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a b s t r a c t

Numerically modelling the dynamics of a self-consistently subducting lithosphere is a challenging task
because of the decoupling problems of the slab from the free surface. We address this problem with
a benchmark comparison between various numerical codes (Eulerian and Lagrangian, Finite Element
and Finite Difference, with and without markers) as well as a laboratory experiment. The benchmark
test consists of three prescribed setups of viscous flow, driven by compositional buoyancy, and with a
low viscosity, zero-density top layer to approximate a free surface. Alternatively, a fully free surface is
assumed. Our results with a weak top layer indicate that the convergence of the subduction behaviour
with increasing resolution strongly depends on the averaging scheme for viscosity near moving rheological
boundaries. Harmonic means result in fastest subduction, arithmetic means produces slow subduction
and geometric mean results in intermediate behaviour. A few cases with the infinite norm scheme have
been tested and result in convergence behaviour between that of arithmetic and geometric averaging.
Satisfactory convergence of results is only reached in one case with a very strong slab, while for the
other cases complete convergence appears mostly beyond presently feasible grid resolution. Analysing
the behaviour of the weak zero-density top layer reveals that this problem is caused by the entrainment
of the weak material into a lubrication layer on top of the subducting slab whose thickness turns out to
be smaller than even the finest grid resolution. Agreement between the free surface runs and the weak
top layer models is satisfactory only if both approaches use high resolution. Comparison of numerical
models with a free surface laboratory experiment shows that (1) Lagrangian-based free surface numerical
models can closely reproduce the laboratory experiments provided that sufficient numerical resolution is
employed and (2) Eulerian-based codes with a weak surface layer reproduce the experiment if harmonic
or geometric averaging of viscosity is used. The harmonic mean is also preferred if circular high viscosity

bodies with or without a lubrication layer are considered. We conclude that modelling the free surface
of subduction by a weak zero-density layer gives good results for highest resolutions, but otherwise care
has to be taken in (1) handling the associated entrainment and formation of a lubrication layer and (2)
choosing the appropriate avera
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. Introduction

While dynamically modelling of subduction has been an issue

n the geodynamical literature since a long time (e.g. Jacoby, 1976;
acoby and Schmeling, 1982) only recently a vast number of numer-
cal and laboratory models have been developed in an attempt to
nderstand the dynamics of self-consistently forming subduction
ones (Bellahsen et al., 2005; Funiciello et al., 2003a,b; Schmeling
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t al., 1999; Tetzlaff and Schmeling, 2000; Capitanio et al., 2007, and
thers). The term “self-consistent” emphasizes that the formation
f the trench and the sinking of the slab is driven by internal forces
nly and without invoking prescribed zones of weakness. One of the
ajor problems in all models is to formulate and apply a method

o decouple the subducting slab from the surface or the overriding
late. While early modellers simply assumed a sufficiently large
egion near the trench in which the mantle was artificially weak-
ned, other models invoked more complex rheologies or neglected
he overriding plate at all (Schmeling and Jacoby, 1981; Becker et
l., 1999; Funiciello et al., 2004, 2006; Kincaid and Olson, 1987;
artinod et al., 2005; Schellart et al., 2004a,b, 2005; Stegman et

l., 2006).
Laboratory models have the possibility to simulate realistic geo-

ogic features using complex rheologies and at the same time
aving the advantage of an intrinsically 3D approach. However,
D aspects are often suppressed using laterally homogeneous
labs affected by box boundary effects (Kincaid and Olson, 1987;
hemenda and Grocholsky, 1992) or by using 2D feeding pipes
o inject the slab into a density/viscosity layered fluid (Griffiths
nd Turner, 1988; Griffiths et al., 1995; Guillou-Frottier et al.,
995). 3D laboratory models including lateral slab migration have
een recently realized prescribing kinematically the trench move-
ent by Buttles and Olson (1998) and Kincaid and Griffiths (2003)

nd dynamically self-consistently by Faccenna et al. (2001) and
uniciello et al. (2003a,b, 2004, 2006) and Schellart (2004a,b,
005). 3D numerical subduction models have been studied, e.g. by
tegman et al. (2006) and Schellart et al. (2007).

All these approaches can be divided into two classes: In one
lass subduction is kinematically or rheologically prescribed by
inematic boundary conditions of weak decoupling zones. In the
ther class the decoupling zones evolves self-consistently. Our
enchmark addresses this second class of models. Furthermore
ur setup studies a slab without an overriding plate. Thus the
ynamics reveals the behaviour of a subducting slab as it decou-
les from the free surface without being influenced by another
late.

Although our benchmark definition might look quite simple, as
t describes a purely viscous, isothermal fluid dynamical problem

ith linear creeping rheology, and the viscosity contrasts are 104

t most, it turns out to be a very challenging test. This is because of
he decoupling mechanism acting in real systems in which dense
odies detach from a surface, even if they are purely viscous: lay-
rs of different composition interact dynamically, are smeared out
nd turn into lubrication layers. As the numerical resolution of our
odes is limited, such fluid dynamical scenarios easily exceed the
imitations of even high resolution runs. To explore how these lim-
ts are reached by different codes and what can be done to tackle
hese resolution problems is one of the motivations of the present
enchmark.

Our approach is threefold. In one set of tests (case 1) we try to
enchmark the process of subduction approximating the subduc-
ion zone to be overlain by a soft buoyant layer (“sticky air” or an
rtificial layer whose lowermost part consists of water rich, weak
ediments, in short “soft sediments”) and compare it to subduction
odels with a free surface. As it will turn out, the soft material will

e entrained, lubricating the subducting slab, and the subducting
lab is decoupled from the overriding mantle in a self-consistent
ay. However, the lubricating layer will be very thin, its thickness is
eyond the resolution of our models. Consequently, to achieve con-

ergence of the different codes will be difficult. Notwithstanding,
uch model approaches are frequently discussed in the literature.
herefore, it is interesting to study how the different methods deal
ith this decoupling/lubricating problem, how the algorithms of
etermining the effective viscosity at the lubrication region han-
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le the problem, and how they compare to models with a free
urface.

In a second approach (case 2), an attempt is made to achieve
onvergent results of the different codes. We will define a modi-
ed setup, namely one without the formation of a thin lubricating

ayer. In this setup, the viscosity of the overlying layer will be cho-
en as equal to the mantle viscosity. Consequently, no lubrication
ayer can form, and one should expect that the resulting evolu-
ion of subduction should converge among the different codes. It
hould be emphasized, that we do not suggest this setup to be real-
stic in the sense of subduction dynamics, but it is a reasonable
uid dynamic setup to test codes which model the evolution of a
riple point associated with a subduction zone. For constant viscos-
ty thermal convection the role of such a triple point on entrainment
f material with a different density has already been benchmarked
y van Keken et al. (1997).

Thirdly (case 3), we benchmark a laboratory subduction model
ith a free surface and try to reproduce it as close as possible

y numerical models with a weak top layer or with free surface
umerical models.

In Section 5, we present a well-resolved case of a Stokes flow
roblem with and without a lubrication layer to test the applica-
ility of our algorithms of determining the effective viscosity near
ompositional rheological boundaries.

. Definition of cases

.1. Governing equations

The benchmark is defined as a purely viscous fluid dynamic
roblem. We assume an incompressible fluid, in which driving den-
ity fields are advected with the flow. Then the problem can be
escribed by the equations of conservation of mass

� · �v = 0 (1)

nd the equation of momentum

�∇P + ∂

∂xj

[
�k

(
∂vi

∂xj
+ ∂vj

∂xi

)]
− �kg�e3 = 0 (2)

here �v is the velocity, P the pressure, x the coordinates, �k the vis-
osity of composition k, �k the density of composition k, g gravity
cceleration, and �e3 the unit vector in vertical upward direction.
he viscosity and the density are advected with the flow. The cor-
esponding advection equation is given by

∂Ck

∂t
+ �v · �∇Ck = 0 (3)

here Ck is the concentration of the k-th composition. Ck is equal
o 1 in a region occupied by composition k and 0 elsewhere.

.2. Model setup

The 2D model setup for cases 1 and 2 is shown in Fig. 1. It
s defined by a layer of 750 km thickness and 3000 km width.
he initial condition is specified by a mantle of 700 km thick-
ess, overlain by a 50 km thick soft surface layer mimicking “sticky
ir” or “soft sediments”. The mantle layer consists of a highly
iscous, dense lithosphere (�l = 3300 kg/m3, �l = 1023 Pa s, initial
hickness of 100 km) and an ambient mantle with �m = 3200 kg/m3,

m = 1021 Pa s. The surface layer of initially 50 km thickness has
density �s = 0 kg/m3 and a viscosity of either �s = 1019 Pa s or

s = 1021 Pa s and a free slip top. In order to trigger subduction and
echanical decoupling of the slab from the surface in a most direct

nd simple way the slab tip is already penetrating into the mantle
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Fig. 1. Model setup and initial condition of the benchmark cases 1 and 2.

s deep as 200 km (from the top of the mantle). This configura-
ion with a 90◦ corner avoids that time-dependent bending might

ask the detachment of the slab from the surface. The mechani-
al boundary conditions are reflective (free slip), implying the slab
eing attached to the right boundary.

The model setup for the free surface case is identical to the setup
escribed above, only the weak surface layer is removed, and the
urface boundary condition is free.

The model setup for the laboratory experiments and the cor-
esponding numerical experiments (case 3) is somewhat different
nd will be described in detail in Section 3.3.

