela-
tion (6) in order to calculate new marker temperatures
tTm as

tTm = Tm +�Tm. (11a)

The interpolation of the calculated temperature
changes from the Eulerian nodal points to the mov-
ing markers prevents effectively the problem of nu-
merical diffusion. This feature represents one of the
highlights of our computation strategy for solving
the temperature equation using markers. This method
does not produce any smoothing of the temperature
distribution between adjacent markers (Fig. 3, dia-
gram for Step 6), thus resolving the thermal structure
of a numerical model in much finer details.

However, the main problems with treating advec-
tion diffusion methods using this incremental update
scheme is that all manner of stirred-structures and
instabilities on a subgrid (marker) scale cannot be
damped out by grid-scale corrections. For example, in
case of strong chaotic mixing of markers, our method
may produce numerical oscillations of thermal field
ascribed to the adjacent markers. These oscillations
do not damp out with time on a characteristic heat
diffusion timescale. The introduction of a consistent
sub-grid diffusion operation, which does not change
the convergence of the grid scale diffusion solution
is the way around this. We use here a weak numer-
ical diffusion occurring over a characteristic heat
diffusion timescale. This is implemented by correct-
ing the marker temperaturestTm according to the
relation
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tTm(D) = 1Tm − [1Tm − tTm] × exp

(−d �t
�t0

)
,

(12)

�t0 = Cpmρm

{km[2/(�x(i−1/2))2 + 2/(�z(j−1/2))2]} ,

where�t0 is a characteristic timescale of the local
heat diffusion defined for the corresponding cell of
the grid (Fig. 2b); tTm(D) themth-marker temperature
corrected for the numerical diffusion;d the dimen-
sionless numerical diffusion coefficient (we use em-
pirical values in the range of 0≤ d ≤ 1); 1Tm, Cpm,
ρm andkm are interpolated, respectively, from1T(i,j),
Cp(i,j), ρ(i,j) and k(i,j) values for nodes using the
relation (6).Eq. (12)require decay of a difference be-
tween1Tm andtTm values within the time comparable
with the characteristic timescale (�t0) of local heat
diffusion.

Compensating temperature corrections�T(i,j)A are
first calculated at the Eulerian nodes according to re-
lation (5) as

�T(i,j)A =
∑
m (
tTm(D) − tTm)wm(i,j)∑

m wm(i,j)
. (13)

These nodal corrections values are then used for com-
pensating correction of temperatures for markers by
using relation (6) as follows:
tTm(D−A) = tTm(D) −�Tm(A). (13a)

wheretTm(D−A) is the final correctedmth-marker tem-
perature;�Tm(A) is compensating temperature correc-
tion interpolated formth-marker from�T(i,j)A values
for Eulerian nodes using relation (6).

Introducing the numerical diffusion operation re-
moves unrealistic subgrid oscillations (seeSection 3.8)
over the characteristic local heat diffusion timescale
without affecting the accuracy of numerical solution
of the temperature equation (seeSections 3.4 and 3.6).
Realistic subgrid oscillations will, however, be pre-
served by this scheme been related for example to the
rapid mixing by advection dominating flows.

3. Verification of the numerical schemes by
calibrating various cases

In this section we will display results taken from
carrying out several calibrating tests of the numer-

ical solutions in order to verify the efficacy of our
methods for a variety of circumstances relevant to
geothermo-mechanics. These will include

(a) sharply discontinuous viscosity distribution (test
1 and 2);

(b) strain-rate dependent viscosity (test 3);
(c) non-steady development of temperature field

(test 4);
(d) shear heating for temperature dependent viscosity

(test 5);
(e) advection of a sharp temperature front (test 6);
(f) heat conduction for temperature-dependent ther-

mal conductivity (test 7);
(g) thermal convection with a large viscosity con-

trast in the temperature-dependent viscosity and
for both constant and temperature-dependent ther-
mal conductivity (tests 8 and 9).

Numerical experiments discussed inSections
3.1–3.9show stability and high accuracy of the algo-
rithm at low to moderate resolution for both Eulerian
nodes (n× (102–103)) and markers (n× (103–104)).
These experiments require small computation time
of several minutes (Sections 3.1–3.7) to several tens
of minutes (Sections 3.8–3.9) on ordinary PC. The
method allows for the high resolution ofn×(104–105)

Eulerian nodes andn × (106–107) markers for vari-
ous types of 2D numerical experiments (e.g.,Gerya
et al., 2004) requiring computation time varying from
several hours to several days on single processor
depending on the type of the computer used.

