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Model design1

Tectonic setup of two oceanic plates of contrasting ages juxtaposed through the trans-2

form fault [Hall et al., 2003; Gurnis et al., 2004] is shown on the Fig. 1a. Older plate3

(on the left) and younger plate (on the right) are separated by a wet transform zone4

denoted by a yellow color. All shades of blue indicate lithospheric plates and astheno-5

spheric mantle (Table S2). Both plates are covered with 2 km of upper basaltic and 56

km of lower gabbroic crust. Wet transform is covered with 7 km of basalts. On the op,7

the whole system is covered with a 20 km low density and viscosity sea water layer8

(Table S2) to simulate the free surface Schmeling et al. [2008]; Crameri et al. [2012]. All9

the boundaries are free slip except the lower one which is permeable in the vertical10

direction.11

The initial thermal structure is calculated according to the cooling ages of the plates12

using half-space model [Turcotte and Schubert, 2002]:13

T = T1 + (T0 − T1) ·
(

1− er f
(

d
2
√

κτ

))
,

where T0 = 273 K and T1 = 1600 K is the surface and astenospheric mantle temper-14

ature, d is the depth, τ is the plate age and κ = 10−6m2 s−1 is thermal diffusivity.15

In order to provide the sufficient heat transfer from the plates’ surface, sea water is16

prescribed with the thermal conductivity of two orders of magnitude higher then the17

one of the plates (Table S2).18
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Governing equations19

The system of equations for fluid-filled matrix viscous flow is similar to existing ap-20

proaches [Stevenson and Scott, 1991; Connolly and Podladchikov, 2000; McKenzie, 1984;21

Morency et al., 2007] and reformulated for convenient implementation with our nu-22

merical technique. As a staring point of our model, we have taken the equation sys-23

tem of Stevenson and Scott [1991] with two-pressures approach (Eq. S1): one variable24

indicates the pressure in the solid phase and another for the fluid. The modifica-25

tion we have introduced is the use of total pressure (pt) rather than fluid pressure26

(p f ) in the total momentum conservation equation written for the “bulk” material,27

i.e., porous solid matrix filled with the fluid [Stevenson and Scott, 1991; Morency et al.,28

2007]. That means that in our hydro-thermo-mnechanical (HTM) approach we com-29

bine two parallel processes: visco-plastic flow of the “bulk” porous material and the30

corresponding fluid filtration.31

Viscous compaction is represented by the porosity equation [e.g. Connolly and Pod-32

ladchikov, 2000, 1998]:33

D ln(1− ϕ)

Dt
=

pt − p f

ηbulk
, (S1)

where ϕ is porosity, pt, f is total and fluid pressure, respectively, ηbulk is effective bulk34

viscosity of a porous fluid-filled matrix. This equation is solved separately from the35

coupled system of the complex fluid-solid flow.36

In accordance with previously derived systems [Morency et al., 2007], for the mass37

conservation expression we assume individual media incompressibility (though the38

bulk material, porous fluid-filled matrix, might be not conserved due to pore open-39

ing/closure). For our model we use Boussinesq approximation which is taken into40

account in many existing mantle convection models [Moresi and Solomatov, 1995; Gerya41

and Yuen, 2003; Albers, 2000; Crameri et al., 2012] and where density is assumed to be42

constant in all terms except for buoyancy force. Thus, for both solid and fluid phase43

we have:44

div(vS) = −D(ln(1− ϕ))

Dt
,

45

div(vD) =
D(ln(1− ϕ))

Dt
,

where vS, f is solid and fluid velocities respectively, Darcy velocity vD = ϕ(v f − vS).46

Using the porosity evolution law (Eq. S1), mass conservation equations take the form:47

div(vS) = −
pt − p f

ηbulk
, (S2)
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div(vD) =
pt − p f

ηbulk
. (S3)

Darcy law describes the flow of the fluid through the porous medium:48

vD
x = − K

η f
·

∂p f

∂x
, (S4)

49

vD
y =

K
η f
·
(

ρ f gy −
∂p f

∂y

)
, (S5)

where K is matrix permeability, ρ f and η f is fluid density and viscosity respectively.50

Gravitational acceleration ~g is directed downward along the vertical y-axis, while x-51

axis in the model is horizontal, thus gy = 9.81 m/s2.52

After Stevenson and Scott [1991], momentum conservation equation for bulk material53

is written in the form of Stokes equation of viscous fluid flow in the gravity field,54

inertia terms are neglected (so-called “slow flow” approximation):55

∂σ′ij
∂xj
− ∂p f

∂xi
= −giρt,

where σ′ij is bulk deviatoric stress, and ρt = ρs(1− ϕ) + ρ f ϕ is bulk material density.56

Similarly to the previous work [Stevenson and Scott, 1991], deviatoric stress of the bulk57

material (porous fluid-filled matrix) is written in terms of strain rate components of58

the solid matrix:59

σ′ij = 2ηε̇′sij + ηbulk ε̇s
kkδij,

where the first compound is a shear stress component and the second is volumetric60

stress component, η is effective shear viscosity of the porous fluid-filled matrix. De-61

viatoric strain rate components are calculated in terms of solid matrix velocities [e.g.62

Gerya and Yuen, 2003, 2007] as:63

ε̇′sxx =
1
2

(
∂vS

x
∂x
−

∂vS
y

∂y

)
,

64

ε̇′syy =
1
2

(
∂vS

y

∂y
− ∂vS

x
∂x

)
,

65

ε̇′sxy =
1
2

(
∂vS

x
∂y

+
∂vS

y

∂x

)
.