. Methods

.1. The participating codes

.1.1. FDCON
The code FDCON (used by authors Schmeling, Golabek, Enns,

nd Grigull) is a finite difference code. Eqs. (1) and (2) are rewrit-
en as the biharmonic equation in terms of the stream function and
ariable viscosity (e.g. Schmeling and Marquart, 1991). The FD for-
ulation of the biharmonic equation results in a symmetric system

f linear equations, which is directly solved by Cholesky decom-
osition. The advection equation is solved by a marker approach
e.g. Weinberg and Schmeling, 1992). The region is filled com-
letely with markers which carry the information of composition
. The concentration Ck of composition k at any FD grid point is
etermined by the number of markers of composition k found
ithin a FD-cell sized area around the grid point divided by the

otal number of markers present in the same cell. The density
nd viscosity at any grid point are determined by Ck—weighted
veraging using either the harmonic, the geometric or the arith-
etic mean (see below). The markers are advanced by a 4th

rder Runge-Kutta scheme, combined with a predictor–corrector
tep. For this predictor-corrector step, markers are provisionally
dvanced by two first order Eulerian steps. The Navier Stokes
quation is solved for these preliminary steps to obtain the cor-
esponding velocity fields. These velocity fields are then taken
or the full 4th order Runge-Kutta step to advance the mark-
rs.

.1.2. I2VIS, I2ELVIS
Both the viscous code I2VIS (used by author Gerya) and the

iscoelastic code I2ELVIS are based on a combination of finite-
ifferences (pressure–velocity formulation on fully staggered grid)

ith marker-in-cell technique (Gerya and Yuen, 2003a, 2007).
arkers carry information on composition (which is used to define

ensity, viscosity and shear modulus) and stresses (in viscoelas-
ic case). Viscosity, density and stresses (in viscoelastic case) are
nterpolated from markers to nodes by using bilinear distance-

n
w
E
i
r
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ependent schemes. In I2ELVIS the shear modulus for viscous
uns was taken as 6.7 × 1030 Pa and the bulk modulus was taken
nfinity (incompressible fluid). Obviously with a time step of 104

ears and a viscosity of the slab of 1023 Pa s there is no elas-
ic deformation component. The markers are advanced by a 4-th
rder in space 1st order in time Runge-Kutta scheme. The runs
one with I2ELVIS differ from those with I2VIS in that they aver-
ge the viscosity around nodes more locally. In I2ELVIS averaging
rom markers to a node is done from markers found in 1-grid cell
round the node (i.e. within 0.5-grid step). Averaging in I2ELVIS is
one separately for different nodal points corresponding to shear
interceptions of grid lines) and normal (centres of cells) stress
omponents. In I2VIS averaging from markers to nodes is first
niformly done for nodal points corresponding to shear stress com-
onents (i.e. for intersections of grid lines) from markers found

n 2 × 2 = 4 grid cells around each nodes (i.e. within 1.0 grid step).
hen viscosity for normal stress components is computed for cen-
res of cells by averaging viscosity from four surrounding “shear
iscosity nodes” (i.e. averaging is effectively from 3 × 3 = 9 cells,
ithin 1.5-grid step). Both codes use the optional possibility of

efinement locally in a 100–800 km wide and 10–20 km deep area
Swiss-cross-grid following the trench). Therefore, the subsequent

odels converge better for the initial 10–20 Myears of the model
evelopment.

.1.3. LAPEX-2D
This code (used by author Babeyko) solves for balances of mass,

omentum and energy through an explicit Lagrangian finite dif-
erence technique (FLAC-type) (Cundall and Board, 1988; Poliakov
t al., 1993; Babeyko et al., 2002) combined with particle-in-
ell method (Sulsky et al., 1995). The solution proceeds on a
oving Lagrangian grid by explicit time integration of conserva-

ion equations. For that reason, the inertial term �inert ∂vi/∂t is
ncluded into the right-hand side of the momentum conserva-
ion equation (Eq. (2)). Here inertial density �inert actually plays

role of parameter of dynamic relaxation. Incorporation of the
nertial term allows explicit time integration of nodal veloci-
ies and displacement increments, thus “driving” the solution
owards quasi-static equilibrium. The magnitude of the inertial
erm is kept small in comparison to tectonic forces, typically,
0−3–10−5, so the solution remains quasi-static. In comparison to
he classical implicit finite element algorithm, memory require-

ents of this method are very moderate, since no global matrices
re formed and inverted. Accordingly, computational costs for
ne time step are very low. However, explicit time integration
mposes very strict restrictions on the magnitude of the calcu-
ational time step—for typical geodynamic application the stable
ourant time step has an order of 1–10 years. Being a disadvan-
age of this method, the small computational time step allows,
owever, treatment of any physical non-linearity (such as plas-
ic flow, for example) in a natural way, without any additional
terations and problems with convergence. A principal restriction
n LAPEX-2D, which partly limited its suitability for the present
enchmark setup, is the requirement of non-zero material den-
ity. Thus benchmarks with zero-density ‘sticky air’ soft layer were
ot performed with LAPEX-2D. The algorithm is easy paralleliz-
ble.

LAPEX-2D has a principally viscoelastic solver. The explicit
umerical scheme of stress update at each computational time step
irectly exploits the elastic constitutional law. Thus, elasticity can-

ot be completely ‘switched-off’. In the present models, the slab
as assigned the elastic properties of olivine, i.e. Young’s modulus
= 184 GPa and Poisson’s ratio of 0.244. Together with slab viscos-

ty of 1023 Pa s these elastic properties correspond to the Maxwell
elaxation time of 40 kyears, which is much less than the charac-
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eristic model time. Thus, the behaviour of the slab in LAPEX-2D is
ffectively viscous.

Solution on the moving Lagrangian grid becomes non-accurate
hen the grid becomes too distorted. At this point remeshing

hould take place. During remeshing the new grid is built, and
olution variables are interpolated from the old distorted grid.
his procedure of remeshing is inevitably related to the prob-
em of numerical diffusion. In the case of history-dependent
olution, like presence of elastic stresses, and strong stress gra-
ients (e.g. subducting slab vs. its surrounding), uncontrollable
umerical diffusion might strongly affect the solution. In order
o sustain it, we have implemented in our code a particle-in-
ell, or material point technique (Sulsky et al., 1995). In this
pproach, particles, which are distributed throughout the mesh,
re more than simple material tracers. In LAPEX-2D, particles, typ-
cally 30–60 per element, track not only material properties but
lso all history-depending variables including full strain and stress
ensors. Between remeshings, particles provide no additional com-
utational costs since they are frozen into the moving Lagrangian
rid composed of constant–stress triangles, and there is no need
o update particle properties at this stage. Additional computa-
ional efforts arise only during remeshing. First, stress and strain
ncrements accumulated since the previous remeshing are mapped
rom Lagrangian elements to particles. After the new mesh is con-
tructed, stresses and strains are back-projected from particles onto
he new grid.

.1.4. CITCOM
The code CITCOM (used by author van Hunen) is a finite element

ode (Moresi and Solomatov, 1995; Moresi and Gurnis, 1996; Zhong
t al., 2000). The finite elements are bi-linear rectangles, with a lin-
ar velocity and a constant pressure. Interpolation of composition
s done per element and directly applied to the integration points.
he code uses an iterative multigrid solution method for the Stokes
quation. Eqs. (1) and (2) in their discrete form are written as

u + Bp = f (4)

Tu = 0 (5)

his system of equations is solved with some form of the Uzawa
teration scheme: Eq. (4) is solved iteratively with a Gauss–Seidel

ultigrid method, while applying Eq. (5) as a constraint. The aug-
ented Lagrangian formulation is used to improve convergence of

he pressure field for large viscosity variations. A marker approach
s used to solve the advection Eq. (3): the computational domain
s filled completely with markers (approximately 40 markers per
nite element), which carry the composition. Markers are advected
sing a second order Runge-Kutta scheme. Interpolation from the
arkers onto the integration points of the finite element mesh is

one by a geometric weighted average of the marker values over
ach element (i.e. one value per element).

.1.5. ABAQUS with remeshing
An adaptive solid mechanical Finite Element Method (Abaqus

tandard) (used by author Morra) that uses the tangent operator
atrix is employed for calculating the deformation of the mantle.

n order to avoid excessive deformation, every 1 Myear a remesh-
ng algorithm re-interpolates the variables to the initial mesh. The

aterials are traced using a field defined at the nodes (field 1: 0 = air,
= mantle; field 2: 0 = mantle, 1 = lithosphere) and the material

roperties are calculated interpolating the field at the four nodes
round each linear quadratic element. Rheology is implemented
n all configurations, using geometric, arithmetic and harmonic

ean. For the viscous runs the elastic modulus is increased by
wo orders of magnitude compared to the real value in nature (i.e.

s
t
i
c
a
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013 Pa vs. 1011 Pa), which reduces the Maxwell time by two orders
f magnitude, therefore inhibiting elasticity (stresses are dissipated
mmediately, with virtually no delay).

.1.6. LaMEM
LaMEM (used by author Kaus) is a thermo-mechanical finite ele-

ent code that solves the governing equations for Stokes flow in
arallel in a 3D domain using Uzawa iterations for incompressibil-

ty and direct, iterative or multigrid solvers (based on the PETSc
ackage). A velocity–pressure formulation is employed with either
1P0 (linear) elements or Q2P−1 elements (quadratic for velocity
nd linear discontinuous for pressure). To facilitate comparison
ith similar FEM methods in this benchmark study (such as CIT-

OM), all computations have been performed with linear elements.
racers are used to advect material properties as well as stress
ensors. Material properties are computed at integration points by
rithmetic averaging from the nearest tracers. In free surface runs,
he properties at the integration points are employed for calcula-
ions. In selected cases, the values from all integration points in an
lement are homogenized through arithmetic, geometric or har-
onic averaging (which thus yields one value of viscosity per cell).

racer advection is done through mapping of global tracer coordi-
ates to local ones, after which the element is deformed, and tracer

ocations are mapped back to global coordinates. LaMEM can be
mployed in an Eulerian mode, in a purely Lagrangian mode, or in
n Arbitrary Lagrangian–Eulerian (ALE) mode, in which some ele-
ents are deformed (typically close to the free surface) but others

re fix. The ALE mode employs remeshing after each time step.
An advantage of LaMEM is that it can handle self-consistent

ree surface deformation, while simultaneously solving the Stokes
quation in an implicit manner. In free surface simulations the
LE approach is used with remeshing based on the free surface
eformations. Remeshing is done at each time-step, and a new free
urface is created from the old one by linear interpolation on regu-
ar x-coordinates. If angles larger than 25◦ occur at the free surface
fter remeshing, a kinematic redistribution algorithm is employed
hat distributes the fluid over adjacent nodes in a mass conservative

anner (until angles <25◦).