3.1. Rayleigh–Taylor instabilities involving a
two-layer cross-section and gravity

A series of tests have been carried out for a
two-layer model with a non-slip condition on the top
and at the bottom and symmetry conditions along the
vertical walls. An initial sinusoidal disturbance of the
boundary between the upper (η1, ρ1) and the lower
(η2, ρ2) layer of thicknessh has a small amplitude
(y) and a wave length (λ). This produces favorable
conditions for studying the velocity of the diapiric
growth (vz) given by the relation (Ramberg, 1981)

K = 2vzη2

y(ρ1 − ρ2)hg
, (14)
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Fig. 4. Numerical solutions for the case of the Rayleigh–Taylor instability of a two-layer cross-section in the gravity field. Numerical and
analytical solutions are compared for the factor of growthK at different viscosity contrast between the upper (η1) and the lower (η2)
layer and different wave number (a = 2πh/λ, whereh is the layer thickness, andλ the wavelength) and amplitude (y) of initial sinusoidal
disturbance at the layer boundary. Grid resolution of the model: 32× 31 nodes, 23,250 markers.

whereK is a dimensionless factor of growth.Fig. 4
compares both the numerical and analytical solutions
for the factor of growth of the diapir estimated at dif-
ferent values ofy, λ and η1/η2. Good accuracy of
±2–5% is determined at large variations of the distur-
bance wave length and the layers viscosity contrasts
(η1/η2 = 10−6 to 5× 102). This result shows the cor-
rect numerical solutions ofEqs. (1)–(3)in the case of
sharp changes in density and viscosity across a bound-
ary layer.

3.2. Sinking of a hard rectangular block into a
medium with a lower viscosity

The results of this test are displayed inFig. 5. Ac-
cording to our physical intuitions, the deformation of
the block vanish with increasing viscosity contrast and
dynamics of sinking at high viscosity contrast does

not depend on the absolute value of the viscosity of
the block. This test proves the accurate conservation
properties of our numerical procedure in terms of pre-
serving the geometry at large deformation and high
(102–106) viscosity contrast between the harder block
and the softer surroundings.

3.3. Channel flow with non-Newtonian rheology

This test is conducted to check the numerical solu-
tion of Eqs. (1)–(3)for flows with a strong strain-rate
dependent rheology, which is characterisic of disloca-
tion creep (Ranalli, 1995). The computation is carried
out for vertical flow of a viscous non-Newtonian (with
a power-law indexn = 3) medium in a channel of the
width L in the absence of gravity. Boundary conditions
are taken as follows: given vertical pressure gradient,
∂P/∂z, along the channel and non-slip conditions at
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Fig. 5. Results of numerical experiments for the sinking of rectangular block at different viscosity contrast between the block and the
surrounding soft medium (see text for discussion). Boundary conditions: free slip at all boundaries. Black and white dots represent positions
of markers for the block and the medium, respectively. Grid resolution of the model is 51× 51 nodes, 22,500 markers.
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Fig. 6. The results of test of numerical solution for the case of power-law flow in the channel of widthL. vz0 is the velocity in the center
of the channel,η0 the viscosity at the walls (seeEq. (17)). Different symbols show the numerical results for the different lateral resolution
of the model (31 nodes/150 markers and 16 nodes/75 markers).

the walls. The viscosity of the non-Newtonian flow is
defined by the following rheological equation

σxz = M(∂vz/∂x)1/3, (15)

whereM is rheological constant in Pa s1/3. The an-
alytical solution for the horizontal profile of vertical
velocity vz and effective strain-rate dependent viscos-
ity η = σxz/(∂vz/∂x) across the channel is derived
from Eqs. (2) and (15) as follows:

vz = vz0
[

1 -         -1
(

2x

L

)4
]

, (16)

η = η0

(2x/L− 1)2
, (17)

vz0 = −L4 [(∂P/∂z)/M]3

64
,

η0 = 4M3

[(∂P/∂z)L]2
,

wherevz0 is the velocity in the center of the channel,
η0 the viscosity at the walls.Fig. 6 compares the nu-
merical and analytical solutions for the horizontal dis-
tribution of velocity and viscosity across the channel.
We can see clearly that the numerical and analytical
solutions accord quite well, suggesting that our nu-
merical procedure can solve correctly the momentum
equation in the case of strain-rate dependent non-linear
rheology withn = 3.