Thus, using the equation of solid mass conservation Eq. S2 and expressions above for66

3



ε̇′sii , we have:67

σ′ij = 2ηε̇′sij + ηbulk · div(vS)δij = 2ηε̇′sij + (p f − pt)δij, (S6)

and distinct stress components can be rewritten as following:68

σ′xx = η

(
∂vS

x
∂x
−

∂vS
y

∂y

)
+ p f − pt,

69

σ′yy = η

(
∂vS

y

∂y
− ∂vS

x
∂x

)
+ p f − pt,

70

σ′xy = η

(
∂vS

x
∂y

+
∂vS

y

∂x

)
.

After substituting these expressions, x- and y-Stokes equations take the form:71

∂

∂x

(
η

(
∂vS

x
∂x
−

∂vS
y

∂y

))
+

∂

∂y

(
η

(
∂vS

x
∂y

+
∂vS

y

∂x

))
− ∂pt

∂x
= 0, (S7)

72

∂

∂y

(
η

(
∂vS

y

∂y
− ∂vS

x
∂x

))
+

∂

∂x

(
η

(
∂vS

x
∂y

+
∂vS

y

∂x

))
− ∂pt

∂y
= −ρtgy. (S8)

The temperature equation in our model is implemented in Langrangian frame of73

reference [Gerya and Yuen, 2003] for the fluid-filled matrix in terms of temperature T74

and thermal conductivity k (internal heating terms are neglected):75

ρtCp
DT
Dt

=
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
. (S9)

Rheological model76

The rheological model employed is non-Newtonian visco-plastic. Therefore, the devi-77

atoric strain rate is composed of two terms:78

ε̇′ij = ε̇′ij(viscous) + ε̇′ij(plastic),

where79

ε̇′ij(viscous) =
1

2η
σ′ij,

80

ε̇′ij(plastic) = 0 f or σI I < σyield,

4



81

ε̇′ij(plastic) = χ
∂G
∂σ′ij

= χ
σ′ij

2σI I
f or σI I = σyield,

82
G = σI I ,

83

σI I =

√
1
2

σ′ijσ
′
ij,

where σ′ij is deviatoric stress component, σyield is brittle/plastic strength of bulk ma-84

terial (see below), σI I is a second deviatoric stress invariant, G is plastic potential of85

yielding material [Vermeer, 1990], χ is plastic multiplier that at every time step satisfies86

the plastic yielding condition:87

σI I = σyield.

Brittle/plastic strength for interconnected fluid-filled matrix (ϕ > 10−4) is calcu-88

lated with fluid pressure weakening taken into account [Ranalli, 1995; Rozhko et al.,89

2007]:90

σyield = C + γ(pt − p f ),

where C is residual rock strength at zero pressure. At low porosities (ϕ < 10−4), pores91

are considered to be isolated and fluid pressure weakening is not applied.92

The effective shear viscosity of the rocks depends on the stress, pressure and tem-93

perature. It is calculated from the rheological law [Ranalli, 1995; Gerya, 2010] defined94

through the experimentally determined flow law parameters:95

η = (σI I)
(1−n) 1

2AD
· exp

(
Ea + ptVa

RT

)
where AD is pre-exponential factor, Ea and Va are activation energy and volume, n is96

the stress exponent, R is the gas constant.97

Numerical solution98

The original Matlab-code used for the experiments is based on conservative finite99

differences approach and is applied on a fully-staggered grid in combination with100

markers-in-cell technique [Gerya and Yuen, 2003, 2007]. Computational domain of 600101

km x 250 km size has a uniform grid resolution of 1 km x 1 km and contains about102

3.8 millions of randomly distributed Lagrangian particles (markers) to provide the103

transport of material properties, such as viscosity, density, porosity, permeability and104

rheological law parameters. By means of solid particles motion, the non-diffusive105

markers method advects the temperature field [Gerya and Yuen, 2003, 2007] where106
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heat advection with fluid is neglected.107

Our coupled HTM system of equations consists of solid and fluid mass conservation108

equations Eq. S2 and Eq. S3, bulk material momentum conservation equations Eq. S7109