.1.7. FEMS-2D
FEMS-2D (used by author Schmalholz) is a finite element

ode for simulating slow incompressible flows in two dimensions
Frehner and Schmalholz, 2006; Schmalholz, 2006) and is written
n MATLAB (The MathWorks). The algorithm is based on a mixed
elocity–pressure formulation (e.g. Hughes, 1987). Two different
lements can be used: (i) the isoparametric Q2–P1 9-node quadri-
ateral element using nine integration points, a biquadratic velocity
pproximation and a linear discontinuous pressure approxima-
ion or (ii) the isoparameteric P2–P1 7-node triangular element
sing seven integration points, a quadratic velocity approximation
nd a linear discontinuous pressure approximation (e.g. Cuvelier
t al., 1986; Hughes, 1987; Bathe, 1996). The higher order ele-
ents for the velocities are used in combination with linear

lements for the pressure. This so-called mixed velocity–pressure
ormulation is especially accurate for pressure calculations for
ncompressible flows (which are not calculated using a stream
unction ansatz). The higher order elements should here not mat-
er concerning the overall accuracy of the calculated flow field.
oth elements satisfy the inf-sup condition guaranteeing numerical

tability for incompressible flows. Uzawa-type iterations are used
o achieve incompressible flow. For both elements the pressure
s eliminated on the element level. For the presented numeri-
al subduction simulations the triangular elements are used. The
pplied mesh generator is Triangle developed by Shewchuk (1996,
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present paper. For more detailed explanations see Funiciello et
al. (2003a,b, 2004). The experiment is monitored over its entire
duration by two digital cameras both in the lateral and top views.
Kinematic and geometric parameters (trench retreat, dip of the
slab) are afterwards quantified by means of image analysis tools

Table 1
Parameters of the laboratory experiment (case 3)

Parameter Value

Gravity acceleration (m s−2) 9.81
Thickness (m)

h, oceanic lithosphere 0.012
H, upper mantle 0.103

Density (kg m−3)
02 H. Schmeling et al. / Physics of the Earth

ww.cs.cmu.edu/∼quake/triangle.html). An algorithm written in
ATLAB (developed and provided by Dani Schmid, PGP, University

f Oslo, Norway) is used to link the mesh generator Triangle with
EMS-2D. After each time step the coordinates of the nodes are
pdated by adding the corresponding displacements which result
rom the product of the calculated velocities times the time step
explicit time integration). The new velocity field is then calculated
or the new nodal coordinates.

Recently, the matrix assembly algorithm and solver developed
y Dabrowski et al. (2008) was implemented in FEMS-2D which
hortened the computation time significantly. This version has been
amed MILAMIN (used by authors Schmalholz and Kaus). Tests
ave shown that the results are identical to models with FEMS-2D.

Due to the applied Lagrangian approach the numerical mesh is
eformed with the calculated velocities. When the finite element
riangles are too strongly deformed, the finite element mesh is re-

eshed but the contour lines defining the geometry of the mantle
nd the slab remain unchanged. There is also one point at the free
urface at which the mantle surface and the slab surface are identi-
al, i.e. the point defining the trench. During the slab subduction
he mantle is overriding the slab and the contour line defining
he free surface of the mantle gets overturned, which is unreal-
stic. Therefore, once the mantle surface exceeds a critical angle
between 10 and 90◦), the trench point is moved upwards along
he contour line defining the slab surface. Two different approaches
ave been applied: in the first approach the trench point is simply
oved upwards to the next nodal point on the contour line of the

lab surface and the mantle surface is additionally smoothed. This
pproach does not guarantee a strict mass conservation. In the sec-
nd approach, a new trench point is generated at the slab surface
o that the surface of the mantle exhibits a predefined angle at
he trench (here 10◦) and additionally the mass of mantle material
s conserved. It was found that when the numerical resolution is
ufficiently large (i.e. the results of each algorithm do not change
ignificantly anymore with higher resolution) around the trench,
oth approaches yield nearly identical results. The stepwise change
f the trench location caused by the adjustment of the contour
ines can be physically interpreted with some kind of stick–slip
ehaviour, where stresses first build up and are then released by
he slip of mantle material along the surface of the slab.

.2. Viscosity averaging

At compositional boundaries all codes have the problem of
ither to map the viscosity (and density) advected by the markers
o the FD- or FE grid, or to interpolate viscosities from a deformed

esh to a remeshed configuration. This is done by using either of
he following averaging laws:

Harmonic mean:

1
�ave

= C1

�1
+ C2

�2
(6)

Arithmetic mean:

�ave = C1�1 + C2�2 (7)

Geometric mean:
�ave = �C1
1 �C2

2 (8)

ere �i is the viscosity of composition i, and Ci is the relative volu-
etric fraction of composition i in the vicinity of the FE- or FD-node

t which the effective viscosity �ave is needed. A physical discussion
f the above laws will be presented below.

V
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Another viscosity averaging scheme which deliberately avoids
ny a priori assumptions about the averaging process, or any
nformation about marker distributions on a scale below the grid
esolution is the “infinite norm average”:

ave = �k, with k : Ck ≥ Ci, i = 1, . . . , nmat (9)

here nmat is the total number of compositions. Eq. (9) simply states
hat the material which has most particles in a cell determines the

aterial properties of that cell.
In the subsequent sections, we essentially use and compare

odels with the harmonic, arithmetic and geometric means, and
pply the infinite norm average only in one resolution test. In Sec-
ion 5, the infinite norm scheme is discussed and quantified for a
D-Stokes flow problem.

.3. Laboratory experiments and setup of corresponding
umerical runs

We (authors Funiciello and Faccenna) use silicone putty (Rho-
rosil Gomme, PBDMS + iron fillers) and glucose syrup as analogue
f the lithosphere and upper mantle, respectively. Silicone putty is
viscoelastic material behaving viscously at experimental strain

ates (Weijermars and Schmeling, 1986) since the deformation
ime-scale is always larger than its Maxwell relaxation time (about
s). Glucose syrup is a transparent Newtonian low-viscosity fluid.
hese materials have been selected to achieve the standard scaling
rocedure for stresses scaled down for length, density and vis-
osity in a natural gravity field (gmodel = gnature) as described by
eijermars and Schmeling (1986) and Davy and Cobbold (1991).
The layered system, where densities and viscosities are assumed

s constant over the thickness of the individual layers, is arranged in
transparent Plexiglas tank (Fig. 2a). The subducting plate is fixed

o the box in the far field (“fixed ridge” see Kincaid and Olson, 1987).
D natural aspects of laboratory models are minimized using slabs
s large as the width of the box (w = b). It allows to consider in first
pproximation the system as two-dimensional for comparison with
he numerical models of the present benchmark. The box sides are
ubricated with Vaseline to avoid sticking effects of the slab with
he box boundaries.

The subduction process is manually started by forcing down-
ard the leading edge of the silicone plate into the glucose to
depth of 3.1 cm (corresponding to about 200 km in nature) at

n angle of ∼30◦. In Fig. 2a and Table 1 we summarized the
haracteristics of the selected experiment we describe in the
�o, oceanic lithosphere 1495
�m, upper mantle 1415
Density contrast, �o − �m 80

iscosity (Pa s)
�o, oceanic lithosphere 3.5 × 105 (±5%)
�m, upper mantle 32 (±20%)
Viscosity ratio, �o/�m 1.1 × 104

http://www.cs.cmu.edu/~quake/triangle.html
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Fig. 2. (a) Experimental setup of the subduction benchmark case 3. a = 54 cm, b = 25 cm, l = 40 cm (=34 cm along surface, 6 cm dipping), w = 25 cm, h = 1.2 cm, H = 10.3 cm. (b)
Setup for the corresponding numerical models.