3.4. Non-steady temperature distribution in a
Newtonian channel flow

This time-dependent test is performed to ascertain
the numerical accuracy of the temperatureEq. (4) in
the temporal development (heat advection coupled
with heat diffusion). The calculations are carried
out by using a model of the vertical flow of a heat-
conductive medium of constant viscosity in a chan-
nel in the absence of gravity. Boundary conditions
are taken as follows: given vertical pressure gradi-
ent,∂P/∂z, along the channel, non-slip conditions and
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T = const and∂T/∂z = const at the walls. The initial
conditions areT = T0 and∂T/∂x = 0. The horizon-
tal steady-state profile for vertical velocities,vz, is
defined by the equation

vz = 4v0
z(Lx − x2)

L2
, (18)

vz0 = −L2(∂P/∂z)

8η
,

whereL is the width of the channel;η the viscosity of
the channel;vz0 the vertical velocity in the center of
the channel. The corresponding temperature changes
in the channel as a function of time are given by the
following series expansion (Tikhonov and Samarsky,
1972; Gerya et al., 2000)

�T(x, t) =
∞∑
m=1

FmEmt sin

[
π(2m− 1)x

L

]
, (19)

where

Fm = −8ξL2

[π(2m− 1)]3
,

Emt = L2

[π(2m− 1)]2
{1 − exp(−[π(2m− 1)/L]2κt)}

κ
,

Fig. 7. The result of test of numerical solution for non-steady temperature changes within the Newtonian channel flow. Different symbols
show the solutions calculated with (d = 1) and without (d = 0) numerical diffusion (seeEq. (12)). t0 = ρCpL

2/k is characteristic timescale,
�T0 = 5vz0(∂T0/∂z)ρCpL2/(48k) is maximal temperature change in the center of the channel corresponding to the final steady temperature
profile. Lateral resolution of the model: 31 nodes, 150 markers.

κ = k

ρCp
,

ξ = 4vz0(∂T0/∂z)

L2
,

where�T(x, t) is the temperature in the channel as a
function of the spatial coordinates and time;κ the con-
stant thermal diffusivity in m2 s−1. When calculating
analytical solution an infinite summation ofEq. (19)
is cut afterm = 20 due to negligible contribution of
members of higher-order.Eq. (19)does not account
for shear heating: in this numerical test it is considered
as negligible.Fig. 7 shows that numerical and analyt-
ical results agree very well for calculations performed
both with (d = 1) and without (d = 0) numerical dif-
fusion included (seeEq. (12)).

3.5. Couette flow with viscous heating

These tests are conducted to verify the numerical
solution of the coupled momentum and temperature
equations for flows with temperature dependent rhe-
ology in the situation of strong shear heating for
a moderate lateral grid resolution (32 nodes, 310
markers across). We have considered numerically the
computation for a vertical Couette flow in the absence
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of gravity. Boundary conditions are taken as follows:
zero vertical pressure gradient,∂P/∂z = 0 along the
flow, vz = vz0, T = T0 andvz = 0, ∂T/∂x = 0 at the
walls. Viscosity of the flow is given by the following
rheological equation (Turcotte and Schubert, 1982)

Fig. 8. Results of test of a numerical solution for the case of steady Couette flow with a temperature dependent viscosity (seeEq. (20)) and
shear heating.Θ = E(T − T0)/[R(T0)

2] is non-dimensional temperature change; Br= (σxzL/T0)
2 × exp(−E/RT0)/(RkCp) is Brinkman

number. (a) Reproducing of analytical relations (Turcotte and Schubert, 1982) of maximal temperature change within the flowΘ1 and
Brinkman number Br and (b) comparison of analytical and numerical solutions for the distribution of temperature across the flow at
different Brinkman number. Lateral resolution of the model: 32 nodes, 310 markers.