Table 2
Case 1 models, i.e. models with weak surface layer, �s = 0 kg/m3, �s = 1019 Pa s

Model name Number of nodes (local trench
area resolution in km)

No. of markers Averaging method Remarks

FDCON-1 161 × 41 1800 × 450 Geom dt = 0.01 Courant in all FDCON runs
FDCON-2 241 × 61 2700 × 675 Geom
FDCON-3 321 × 81 3600 × 900 Geom
FDCON-4 561 × 141 6250 × 1570 Geom
FDCON-5 561 × 141 6250 × 1570 Harm
FDCON-6 561 × 141 6250 × 1570 Arith

I2VIS 301 × 76 (10 × 1 km) 801,700 Arith, geom, harm Local grid refinement, dt = 10 kyears
381 × 76 (5 × 1 km) 812,560
621 × 76 (2 × 1 km) 994,620
1021 × 76 (1 × 1 km) 1,091,080
1821 × 93 (0.5 × 0.5 km) 356,512

I2ELVIS 301 × 76 (10 × 1 km) 952,500 Arith, geom, harm Local grid refinement, dt = 10 kyears
381 × 76 (5 × 1 km) 988,000
621 × 76 (2 × 1 km) 1,255,500
1021 × 76 (1 × 1 km) 1,479,000
1821 × 93 (0.5 × 0.5 km) 3,835,740
884 × 125 (0.2 × 0.2 km) 7,473,712

I2ELVIS 161 × 41 Arith, geom, harm Uniform grid, dt = 10 kyears
241 × 61
301 × 76
321 × 81
561 × 141

CITCOM-1 128 × 32 Geom dt = 0.01 Courant
CITCOM-2 256 × 64 Geom dt = 0.01 Courant

LAPEX2D-1 150 × 38 Geom �s = 1020 Pa s, dt = 10–20 years
LAPEX2D-2 300 × 75 Geom �s = 1020 Pa s, dt as above
LAPEX2D-3 Free surface, dt as above

LaMEM-1 64 × 16 × 2 65,536 None Free surface, dt = 10 kyears (40 sub-time steps
per time step)

LaMEM-2 128 × 32 × 2 884,736 None Free surface, dt as above
LaMEM-3 256 × 64 × 2 1,048,576 None Free surface, dt as above

FEMS-2D-1 2850 nodes (equivalent to
111 × 26 irregular nodes with
local refinement)

Marker chain None Free surface, dt = 2 kyears

FEMS-2D-2 5000, equ 146 × 34 irr., l.r. Marker chain None Free surface, dt = 1 kyear
FEMS-2D-3 15000, equ 256 × 59 irr., l.r. Marker chain None Free surface, dt = 1 kyear
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part of the plate, associated with a larger trench retreat compared to
the I2ELVIS-model. In the FDCON-model the originally right angles
at the edges of the slab front are less deformed than in the I2ELVIS
case. The CITCOM model has already subducted to a slightly greater
04 H. Schmeling et al. / Physics of the Earth

software DIAna Image Analysis). The measurement error was
0.1 cm.

The laboratory setup is taken to define a corresponding 2D
umerical setup (Fig. 2b). As these experiments are carried out by
oth the codes with a free surface and with a soft surface layer
“sticky air”), both alternative setups are depicted in Fig. 2b. Based
n the photograph of the laboratory model at time equal zero, the
nitial dip angle and length of the leading edge of the slab are chosen
s 34◦ and 6 cm, respectively.

. Results

We first present results of case 1 with a weak decoupling layer
1019 Pa s), which leads to the entrainment of weak material and
ffective lubrication of the upper side of the subducting slab. We
hen show the results of the free surface runs. This will be fol-
owed by the non-lubrication models (case 2) with a “weak layer” of
021 Pa s. Finally (case 3) the laboratory result and the correspond-
ng numerical runs will be shown.

.1. Models with weak decoupling layer (case 1)

These models have been run with different resolutions by the
odes and are summarized in Table 2. The typical behaviour of a case
model is shown in Fig. 3. At time 0 instantaneously high vertical
ow velocities of the order of 5.4 cm/a are observed as the originally

at mantle/lithosphere surface relaxes towards an isostatic equilib-
ium. This equilibrium is approached after about 100–200 kyears,
nd is associated with a vertical offset at the trench of about 4 km.
his isostatic relaxation is confirmed by the codes FDCON (3.8 km
fter 180 kyears), CITCOM (3.9 km after 183 kyears), I2ELVIS (4.7 km

ig. 3. Typical behaviour of a case 1 model (here FDCON-4 is shown). Streamlines
re also shown.

F
I
i
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fter 400 kyears) with an accuracy of approximately 100 m, as well
s by the free surface models LaMEM and FEMS-2D (both 4 km
fter 200 kyears) and LAPEX-2D (5.2 km after 2 Myears). During
he following 20 Mio years vertical velocities are small (order of
.25 cm/year). It takes a few tens of Mio years until the slab suc-
essfully detaches from the surface. Rapidly it subducts through
he upper mantle and reaches the bottom of the box after some
ens of Mio years. As the slab is fixed at the right side of the model
ox, subduction is accompanied by considerable roll back with a
orizontal velocity of the order of 1 cm/year.

.1.1. Comparison of slab shapes
First we compare the shapes of the subducting slabs. As the

emporal behaviour is different (see below) we chose snapshots
or stages at which the subducting slab has reached a depth of
pproximately 400 km. As can be seen in Fig. 4, the similar stages
re reached at different times. The geometries are quite similar on
rst order, but a detailed examination reveals some differences: the
DCON case shows a slightly stronger thickening of the horizontal
ig. 4. Shapes of different case 1 models at similar stages: FDCON: 40 Myears,
2ELVIS: 34.7 Myears, CITCOM: 38.1 Myears. Viscosity averaging: geometric mean
n all cases.
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epth than the other two models, however, the trench retreat the
ame as for FDCON. A careful examination of the three models
hows that a thin layer of soft surface material is entrained on top of
he subducting slab. As will be discussed more in detail below, this
ayer is thinner than the grid resolution of all of the models, thus its
ubricating effect may differ from code to code. Most importantly
he lubrication effect depends on the way of determining the effec-
ive viscosity in the entrainment region (see Section 3.2). All three

odels shown in Fig. 4 used geometric means (Eq. (8)) for viscos-
ty averaging, that is the reason for the first order similarity of the
eometries.

Fig. 5 shows the effect of viscosity averaging on the shapes of
he slabs. Note that the snapshots are taken at different times, so
hat the slab tips have reached comparable levels. The deformation
f the slab tip is strongest for the case with the harmonic mean,
hich yields the weakest effective viscosity, while the original

hape of the rectangular slab is best preserved for the stiffer arith-

etic mean case. In arithmetic case, the bending is more localized

ear the trench, as deeper parts of the slab have already undergone
nbending during the more slowly subduction. In the harmonic
ases, which are taken at shorter times, unbending has not pro-

ig. 5. Comparison of the shapes of the slabs for different viscosity averaging meth-
ds using I2VIS. Note that the snapshots are taken at different times (59.6, 24.4,
7.8 Myears from top to bottom), so that the slab tips have reached comparable
evels.
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eeded that far. The geometric mean case shows characteristics just
n between the other two cases.

.1.2. Comparison of temporal behaviour
To compare the temporal behaviour of the different models Fig. 6

hows the depth of the slab as a function of time for different codes
nd highest resolutions each. Diagrams of the full set of models with
ifferent resolutions is given in the Appendix A. In contrast to the
thers, I2VIS and I2ELVIS also used of local refinement (curves with
ymbols). All models (FDCON, I2VIS, I2ELVIS, CITCOM, LAPEX2D)
sing geometric mean (greenish curves) lie close together and reach
he 400 km depth level after 35–41 Myears. Interestingly LAPEX2D
sed a higher weak layer viscosity of 1020 Pa s instead of 1019 and
till shows good agreement with the others who used the geometric
ean.
The highest resolution uniform grid models using arithmetic

ean for viscosity averaging (FDCON and I2ELVIS) (bluish curves)
how a significant slower subduction. Increasing the grid resolu-
ion locally (on the expense of grid resolution far away from the
rench area), I2VIS with arithmetic means (blue curve with dia-

onds) shows a significant faster subduction compared to the
niform grid, arithmetic mean models (blue curves) and lies close
o the slowest models with geometric means (greenish curves).
veraging the viscosity near boundaries even more locally as is
one by I2ELVIS (blue curve with squares) speeds up subduc-
ion even more, entering the field of curves with the geometric

ean.
However, testing the harmonic mean as a third reasonable pos-

ibility shows again a dramatic effect: FDCON, I2VIS and I2ELVIS
ighest resolution models show (reddish curves) that subduc-
ion is now much faster than in the previous cases, even when
sing the highest resolutions. However, locally refined models now
how the tendency towards slower subduction, these curves lie
n the slower side of the set of the harmonic averaging mod-
ls.

A resolution test of the models of case 1 with a weak top layer is
hown in Fig. 7 which shows the time at which the slab tip passes
he 400 km level as a function of the characteristic grid size used
n the runs. Increasing the resolution clearly shows that the curves

ith the geometric or arithmetic means converge from high values
owards a time between 34 and 38 Myears. The I2VIS and I2ELVIS
uns with the harmonic mean show a trend of coming from small
alues converging towards an asymptotic value between 25 and
0 Myears. FDCON (harmonic) has the same asymptotic trend, but
hows characteristic oscillations which are strongly damped as the
esolution increases. The frequency of these oscillations, which are
lso observed for the geometric averaging models of FDCON, corre-
ates with the frequency with which a FD-grid line coincides with
he compositional interface between the lithosphere and the soft
ayer (non-connected crosses in Fig. 7). The convergence behaviour
f FDCON with infinite norm scheme is similar to arithmetic aver-
ging models, but the asymptotic trend is not well defined.

In Fig. 8, we show the temporal behaviour of the trench rollback
volution of our highest resolution models for different rheologi-
al averaging schemes used. Only the results of I2ELVIS and I2VIS
re shown, as those allow for local grid refinement in the trench
egion. During the first 15–20 Myears all models with local refined
rids agree well with each other and follow roughly the evolution of
he uniform grid run with geometric mean. The uniform grid mod-
ls with harmonic or arithmetic mean significantly differ already

rom the beginning. At later stages, t > 20 Myears, the retreat curves
iverge, with the harmonic mean models retreating fastest (reddish
urves) and the arithmetic mean curves retreating slowest (bluish
urves). The full set of models with different resolutions is shown
n Appendix A, Fig. A2a–c.
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Fig. 6. Temporal behaviour of case 1 modelled by different codes with highest resolutions each. Each curve shows the position of the deepest part of the slab (slab tip) as
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function of time below the initial surface of the lithosphere. See the legends for
efinement at the trench area (given in parentheses in the legend). Outside the tren
ertical resolution was 1 km. The rheological means (cf. Section 3.2) are denoted as
o the others, LAPEX2D was run with 1020 Pa s for the weak layer.