η = N exp

[
1 − (T − T0)

T0

]
exp

[
E

RT0

]
, (20)

whereE is the activation energy,R the gas constant
andN the pre-exponential rheological constant, which
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Fig. 9. The results of test of numerical solution for the solid body rotation of a square temperature wave. Figure shows the horizontal
profiles across temperature wave at different timet after given number of revolutions.�T0 and�T are initial and calculated amplitude of
temperature waive, respectively;t0 = ρCpL

2/k is the characteristic timescale;d the numerical diffusion parameter (seeEq. (12)). Resolution
of the model: 31× 31 nodes, 150× 150 markers.
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depends on the material.Fig. 8 compares the results
of numerical modeling of steady temperature pro-
files with analytical solution given by Turcotte and
Schubert (1982). Both solutions merge together for a
wide range of variations in the flow parameters, thus

Fig. 10. Numerical solution for the case of steady channel flow with a temperature-dependent thermal conductivity described byEq. (21).
(a) Distribution of temperatureT and thermal conductivityk and (b) distribution of parameterAk characterizing temperature equation
(Ak = |[(∂k/∂T)(∇T)2]/[k �T ]|, see text for more details).T0 is the temperature at the walls of the channel,k0 the thermal conductivity at
T0. Different symbols show numerical results for different lateral resolution of the model (31 nodes/150 markers and 61 nodes/300 markers).

suggesting that adopted numerical technique allows
us to solve accurately the coupled momentum and
temperature equations in the case of temperature de-
pendent rheology accompanied by significant shear
heating.
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3.6. Advection of sharp temperature front

Verification of the ability to advect a temperature
front is fundamental in many numerical tests (e.g.,
Malevsky and Yuen, 1991) and we have carried this
out to check whether or not our scheme can meet this
challenge of being capable to preserve a sharp front for
a long time, as demonstrated inMalevsky and Yuen
(1991) for the characteristics based method. In this
connection we urge the reader to consult also the pa-
pers byLenardic and Kaula (1993)andSmolarkiewicz
and Margolin (1998)for the monotone treatment of
the advective scheme. Numerical solutions are calcu-
lated for the solid body rotation of a two dimensional
square temperature wave with widthsL and an ampli-
tude�T0. The results of this test are shown inFig. 9
for a moderate regularly spaced lateral grid resolution
(31×31 nodes, 22,500 markers). In case of advection
dominated heat transport (Fig. 9a) the adopted numer-
ical advection scheme is obviously not diffusive, even
for very many revolutions, as far as the initial positions
of markers (with the corresponding values of initially
prescribed temperature field been negligibly affected
by the heat diffusion) are reproduced extremely well
by the fourth-order Runge–Kutta integration scheme.

Fig. 11. Results of tests for stationary thermal convection in square box with temperature dependent viscosity (Eq. (25)) and constant
thermal conductivityk. Ra1 = αgρ(T1 − T0)/(kη1) is the Rayleigh number,Nu = 1/L

∫
∂T/∂zdx is the calculated value of Nusselt number

(in brackets are the values interpolated fromAlbers (2000)for given grid resolution). The effects of adiabatic and shear heat production
are neglected. (a and b) Demonstrate numerical results for varying viscosity contrasts. Rectangle in (b) show area zoomed inFig. 12.
Model resolution: 43× 43 nodes, 63504 markers.

In case of intermediate (Fig. 9b) and diffusion dom-
inated (Fig. 9c) heat transport final temperature dis-
tribution does not depend notably on the number of
revolutions. This point suggests a good conservation
properties of adopted numerical scheme when ad-
vecting diffusing temperature fronts. Introducing of
numerical diffusion (Eq. (12)) slightly affects tem-
perature distribution in case of intermediate (Fig. 9b)
and diffusion dominated (Fig. 9c) heat transport. Ob-
viously, this numerical diffusion, which gives a small
addition to the physical diffusion, exerts little influ-
ence in the case of advection dominated heat transport
(Fig. 9a). Thus, our suggested characteristics based
method of solving temperature equation using mark-
ers works very well in the different regimes of heat
transport.

3.7. Channel flow with shear heating and variable
thermal conductivity

We have conducted this test for verifying the ac-
curacy of the code in flow situations where there are
strong variations in temperature from shear heating
and variable thermal conductivity for a moderate lat-
eral grid resolution (31–61 nodes, 150–300 markers
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across the channel). For this purpose we use verti-
cal Newtonian channel flow (same as for test 4 but
without temperature gradient along the channel) with
a velocity distribution defined byEq. (18)and shear
heating, which provides a strong but linear heat-source
term in the temperature equation, which is non-linear
because of the temperature-dependent thermal con-
ductivity. The thermal conductivity is taken to be de-
creasing with temperature, characteristic of phonons in
crystal lattices (Hofmeister, 1999) according to the fol-
lowing relation (see alsoSchatz and Simmons, 1972)

k = k0

1 + b(T − T0)/T0
, (21)

whereT0 is a constant temperature applied at the walls
of the channel;k0 the thermal conductivity atT0; b
the dimensionless coefficient.