From this comparison it becomes clear that the codes have
ome problems in correctly solving the stated fluid dynamical prob-

em (which should have a unique solution). They only converge to
oughly comparable subduction histories if the resolution is drasti-
ally increased. Harmonic and arithmetic mean runs approach the
eometric solution from opposite sides, runs with geometric mean
ften seem to start from values closer to the asymptotic value.

d
t
t
f
l

ig. 7. Resolution test of all models of case 1. The time at which the slab tip passes the
unction of characteristic grid size. The different rheological averaging schemes are arith
or FDCON, CITCOM, and I2ELVIS (uniform grid) the characteristic grid size is equal to the
ize of the I2VIS and I2ELVIS runs with local refinement was taken as the geometric mean
hen taking the geometric mean of the two directions) and the finest grid size within tre
he characteristic grid size equals the nominal grid size for the coarsest resolution. The sy
urface coincides with a FD-grid line for FDCON. This sequence correlates with the oscilla
ed codes and grid resolution. Note that the codes I2VIS and I2ELVIS also use local
a the resolution decreases to 10 × 46 km at model sides. At the lower boundary the
for geometric, harm for harmonic and arith for arithmetic, respectively. In contrast

et, extrapolation of these runs towards the exact solution is not
ully satisfactory as the differences between results obtained by

ifferent viscosity averaging methods are still large, and asymp-
otic values of harmonic and other means do not yet coincide for
he resolutions used. In the next section, we give an explanation
or the diverse behaviour of our models in terms of decoupling and
ubrication.

400 km level beneath the initial lithosphere surface is shown for each model as a
metic, geometric and harmonic mean, as well as the infinite norm scheme. While
actual grid size (equal in horizontal and vertical direction), the characteristic grid
of the nominal grid size (length divided by number of cells in each direction and

nch region (also taking the geometric mean of the two directions), scaled so that
mbols “FDCON: grid-interface match” show the grid sizes at which the lithospheric
tions seen in the “FDCON harm” and “FDCON geom”-curves.
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ig. 8. Highest resolution results for trench rollback of case 1 for different rheologi
ith grid refinement following the moving trench. For these runs, outside the trench
odel, which has uniform horizontal resolution with 5 × 46 km at the model sides.

.1.3. Decoupling from the top—the role of entrainment of weak
aterial

In order to examine the reason for the differences among the
odels with different viscosity averaging, Fig. 9 presents a closer

ook at the details of one of our models. The marker distributions
how that a thin layer of the weak surface material is entrained on
op of the downgoing slab. This layer is only one to three markers
ide (in this example, every 4th marker is shown in every direc-

ion), thus lies below the resolution of the FD grid. As the weak
urface layer markers carry weak rheology, they decrease the effec-
ive viscosity within a layer immediate above the downgoing slab,

ut only irregularly within distinct FD grid cells as is visible by the

rregular distribution of bluish FD cells (Fig. 9 left). This lubrication
elps the subduction of the slab, however, it cannot be resolved
dequately as the lubrication layer is thinner than the grid resolu-
ion. We believe that such differences in non-resolvable lubrication

r
m
o
a
r

Fig. 9. Details of the entrainment and lu
eraging methods (geometric, arithmetic, harmonic mean). Several runs were done
the resolution decreases to 10 × 46 km at model sides, except for the 381 × 76 node
lower boundary the vertical resolution was always 1 km.

ehaviour is the reason for the significant differences between the
odels if different rheological averaging methods are used, and if

he resolution is varied.

.2. Free surface models

Case 1 has also been modeled by LAPEX2D, LaMEM and FEMS-
D assuming a free surface instead of the weak surface layer
Fig. 10). These runs point out that the results depend strongly
n the numerical resolution that is employed. Low resolution is
ccompanied by a higher resistance of the mantle at the trench

egion to flow and spread on top of the sinking slab. Coarse ele-
ents do not well approximate the high curvatures at the tip

f the “overrolling” mantle wedge building up near the trench
nd make the surface geometrically stiffer (or less flexible). This
equires more strain until one of the surface elements at the tip

brication of the soft surface layer.
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Fig. 10. Comparison of temporal behaviour of case 1 models assuming a free surface instead of a weak layer. The FEMS-models used an irregular (irr.) mesh with local
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lithosphere, mantle and surface layer) detaches from the initial sur-
face and starts to sink into the mantle. However, the coupling to the
surface is still so strong that the deeper parts of the slab continue
to further stretch and thin. Trench retreat is less efficient than in
the case 1.

Table 3
Series 2 models: models with strong surface layer, �s = 0 kg/m3, �s = 1021 Pa s

Model name Resolution No. of markers Averaging
method

Remarks

FDCON-7 161 × 41 1800 × 450 Geom
FDCON-8 241 × 61 2700 × 675 Geom
FDCON-9 321 × 81 3600 × 900 Geom
FDCON-10 401 × 101 4500 × 1125 Geom
FDCON-11 561 × 141 6250 × 1570 Geom
FDCON-12 321 × 81 3600 × 900 Harm
FDCON-13 321 × 81 3600 × 900 Arith
FDCON-14,15 561 × 141 Harm, arith
efinment (l.r.) near the trench, the given x–y grid resolution are only approximate
odels are very similar so that the curves partly overlap.

f the wedge gets overturned and re-meshing (i.e. ‘slip’ of one
lement) is performed. Large elements cannot resolve this over-
urning and lead to ‘numerical locking’—severe underestimation
f the correct solution by the accepted numerical approximation.
his numerical ‘locking effect’ is especially pronounced in the
eginning of the slab sinking process, when the mantle wedge

oading is still small. Moreover, the results in Fig. 10 show that
ow-resolution LaMEM and LAPEX2D runs probably demonstrate
ertinent locking at the mantle wedge even at later stages of sub-
uction. Larger velocities and full decoupling of the slab from the
urface are only obtained for higher resolutions and re-meshing
ear the trench.

In the FEMS-2D runs an unstructured mesh with a high reso-
ution around the slab and low resolution away from the slab has
een used. Increasing the resolution in these runs mainly increased
he resolution away from the slab and made the mesh more regular.
s the number of markers in the marker chain specifying the slab
hape was the same in the different runs, the resolution directly
round the slab was nearly identical in the runs. This is the reason
or almost identical curves for different resolutions. Thus, increas-
ng the resolution in areas away from the slab does not change
he results. On the other hand, the time step has some effect on
he behaviour because remeshing is done once the light material
ecomes “overturned” while overriding the slab. Bigger time steps

ead to an earlier remeshing because the light material becomes
aster overturned.

Even for the highest resolutions there are still significant
ifferences between the different codes. We believe that these
ifferences are due to the different remeshing schemes used, par-
icularly near the trench (see Section 3.1). However, once the
ecoupling reached a quasi-steady state, the subduction velocities
f the FEMS-2D and LaMEM models are similar.
.3. Models without a lubrication layer (case 2)

As has been shown in Section 4.1, the entrainment of weak mate-
ial helped decoupling of the slab from the surface but did not lead

L
A
C
C
C

s for comparison, calculated from the total number of nodes. The three FEMS-2D

o fully converging results when using different viscosity averag-
ng methods. Therefore, we carried out a second comparison of
esults (case 2 models) for a model in which the “soft layer” had
he viscosity �s = 1021 Pa s, i.e. the same viscosity as the mantle. The
dea was, that if any entrainment of this layer takes place there will
e no lubrication between the slab and the ambient mantle. This
odel setup has been run with different resolutions by the codes

ummarized in Table 3.

.3.1. Comparison of slab shapes and temporal behaviour
The general behaviour of this case is shown in Fig. 11. During

he first 40 Myears the leading, vertical part of the slab stretches in
Rayleigh–Taylor-like fashion, while the surface part of the litho-

phere stays near the original surface. Between 40 and 60 Myears
he original trench part of the slab (i.e. the triple point between
APEX2D 300 × 75 Geom �s = 0 or 1000 kg/m3

BAQUS-mesh 300 × 70 Harm
ITCOM-3 128 × 32 Geom
ITCOM-4 256 × 64 Geom
ITCOM-5 512 × 128 Geom
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Fig. 11. Typical behaviour of a case 2 model (here FDCON-11 is shown).

Fig. 12 shows a comparison of shapes of several case 2 models
un with different codes, all using the geometric mean for viscosity
veraging. The snapshots have been taken around 60 Myears and
he shapes are quite similar. They all agree that the deformation of
he slab tip is significantly less than in case 1 models, however, the
lab is more stretched than in series 1. The detachment from the
urface is significantly delayed.

Fig. 13 shows the temporal behaviour of the case 2 models of our
est resolution models. In contrast to the case 1 curves, subduc-
ion is significantly slower. Compared to case 1 the results fall into
narrow range of solutions. Choosing the same (here geometric)

veraging scheme, the difference between the codes is small, the
00 km depth level is passed within the time interval 60–68 Myears
r reach the bottom after times between 93 and 105 Myears, LaMEM
nd LAPEX2D lying on the slower side of the set of curves. However,
nspecting curves with different rheological averaging schemes
t compositional boundaries shows notable but consistent differ-
nces: Harmonic averaged models are fastest, arithmetic averaged
odels are slowest. As for these variances slabs reach the bottom

f the box after times between 80 Myears (harmonic mean runs)
nd 110 Myears (arithmetic mean runs).

We now address the question about the reason for the still
otable differences between the different case 2—curves of Fig. 13.
hey are smaller than in the case 1, however, they are surprising
ince no lubrication layer is involved in case 2 models. An exam-
nation of the triple point between the three different materials
eveals, that using the arithmetic (stiff) mean leads to piling up of
urface material near the triple point, whereas for harmonic aver-
ging a thin layer of light surface material is entrained. Obviously
iling up of light material produces sufficient buoyancy to delay

ubduction of the triple point, while with harmonic (soft) aver-
ging the surface material near the boundary can more easily be
meared out. This smearing out distributes buoyancy over a wider
istance allowing earlier subduction of the triple point. The role of
he appropriate averaging method will be discussed below

d

b
d
b

ig. 12. Shapes of different case 2 models at similar stages: FDCON: 60 Myears,
APEX2D at 60 Myears, CITCOM at 67.2 Myears. Viscosity averaging: geometric mean
n all cases. LAPEX2D used �s = 1000 kg/m3.