Taking Eq. (18) for the velocity profile across the
channel we calculate then shear heating term (Hs) for
Eq. (4) andsolve this equation analytically for steady
case (DT/Dt = 0) usingEq. (21). The steady temper-
ature profiles across the channelT(x) are then defined
by equation

T(x) = T0[C(x)+ (b− 1)]

b
, (22)

C(x) = exp{L4b(1/2∂P/∂z)2

× [1 − (2x/L− 1)4]/(48k0T0η)},
where∂P/∂z is the pressure gradient applied along the
channel.

We define then dimensionless parameterAk char-
acterizing temperature equation in case of a strong
temperature dependence of thermal conductivity as
follows:

Ak =
∣∣∣∣ (∂k/∂T)(∇T)2k �T

∣∣∣∣ . (23)

WhenAk � 1 the temperatureEq. (4) is parabolic
and whenAk � 1 this equation become non-linear
and hyperbolic-like (Barenblatt, 1996). In case of the
aforementioned channel flow the formulation ofAk
gives

Ak =
∣∣∣∣ (∂k/∂T)(∂T/∂x)2k(∂2T/∂x2)

∣∣∣∣ . (24)

Fig. 10 compares numerical and analytical results
and shows strong (several orders of magnitude) varia-
tions (Fig. 10b) in parameterAk in marginal zones of

strong temperature gradient (Fig. 10a) resulted from
significant shear heating. In this test a conductivity
variation of a factor of 3 across the channel is obtained
(Fig. 10a). The maximum value ofAk exceed 102

(actually, goes to infinity due to the change in the sign
of ∂2T/∂x2) close to the walls where heat transport is
mainly defined by the variations in thermal conductiv-
ity (Fig. 10a). Fig. 10demonstrates the high accuracy
of numerical solution, suggesting that adopted conser-
vative FD scheme correctly treats the heat transport
in case of strong variations in thermal conductivity.

Fig. 12. Marker structure for zoomed-in area of the numerical
model shown inFig. 11b. Different colors of markers correspond
to different value of temperature ascribed to the markers. (a and
b) Show the results calculated without (d = 0) and with (d = 1)
numerical diffusion (seeEq. (12)), respectively.
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3.8. Thermal convection with a large viscosity
contrast and constant thermal conductivity

Thermal convection with a large viscosity con-
trasts from temperature dependent viscosity is
regarded as a challenging problem (Moresi and
Solomatov, 1995). We have conducted tests to check
the efficacy of our numerical scheme in coping
ably with the temperature and momentum equations
for convection with strong variations in tempera-
ture dependent viscosity. First, we study steady-state
convection with a strong temperature-dependent vis-
cosity in a square box of lengthL for a moderate
irregularly-spaced lateral grid resolution (43× 43
nodes, 63,504 markers). A factor of two compression
in the FD grid has been applied to both the vertical and
horizontal thermal boundary layers surrounding the

Fig. 13. Effects of shear and adiabatic heating on thermal convection. Model design and resolution correspond toFig. 11b, box
size—L = 423 km, pressure change from the top to the bottom of the model—�P = 12 GPa, dissipation number—D = 0.12 (D = αgL/Cp).
(a) Temperature structure of the model; (b) temperature differences�T compared to the model neglecting shear and adiabatic heating
(Fig. 11b); (c and d) thermal effects of adiabatic (Ha) and shear (Hs) heat production (seeEq. (4)), respectively. The valueH0 = k(T1−T0)/L

2

is used for normalization.

box. The boundary conditions correspond to free-slip
along all boundaries, a specified temperature on the
top (T0) and at the bottom (T1) and∂T/∂x = 0 at the
walls. Variable temperature-dependent viscosity, ac-
cording to the Frank-Kamnetzky approximation (e.g.,
Moresi and Solomatov, 1995; Albers, 2000), is used

η = η0 exp

[
−ln

(
η0

η1

)
× T − T0

T1 − T0

]
, (25)

whereη0 andη1 are maximal and minimal values of
viscosity, the defining givenη0/η1. Benchmark results
are shown inFig. 11. Comparison (Fig. 11, values in
brackets) of our results with those ofAlbers (2000)
shows a good accuracy for large (103–108) viscosity
contrast variations.

Fig. 12 compares the marker structure obtained
without (Fig. 12a) and with (Fig. 12b) numerical
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Fig. 14. Results of tests for stationary thermal convection in square box with temperature dependent viscosity (Eq. (25)) and thermal
conductivity (Eq. (26)). Model design and resolution correspond toFig. 13a. Rayleigh number is calculated asRa1 = αgρ(T1 −T0)/(k1η1),
wherek1 andη1 are, respectively, thermal conductivity and viscosity at bottom temperatureT1. All models include the effects of adiabatic
and shear heating.a, c and e—thermal structure of the models.b, d and f—Ak = |[(∂k/∂T)(∇T)2]/[k �T ]| structure of the models. The
patchy pattern of theAk distribution corresponds to the Step 9 inFig. 3 and is caused by the curvature of the Laplacian operator in the
temperature field in the denominator ofAk and not by the gradient term in the numerator.
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diffusion for the selected area of the model shown
in Fig. 11b. Introducing the numerical diffusion
with d = 1 (seeEq. (12)) removes unrealistic sub-
grid temperature oscillations present on markers (see
Section 2.5) without affecting the accuracy of numer-
ical solution of the temperature equation (see also
Figs. 7 and 9).

The numerical simulations shown inFigs. 11 and
12 do not account for the effects of both shear and
adiabatic heating to provide comparison with other
authors who employed only the Boussinesq approx-
imation (e.g.,Albers, 2000; Moresi and Solomatov,
1995). However, these non-Boussinesq effects in the
energetics can be very significant for modeling of
mantle convection problems (Yuen et al., 2000a).
Fig. 13ashows the temperature field resulting from
the influence of adiabatic and shear heating on the
thermal convection model shown inFig. 11bfor the
same moderate regularly spaced lateral grid resolution
(43× 43 nodes, 63,504 markers). The changes in the
temperature field at characteristic values of the box
size (L = 423 km), pressure changes (0–12 GPa) and
dissipation number (D = 0.12, whereD = αgL/Cp)
are quite significant (8–12%,Fig. 13b). These changes
are mainly resulted from adiabatic heating and cool-
ing (Fig. 13c). The effects of shear heating appeared
to be one-order of magnitude smaller (Fig. 13d).

3.9. Thermal convection with temperature dependent
thermal conductivity and viscosity

These calculations are conducted to study 2D spa-
tial distribution of parameterAk (seeEq. (23)) char-
acterizing the nature of the heat transport process in
case of temperature dependent thermal conductivity
for the moderate regularly spaced lateral grid reso-
lution (43 × 43 nodes, 63,504 markers). This ratio
measures the degree of non-linearity of heat transfer
from variable thermal conductivity and indicates the
local nature of the partial differential equation involv-
ing the temperature. The model setup is the same as
in Section 3.8and the variable thermal conductivity is
defined by the following equation applicable for the
ultramafic rocks of the upper Earth’s mantle account-
ing for the phonon-dependence of the thermal conduc-
tivity (Hofmeister, 1999; Clauser and Huenges, 1995)

k = 0.73+ 1293

T + 77
(26)

According to Eq. (26) the thermal conductivity
contrast for studied upper mantle convection type
models isk0/k1 = 2.6, wherek0 andk1 are thermal
conductivity in the top and at the bottom of the model,
respectively. Shear and adiabatic heating effects are
also taken into account in this extended-Boussinesq
model.Fig. 14demonstrate temperature andAk struc-
tures of these models. Regions of highAk = 100–102

values, which indicate a strong departure from the
parabolic nature of the heat equation, are found in
the upper portion of all studied models (Fig. 14b, d
and f) characterizing zones of strong vertical gradi-
ents in temperature (Fig. 14a, c and e). Therefore,
local changes in the parabolic character of tempera-
ture equation to a non-linear hyperbolic-like partial
differential equation due to the variable thermal con-
ductivity are relevant for the mantle convection mod-
els. Obviously, the correctness of numerical solution
in the highAk regions crucially depends on conser-
vation nature of finite-difference formulation of the
temperature equation. Another interesting feature of
the Ak maps is the capture of the great details in the
temperature advection pattern, which shows up much
clearer than the temperature maps. This property can
be exploited for visualization purposes for study-
ing strongly time-dependent mantle convection with
variable thermal conductivity.