.4. Results of laboratory experiments and comparison with
umerical models (case 3)

In this section, we present some laboratory results and com-
are them with numerical results obtained under the same initial
onditions.

The experimental subduction process during the free sink of
he lithosphere into the upper mantle is similar to what has been
lready described in details in previous experiments (Faccenna et
l., 2001; Funiciello et al., 2003a,b, 2004). During the first phase of
he experiment, the trench retreats with a fast rate that increases
rogressively in time with the amount of subducted material
Fig. 14). The dip of the slab also increases, reaching a maximum
alue of about 60◦. The retrograde slab motion is always associated
ith a significant displacement of the mantle driven by the sub-
ucting lithosphere. Resulting mantle circulation is organized in
wo different components, poloidal and toroidal, both active since
he beginning of the experiment (see Funiciello et al., 2006 for
etails).
When the leading edge of the slab approaches the bottom
oundary (texp ∼ 3 min), the slab reduces its rate of retreat and its
ip by about 15◦ (see Fig. 14). Afterwards, the slab touches the
ottom boundary and the trend of the trench retreat changes slow-
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ig. 13. Highest resolution results of different codes for slab tip depth evolution for c
ave been used.

ng down for about 12 min. After the interaction the trench starts

o bend laterally into an arc shape allowing lateral circulation of

antle material around the slab and resuming the trench retreat.
his 3D nature of the laboratory model is shown in a surface view
Fig. 15). Due to the arc shape the subduction process continues in

ig. 14. Result of the laboratory experiment at 6 different times. Note that the dark
isible regions represent the side view of the slab while slightly lighter parts show
he central part of the slab deeper within the tank.
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Different viscosity averaging schemes (arithmetic, geometric and harmonic means)

he central part, that otherwise would be inhibited. This arcuation
an create small delay of the time necessary for the slab tip near
he sides to reach the bottom of the box compared to the central
art of the plate. From this moment, the trench retreat velocity is
pproximately constant and the slab dip reaches steady state val-
es of about 45◦, while the slab tip lies horizontally on top of the
nalogue of the 660 discontinuity.

We now compare the laboratory results to numerical models
sing the same physical parameters and a similar initial configu-
ation (cf. Fig. 2 and Table 1). To mimic the free laboratory surface
he FDCON-series was run with a weak surface layer of 0.8 cm thick-
ess, zero density and a viscosity of 3.2 Pa s (i.e. 1/10th of the mantle
iscosity). These numerical experiments used the arithmetic, the
eometric and harmonic mean for the calculation of the viscosity.
e also performed numerical simulations with LaMEM and FEMS-

D (MILAMIN), employing a true free surface (which is however
emeshed regularly).

Both the numerical free surface and the soft surface layer
esults with harmonic viscosity averaging show a similar sinking
ehaviour as the analogue model until the slab reaches the bot-

om (cf. Figs. 14 and 16). All models show an accelerating phase
uring which the slab dip increases. The bottom is first reached
y the central part of the slab in the lab model after about 4 min,
hile the sides of the laboratory slab and the numerical slab reach

ig. 15. Surface view of the laboratory model at the time 19′ 15′′ illustrating the 3D
ffects. The brighter part of the plate on the right is still at the surface, the subducted
art lies left of the arcuate trench.
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ig. 16. Zoom in for viscosity snapshots of the FEMS-2D (left), FDCON (right) num
resented for the laboratory experiment. For FDCON the harmonic mean for viscosi

he bottom approximately after 6 min. As a remnant from the ini-
ial geometry, the numerical slabs still show a weak kink after
min. This is missing in the laboratory models, which started from
smooth initial geometry (cf. Fig. 2). The retreat of the numeri-

al models shows a good agreement with the laboratory results
ntil the experimental slab reaches the bottom of the experimen-
al box (see Figs. 14 and 16). At later stages (t > 6 min) the laboratory

odel is dominated by 3D-flow structures which cannot be repro-
uced numerically using a 2D code. As a consequence, the amount
f retreat in both models starts to diverge drastically after slab
nteraction with the bottom.

It is interesting to compare the development of the slab
ips of the analogue experiment with the numerical model (see
igs. 14 and 16). During the early stage (2–4 min) the slab dip
ncreases to values between 70 and 80◦ in the numerical model

hich is steeper than in the analogue model (∼60◦), but then, in
greement with the laboratory model, decreases to a value of about
5◦ approaching the bottom boundary (around 5–6 min).

A significant difference also arises in the deflection (horizon-
al flattening) of the slab after it reaches the bottom boundary.
he analogue slab shows a quite large horizontal flattening at
ate stages whereas the numerical slab flattens out only negli-
ibly. We explain this difference again by the 2D confinement
f the sublithospheric mantle material on the right-hand side of
he numerical slab: Flattening of the front part of the slab in
he lab model is accompanied by progressive trench retreat, and

hus requires considerable decrease in mantle volume beneath the
etreating slab. While this mass flux is achieved by 3D flow in
he lab model, the 2D confinement of the numerical model does
ot allow this mantle region, captured by the slab, to decrease

n volume. As a result, the late stage of the numerical model is

n
e
w
i
a

models for times 57s, 5′ 50′′ , and 13′ 16′′ which are comparable to the time steps
sed.

haracterized by a straight, gently dipping slab, whose dip angle
nly changes slowly with time as the trench slowly migrates to the
ight.

Figs. 17 and 18 show the temporal behaviour of the depth of the
lab tip and of the position of the retreating trench, respectively.
ote that the starting position of the numerical and the labora-

ory models are slightly different due to the slight differences in
nitial geometry (curvature of the leading part of the slab). Gen-
rally, the free surface numerical results are in good agreement
ith the laboratory experiments, if a resolution of at least 256 × 64
odes is employed or local mesh refinement near the trench is
sed. Smaller resolutions result in much slower subduction rates.
n examination of the numerical results revealed that the critical
art of the free surface simulation is the formation of a cusp-like
riple point, i.e. the trench, above the subducting slab. Once this
oint has been formed, the mantle ‘overflows’ the subducting slab

n a fairly steady manner. If the triple point cannot be resolved,
ue to for example insufficient resolution, a more oscillatory
ehaviour is observed which results in drastically slower rates of
ubduction.

It is interesting to note that the numerical results using the
rithmetic and geometric mean differ dramatically (for FDCON)
r considerably (for I2ELVIS) from the experimental results in
oth retreat and slab tip depth (see Figs. 17 and 18). These slabs
re also slightly to significantly slower than the runs with har-
onic mean. The best agreement between the laboratory and
umerical models is obtained with the harmonic mean – mod-
ls (Fig. 17a) and with harmonic or geometric mean –models
ith local refinement (Fig. 17b) during the first 200–300 s. Dur-

ng this time, which is characterized by progressive slab bending
nd trench retreat, the best numerical models consistently show
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ig. 17. (a) Comparison between laboratory and numerical slab tip depths obtained
ayer equal to 1/10 of the mantle viscosity. (b) As (a) but for I2ELVIS, using a viscosit

slightly slower sinking velocity of the slab tip, and a slightly
igher retreat velocity compared to the lab model. As the differ-
nces are small we cannot distinguish whether they are due to
mall errors in material properties (e.g. 20% uncertainty in the
etermination of silicone putty or glucose syrup viscosity), differ-
nces in initial geometry or unaccounted effects such as surface
ension. After 300 s the laboratory slab tip depth (which is deter-

ined as an average along the visible leading edge, cf. Fig. 14)
ncreases slower than the numerical ones. We explain this differ-
nce as being due to the 3D-flow structure of the laboratory model.

fter 200–300 s the numerical trench retreat is faster than the
etreat of the laboratory model. Again, this may be due to the 3D-
ow structure associated with a arcuate shape of the trench. Later
t > 1200 s) trench migration of the numerical models decreases
ue to 2D confinement, while the increasing 3D-flow contribu-

b
s
f
a
m

e codes FDCON, LaMEM and FEMS-2D. FDCON used a viscosity of the soft surface
e soft surface layer of 1/100 of the mantle viscosity.

ion of the laboratory model allows a slight speed up of trench
igration.
We may summarize this comparison by stating that the first,

D-dominated stage of the laboratory slab could be well repro-
uced by numerical models which either have a free surface and
ufficient resolution (at least 256 × 64 nodes) or which simulate
he free surface by a weak zero-density layer and take the har-

onic viscosity averaging. Later, 3D effects accelerate the trench
etreat, decelerate slab sinking, and lead to a flattening of the sub-
ucted slab, a feature which in principle cannot be reproduced

y 2D numerical models. Finally, it should be noted that, given
ufficient resolution and using the harmonic mean, the free sur-
ace models and the soft surface layer models (both with 1/10
nd 1/100 of the mantle viscosity) show a high degree of agree-
ent.
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Fig. 18. Comparison between experim

. Discussion

.1. The problem of viscosity averaging at compositional
oundaries

.1.1. The physical meaning of the different averaging laws
One important result of this work is the extremely strong effect

f the viscosity averaging scheme applied to regions which contain
ompositional boundaries (cf. Section 3.2). Here we provide a phys-
cal explanation of these different methods. As illustrated in Fig. 19,
he harmonic mean of two viscosities is equivalent to taking the
ffective viscosity of a rheological model with two viscous elements
n series. Such a model correctly describes the volume-averaged
eformation of a channel flow containing a flow-parallel compo-
itional interface, i.e. undergoing simple shear. It corresponds to
weak effective viscosity. Thus, in any fluid dynamical setup with

ompositional boundaries an effective viscosity based on harmonic
eans will be realized in those local regions in which the compo-

itional interface is undergoing interface-parallel shearing. On the

ther hand, if the viscous stress at the interface is characterized
y pure shear, the effective viscosity of this configuration is given
y a rheological model with two viscous elements in parallel, i.e.
he arithmetic mean. Such a model correctly describes the volume-
veraged stress of a region containing a compositional interface

ig. 19. Illustration of the physical meaning of the different averaging methods.
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l and numerical relative slab retreat.

ndergoing interface-parallel pure shear. This model corresponds
o a stiff effective viscosity. Thus, for all slab regions undergoing
nterface-parallel pure shear, the arithmetic mean is the appropri-
te averaging method.