4. Discussion and conclusions

In this paper, we have described a recently con-
structed numerical code, which is based on active or
passive markers within the framework of a conserva-
tively based finite-difference code (I2VIS) written in
the C-language. There are several new features of this
code worth emphasizing here. They include the fol-
lowing new capabilities with the following features:

1. The code can conserve stresses with strong varia-
tions of viscosity.

2. It can conserve heat-fluxes in time-dependent
problems with sharply varying thermal conduc-
tivity, temperature gradients and shear heating.

3. It can conserve scalar fields, such as temperature
field, density, chemical composition, and viscosity.

4. It can handle non-uniform FD grid with different
stretching and compression factors.
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These features are needed because of the increase
in complexity in the physics of convection and other
modeling problems in geothermal-mechanics. For
example, we have delineated the regions in which
the non-linear nature of the variable conductivity in
heat-transfer problem is most obviously manifested
(see Figs. 10 and 14). Previous codes can handle
some of these non-linear aspects, but not all of them.
For example, this is one of the first code to use mark-
ers as a variant of a characteristics based method
(Malevsky and Yuen, 1991) for solving the temper-
ature equation. De Smet et al. (1999) employed a
variant of this characteristic method for composi-
tional field in melting dynamics. We have also used
the direct matrix inversion technique for solving both
the momentum and temperature equations in 2D,
thus obtaining more stable and higher accuracy solu-
tions. This is made possible because of the increased
memory now available on shared-memory parallel
computer architecture. Solving directly a matrix asso-
ciated with a 1000×1000 grid points, which amounts
to around 100 Gbytes, is feasible on a single node
of a shared-memory machine today. In the case of
the temperature equation the implicit method allows
for a much larger timestep than the commonly used
explicit timestepping. Implicit methods are more de-
sirable because of the non-linearities present in both
the variable thermal conductivity and viscous heating
terms, which are normally not included in many con-
vection studies with the Boussinesq approximation
(e.g., Solomatov and Moresi, 1997; Trompert and
Hansen, 1996; Albers, 2000). We would like to stress
the ease of the code implementation of the finite dif-
ference method combined with the marker techniques.
This allows one to implement other routines, such as
involving kinetics in phase transitions (Daessler and
Yuen, 1996) or in grain-size dependent rheology (e.g.,
Kameyama et al., 1997), where ordinary differential
equations for the kinetics are solved at each grid point.
Our recent paper (Gerya and Yuen, 2003) provide
an example of using developed numerical method
for high resolution realistic modeling of topography,
deformation, material/heat transport, shear/adiabatic
heating, hydration and partial melting at subduction
zones.

As future prospects for the method we envisage
(i) parallelization of both marker-related calculations
and direct matrix inversion using open MP paradigm

for large shared-memory computers (Chandra et al.,
2001), (ii) testing of very high resolution in 2D in term
of both Eulerian (501× 501 nodes) and Lagrangiqan
(50 million markers) grids, (iii) adding viscoelastic
rheology (e.g.,Moresi et al., 2003) and (iv) introduc-
ing of an Eulerian grid allowing automated arbitrary
resolution (e.g., Albers, 2001;Vasilyev et al., 1998).

The same marker technique can also be applied
for advecting other scalar fields, such as composition
and also vector and tensor quantities (e.g.,Brackbill
and Ruppel, 1986; Brackbill et al., 1988; Brackbill,
1991), which would have direct applications in
thermal-chemical convection (Hansen and Yuen,
2000), the geodynamo (Glatzmaier, 2002) and vis-
coelastic stress-transfer (Melini et al., 2002; Moresi
et al., 2003) problems. Similar approach using many
tracers can be utilized for modeling high Deborah
number compaction driven flows in poro-viscoelastic
media (Vasilyev et al., 1998). By using a rotating
Lagrangian frame of reference one can also solve
efficiently the momentum equation in the dynamo
problem with extremely large number markers in ex-
cess of 1010, which are feasible in shared-memory
architecture. This may help to resolve better the Ek-
man boundary layer (e.g.,Desjardins et al., 2001).
The work set out here lays the foundation for future
in these aforementioned areas.
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