A realistic slab is expected to contain interface sections which
re both under simple and pure shear, thus its net behaviour will lie
etween these two cases. However, interface-parallel simple shear
ay be dominant in several circumstances: (a) near the trench

he flow in the cusp-like wedge may be approximated by a sim-
le corner flow. For low angle corner flow it can be shown that

nterface-parallel simple shear is dominant within the flow and at
he interface to the slab. (b) In case of a large viscosity contrast
etween slab and overriding mantle, the low viscous region might
see” the high viscous region as a rigid interface in first approxi-
ation. Due to the incompressibility condition ( �∇ · �v = 0) normal

eviatoric stresses in the low viscous region drop to 0 near a rigid
oundary in a local coordinate system parallel to the interface,
hile tangential shear stresses do not.

For these reasons, the harmonic mean is suggested to be
ore appropriate for high viscosity contrasts such as 104 and

ows dominated by cusp-like overriding wedges, as is also evi-
ent from the comparison of the laboratory and numerical results
Section 4.4).

.1.2. Apparent shift of rheological boundaries, “2D-Stokes flow”
Fig. 20 illustrates, that the geometric mean lies in the middle

etween the arithmetic and harmonic mean. A Finite Difference
r Finite Element cell lying on the interface will essentially have
stiff effective viscosity if the arithmetic mean is used, or a weak

ffective viscosity if the harmonic mean is used. Alternatively, its
iscosity will be of intermediate order of magnitude (arithmetic
ean of log10-viscosity) if the geometric mean is used. There is no

imple rheological model for the geometric mean. As a result of
his consideration, a model with arithmetic mean apparently shifts
he rheological boundary into the weak region, while the harmonic

ean shifts the boundary into the stiff medium. We explain the

ehaviour of case 2 models by this effect: in the arithmetic mean
ase the critical triple point at the trench is part of the effectively
tiff region, the formation of a cusp is impeded, and subduction is
elayed, while in the harmonic mean case it is part of the weak
egion, and subduction is facilitated.
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Similar resolution tests for circular bodies without lubrication
layer (“2D-Stokes flow”) have been carried out (Fig. 21b). For a
highly viscous body all four means show a well-behaved conver-
gence behaviour towards the same asymptotic velocity even for
coarse resolution, but they start from different distances to the

Fig. 21. (a) Resolution test, using FDCON, for a circular body of different density,
surrounded by a weak lubrication layer, using the harmonic, arithmetic, geometric
or infinite norm mean for viscosity averaging near boundaries. The circular body has
a density contrast �� with respect to the background material, a viscosity 102 times
higher then the background viscosity �0 and is situated in the centre of a square box
which has a height 10 times the radius r0. Boundary condition at the box sides is
free slip. The circular body is surrounded by a lubrication layer of thickness 5% of
ig. 20. Effective viscosity of one numerical cell in a Eulerian formulation dependin
00 (a) and 10,000 (b). (c) Depending on the averaging method, the effective positio

For comparison, the infinite norm average (cf. Eq. (9)) is also
hown (Fig. 20a and b, dashed). This scheme can be regarded as

zero order approximation of the harmonic mean for C2 < 0.5,
hanging to a zero order approximation of the arithmetic mean for
2 > 0.5. Thus, the apparent shift of the rheological boundary into
ither the strong or the weak region along a macroscopically large
ection of the compositional boundary is expected to be statistically
alanced at sufficiently high resolution.

Fig. 20a and especially b illustrates that care has to be taken
hen using the different averaging schemes. For example, already
very minor fraction of C2-material present in a numerical cell may

ncrease its effective viscosity dramatically, if arithmetic means are
aken, or, conversely, a very minor fraction of C1-material present in
numerical cell may decrease its effective viscosity dramatically,

f harmonic means are taken. While these effects are still consis-
ent with fluid dynamics if these numerical cells experience pure
hear or simple shear deformation, respectively, spurious effects
ay arise for arbitrary deformation configurations, and higher grid

esolutions or more sophisticated rheology schemes are required.
On the other hand, a careful consideration of choosing an appro-

riate averaging scheme may allow to obtain reasonable results
ven for cases in which features such as a cusp-like triple point
eparating regions with strong viscosity contrasts, or a thin lubri-
ation layer as in the case 1 models are not well resolved by the
D or FE grids. While at coarse resolution such a layer has no effect
n lubrication when taking the arithmetic or geometric averaging,
armonic averaging effectively accounts for the lubrication viscos-

ty.
We have tested and confirmed this conclusion by carrying out

esolution tests with 2D-circular shaped bodies (“2D-Stokes flow”)
f different density with and without a surrounding lubrication
ayer moving in a viscous medium (Fig. 21a and b, respectively).
or this test we used FDCON. As long as the grid size is larger than
he lubrication layer, the arithmetic and geometric means model
o not “see” the lubrication layer and seem to converge to almost
he same asymptotic value, while the harmonic means models con-
erge towards a significantly different value. As the grid resolution
ecomes fine enough to see the lubrication layer, the slopes of res-
lution curves of the arithmetic and geometric mean change and
onverge towards the same value as the harmonic mean models.

hus, for a simple body surrounded by a lubrication layer the har-
onic mean provides an appropriate averaging scheme, and coarse

esolution models are already closer to the asymptotic value than
he other averaging schemes. The convergence behaviour of the
nfinite norm scheme lies somewhere between the convergence

t
t
t
b
a
0

e fraction of material 2 for the different averaging methods for a viscosity contrast
he interface is shifted towards the stiff or weak material.

ehaviour of the arithmetic and geometric means (as already seen
n the convergence test of case 1), i.e. it requires a very high reso-
ution to reasonably account for the lubrication layer.
he radius, a viscosity of 10−2 the background viscosity and has the same density as
he background material. The ordinate shows the root-mean-square velocity within
he whole box, scaled by ��gr2

0 /�0. (b) Resolution tests for a stiff and weak circular
ody of different density without lubrication layer (i.e. 2D-Stokes flow). Same setup
nd scaling as in (a). The stiff cylinder has a viscosity of 100�0, the weak cylinder of
.01�0.
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symptotic value. For a weak viscous body the different schemes
onverge monotonically only for resolutions better than about
.3 (grid size/radius). Comparing the different schemes shows
hat, at same resolution, a low viscous sphere is best approxi-

ated by using the arithmetic, geometric, or infinite norm scheme,
hile a highly viscous sphere in a low viscous medium is best

pproximated by using the harmonic mean. In the latter case all
our means converge towards the asymptotic value from below.
his general convergence behaviour for a 2D-Stokes flow has
lso been verified by another code (ABAQUS). Therefore, we con-
lude that the above statements are generally valid, and only
etails of the convergence paths will depend on the numerical

chemes.

.1.3. Which averaging scheme is to be preferred?
What can we learn from these considerations? From Fig. 19

e conjecture that an appropriate way of averaging at an inter-

r
b
t
t
a

ig. A1. Temporal behaviour of case 1 modelled by different codes and with different reso
function of time below the initial surface of the lithosphere. See the legends for the used

efinement at the trench area (given in parentheses in the legend). Outside the trench area
odel, which has uniform horizontal resolution with 5 × 46 km at the model sides. At the

ection 3.2) are denoted as geom for geometric, harm for harmonic and arith for arithmet
or the weak layer.
lanetary Interiors 171 (2008) 198–223 215

ace would be to switch between arithmetic and harmonic mean
epending on the local state of stress and strain rate at the inter-

ace. Numerically this is somewhat cumbersome. Our resolution
ests with models with moderate viscosity contrast (two orders of

agnitude) demonstrate, that the arithmetic and geometric means
eem to converge from below towards a subduction rate, which,
owever, is still slower than the asymptotic value from harmonic
ean models. We therefore have to leave it open whether for case
type models we suggest the harmonic or geometric mean as the
ost appropriate scheme. If the viscosity contrasts are higher (four

rders of magnitude) our case 3 models show that harmonic aver-
ging converges satisfactorily and agrees best with the lab model

esults and with free surface models. If detached highly viscous
odies with or without lubrication layers are studied, preference to
he harmonic mean is suggested by the “2D-Stokes flow” resolution
ests. Similar conclusions were reached in a study by Deubelbeiss
nd Kaus (this volume), in which the accuracy of various finite

lution. Each diagram shows the position of the deepest part of the slab (slab tip) as
codes and grid resolution. Note that the codes I2VIS and I2ELVIS (a and b) use local
the resolution decreases to 10 × 46 km at model sides, except for the 381 × 76 node
lower boundary the vertical resolution was always 1 km. The rheological means (cf.
ic, respectively. In contrast to the others, LAPEX2D (Fig. A1e) was run with 1020 Pa s
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Fig. A1.

ifference and finite elements methods were compared with ana-
ytical solutions.

It should, however, be noted, that in any case the different means
ave to converge to the same asymptotic behaviour. Preference of
ne or the other scheme just gives better results at coarser res-
lution. For a simple Stokes flow with a lubrication layer and for
ase 3 our models show that convergence can be reached, for our
ase 1 and case 2 models our models came only close to convergent
esults.

.2. Simulating a free surface

Obviously a free surface plays an important role in subduction:
t produces a topography step of the order of 4 km at the trench.

s the overriding material (viscous mantle in our numerical and

aboratory cases) deforms and spreads on top of the slab it aids the
ending and downgoing of the highly viscous slab.

Comparing the cases with the soft layer (Fig. 6) with the free
urface models (Fig. 10) suggests that not all approaches have fully

e
f
w
s
b

inued )

onverged, but that the temporal subduction behaviour tends to
ecome quite similar for increasing resolution: the 400 km levels is
eached after 25–38 Myears by the highest resolution models with
soft layer (Fig. 7), while it is reached by the free surface models

round 33 Myears. Given the present uncertainties these numbers
re regarded to be in good agreement.

Thus, assuming a zero-density weak zone to mimic a free sur-
ace has been shown to be a reasonably good approach, surprisingly,
ven a highly viscous zero-density layer does a relatively good job
case 2). However, we encountered practical problems with this
pproach: as consequence of the weak surface layer approach the
ubduction of the triple point (between slab, overriding mantle
nd surface layer) always drags down a thin layer of surface mate-
ial. While this effect is fluid dynamically consistent, its lubrication

ffect has no physical equivalence in models with a real free sur-
ace. However, if free surface codes invoke a local remeshing scheme
hich moves the triple point along the surface of the subducting

lab (cf. LaMEM and FEMS-2D, Section 3.1), this localized stick–slip
ehaviour may be regarded as an equivalent to trench lubrication
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Fig. A1. (Continued ).

Fig. A2. Comparison of temporal behaviour of case 1 for models with different rheological averaging and different resolution. Else as Fig. A1.
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s present in the soft surface layer models. The importance of this
ubrication effect at greater depth seems to be minor in compar-
son with the decoupling effect close to the trench. This can be
nferred from comparing the models with the weak layer with the
ree surface models (Figs. 6 and 10): the free surface models are
nly marginally slower compared to the highest resolutions models
ith a soft-top layer. The difference lies within the present numer-

cal uncertainty, but if it is due the lubrication between slab and
antle at greater depth, then this effect can be regarded as being

f minor importance. A possible way to test the role of entrainment
f the weak zero-density material would be to allow entrainment
nd decoupling near the trench, but to switch off this effect (both
ensity and weak viscosity) by transferring those markers into

ithosphere markers. Although this procedure violates conserva-

ion of composition and mass, this violation is usually negligible as
he entrained layer is very thin. This procedure has successful been
sed by Gerya and Yuen (2003b).

On the other hand, entrainment and subduction of a weak
ubrication layer might have some geophysical significance. Upon

a
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m
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Fig. A2. (Cont
lanetary Interiors 171 (2008) 198–223

ubduction water rich oceanic crust or sediments may produce a
everal km thick weak serpenthenized subduction channel on top of
he subducting slab (e.g. Gerya et al., 2002; Gerya and Yuen, 2003b),
imilar to our lubrication layer. Thus coincidently, the side effect of
imicking a free surface by a weak layer might indeed lead to a

heologically reasonable scenario.

.3. Role of viscoelasticity

As the present subduction benchmark study is based on purely
iscous rheology, the question arises whether the effect of vis-
oelasticity might be important. A complete rheological treatment
mbedding elasticity cannot in general be yet embedded in a large
cale subduction model, being unclear if elastic stored energy might

llow the localization of deformation at a smaller scale then the
esolutions today accessible. It is however possible to test the
ffect of a mean-field elastic stress by some of the codes bench-
arked in this paper. Using the “Abaqus + remeshing” setup, a
axwell body viscoelastic rheology has been tested, varying Young

inued ).
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ig. A3. Trench rollback of case 1 for different rheological averaging methods using
one with grid refinement following the moving trench. In these runs, outside the t
ode model, which has uniform horizontal resolution with 5 × 46 km at the model

odulus for several lithospheric viscosity profiles, to test if the
ddition of Earth-like elastic parameters would alter the obtained
esults. We find that the results are not altered by viscoelasticity
or the viscous parameters defined in case 1. The viscosity of the
entral core part of the lithosphere has to be increased to 1024

r 1025 Pa s to see some effect of viscoelasticity assuming a rea-
onable Young’s modulus. The detailed models can be found in
ppendix B.

. Conclusions
In conclusion, using a variety of different numerical codes and
ne laboratory model, we benchmark a rather simple isothermal,
urely viscous spontaneous subduction setup. This setup either
ssumes a free surface or mimics a free surface by adding a weak,
ero-density layer on top of the subduction model. The conclusions
ay be summarized as follows:

3

IS: (a) geometric mean, (b) arithmetic mean, (c) harmonic mean. Several runs were
area the resolution decreases to 10 × 46 km at model sides, except for the 381 × 76
At the lower boundary the vertical resolution was always 1 km.

. Comparing the results of these two numerical and one labora-
tory approaches shows that adding a weak zero-density layer on
top of a numerical subduction model satisfactorily catches the
important effect of a fully free surface, however, care has to be
taken:

. The effect of including this surface layer may result in severe
resolution problems. We attribute these problems to be due
to specific rheological averaging schemes used by the different
codes. When increasing resolution the models of our different
codes almost converged for cases 1 and 2, full convergence being
beyond the present grid resolution. Satisfactory convergence was
observed in case 3, which was characterized by a higher viscosity
contrast between slab and mantle.
. When modelling the free surface by including a weak zero-
density layer, entrainment of this weak layer forms a lubrication
layer on top of the subducting slab, which helps to decouple
the slab from the surface. This lubrication is most important for
effective subduction if present in a region close to the trench. In
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reality the lubrication layer might represent a weak subduction
channel.

. Case 2 models avoid this weakening effect by assigning a high
viscosity to the zero-density layer. Surprisingly, even without the
lubrication layer full convergence was difficult to achieve, when
different rheological schemes are used. We attribute this effect
to the role of the triple point between slab, overriding mantle
and surface, in particular to the impeded formation of a cusp
between slab and overriding mantle.

. For some cases (resolutions) dramatically different results are
produced, depending on the viscosity averaging scheme used
at rheological interfaces. Usually, harmonic averaging gives fast
subduction models, arithmetic averaging gives slowly subduct-
ing slabs, and geometric averaging gives results in between. Reso-
lution tests for case 1 suggest, that these three averaging schemes
converge to a common behaviour. Models with geometric or har-
monic mean seem to lie closest to the asymptotic behaviour.

. Comparing free surface laboratory results with numerical
models shows that good agreement is obtained between the
two approaches if the numerical code with a free surface has
sufficient resolution at the trench. If an Eulerian numerical code
is employed, in which the free surface is approximated with a
weak layer, harmonic averaging yields similarly good results.

. Few tests with an infinite norm scheme for determining vis-
cosity at grid points near a rheological boundary show that the
convergence behaviour lies roughly between that of arithmetic
or geometric averaging schemes.

In conclusion, our case studies provide an extensive set of tests
or different approaches to model a free surface at subduction zone
nvironments and for different rheological averaging schemes. It
uggests which scheme to be used under which circumstances, and
ill provide a practical guide for future studies of fully dynamic

ubduction systems with large viscosity contrasts at compositional
oundaries.
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ppendix A

This appendix summarizes the results for cases 1 and 2 for
arious resolutions as obtained by the different codes. Both, slab
ip depth and trench retreat is shown as a function of time in
igs. A1–A4. The codes, resolutions and averaging schemes used
re given in the legends.

ppendix B

The effect of elasticity in a Maxwell body is usually described
y the Maxwell time, defined as the ratio between viscosity and
oung’s modulus. Viscosity values for the lithosphere vary between
021 and 1025 Pa s. Assuming a Young’s modulus between 1010 and
011 Pa (as constrained from seismic models), the Maxwell time
or such lithosphere is in the range 1010 s (300 years) to 1015 s
30 Myears). The product of the strain rate and the Maxwell time
s called Deborah number (De) and defines whether elasticity will
ominate the solution (De > 10), will partially influence the solution
0.1 < De < 10) or does not play a role (De < 0.1).

As the lithospheric viscosity in this benchmark is 1023 Pa s, the
orresponding maximum Maxwell time is on the order of 1013 s
300 kyears). Given that strain rates over 10−14 s−1 are usually not
bserved in the lithosphere, most probably De < 0.1, and a direct
ffect of elasticity is not predicted. In order to verify this, a sim-
lation with much higher Young’s modulus (1013 Pa) and same
iscosity profile was performed (Fig. B1a) without observing any
ffect, confirming that in this benchmark elasticity would prob-
bly play no role. Finally, to countercheck that elasticity would
lay a role in the presence of higher viscosity, a simulation iden-
ical to the benchmark setup, but with the addition of a 30 km

hick highly viscous (1025 Pa s) core in the centre of the slab, was
erformed with a Young’s modulus of 1011 and 1013 Pa. In this
etup, results are visibly different: the viscoelastic model is faster,
eing less dissipative, which is in agreement with a recent study
Kaus and Becker, 2007). Similar conclusions about influence of
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Fig. A4. Slab tip depth curves for case 2 for different codes and with different resolutions. (a) Resolution test for FDCON and LaMEM models with geometric mean. (b)
Resolution test for CITCOM models, one LAPEX2D model added. (c) comparison of curves with different viscosity averaging schemes.
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ig. B1. (a) Test of case 1 with viscoelastic theology (Young’s modulus 1011 Pa). (b)
odification of previous model by adding a highly viscous core in the lithosphere

nd increasing the Young’s modulus to 1013 Pa.

iscoelasticity were also obtained with the viscoelastoplastic code
2ELVIS by comparing viscous solution for the setup shown in
ig. 1 with two viscoelastic experiments of identical resolution
mploying 6.7 × 1010 Pa and 1010 Pa shear modulus for all mate-
ials.
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