- S8 and Darcy fluid filtration equations Eq. S4 - S5. The amount of equations and110

variables in the coupled system can be decreased by combining the fluid conservation111

equation Eq. S3 and Darcy equations Eq. S4 - S5. If we differentiate the x-Darcy112

equation with respect to x, y-equation with respect to y and sum them together, we113

are left with:114 (
∂vD

x
∂x

+
∂vD

y

∂y

)
+

∂

∂x

(
K
η f

∂p f

∂x

)
+

∂

∂y

(
K
η f

∂p f

∂y

)
=

∂

∂y

(
K
η f

ρ f gy

)
,

from where, using the Eq. S3 and assumption of constant fluid density and viscosity,115

we get:116

(pt − p f ) ·
η f

ηbulk
+

∂

∂x

(
K

∂p f

∂x

)
+

∂

∂y

(
K

∂p f

∂y

)
=

∂K
∂y

ρ f gy. (S10)

Finally, system is composed of equation of the solid mass conservation Eq. S2, Stokes117

viscous flow of bulk material Eq. S7 - S8 and combined fluid continuity and fluid118

filtration equation Eq. S10. After obtaining a solution of this system in terms of vari-119

ables pt, p f , vS
x,y, we solve Eq. S1, S9 and S4, S5, the porosity evolution, temperature120

and Darcy equations, respectively.121

Permeability of rocks122

In our experiments, permeability of crustal and mantle rocks varies in the range be-123

tween 10−16 and 10−21 m2. Values of chosen interval are rather on the lower bound124

of what is typically measured in the laboratory experiments [e.g. Brace, 1984; Fisher,125

1998; Faul, 1997] (e.g. 10−13 − 10−18 m2 for crustal basalts) or normally used for nu-126

merical models [e.g. Faccenda et al., 2009; Connolly et al., 2009; Richard et al., 2006]. The127

relevance of low permeability for maintenance of elevated pore fluid pressure during128

geologically significant periods of time was emphasized in both experimental mea-129

surement studies [Brace, 1984; Trimmer et al., 1980; Brace, 1980] and theoretical studies130

of abnormal fluid pressure in sedimentary, metamorphic and tectonic settings [Neuzil,131

1995; Walder and Nur, 1984; Bredehoeft and Hanshaw, 1968; Hanshaw and Bredehoeft, 1968;132

Wong et al., 1997]. Walder and Nur [Walder and Nur, 1984], in their studies of pore133

pressure development in the crust, derived that permeability required for retention of134

high porous pressure should be as low as 5 · 10−20 − 10−21 m2. Bredehoeft and Han-135
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saw [Bredehoeft and Hanshaw, 1968; Hanshaw and Bredehoeft, 1968] concluded that under136

conditions of absence or bareness of low permeable layers (e.g. clays) it is doubtful137

that anomalous pore pressures can be maintained for longer than a geologic instant.138

In similar extended studies of dehydration systems [Wong et al., 1997], authors cal-139

culated the critical values of confining layer permeabilities required for maintenance140

of nearly lithostatic pore pressure for typical dehydration reactions. The values fall141

within the interval of 10−17 − 10−21 m2 which is characteristic for argillaceous rocks142

[Hanshaw and Bredehoeft, 1968] and unfractured low-porosity crystalline rocks [Walder143

and Nur, 1984; Brace, 1980]. Even lower values (between 10−20 and 10−24 m2) were144

reported for intact gneissic granite and intact and fractured gabbro [Trimmer et al.,145

1980].146

Considering that resolution of our model does not allow us to resolve complex lay-147

ered structures on the crustal level, we assume reference permeability to be equally148

low for the large volumes of various lithologies. Although it is quite a rough approxi-149

mation and does not allow for tracing certain complexities of geological environment,150

it is of crucial importance for building up the nearly lithostatic pore pressures and in-151

vestigating the fluid weakening influence on the rocks in geological systems, allowing152

in present case, for subduction initiation and further lubrication driven by the pore153

pressure excess. It should also be mentioned that the permeability limits estimated154

for the spontaneous subduction initiation can notably widen in the case of induced155

subduction initiation [e.g. Hall et al., 2003; Gurnis et al., 2004] due to the porous fluid156

pressure increase caused by the initial compression of the plate boundary.157

Another important feature is that spatial [Rice, 1992] and temporal [Walder and Nur,158

1984] variation of permeability plays important role in the development of excess159

pore pressure. Thus, among two similar studies [Hanshaw and Bredehoeft, 1968; Wong160

et al., 1997] of anomalous pore pressure in dehydrating systems, the one with variable161

porosity-dependent permeability [Wong et al., 1997] shows∼ 20% less of pore pressure162

excess than the one with fixed permeability values. Therefore porosity-dependent per-163

meability (Eq. 4) [e.g. Wong et al., 1997; Morency et al., 2007; Connolly and Podladchikov,164

2000] recalculated at each time step is of particular importance for model develop-165

ment and evolvement of local fluid flow focussing phenomena such as shear bands166

hydration (Fig. S2 - S3).167
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Table S1: Legend of variables.
AD material constant [MPa−ns−1]
b bulk exponent
C residual rock strength at zero pressure [Pa]
Cp isobaric heat capacity [J kg−1K−1]
Ea activation energy [kJ mol−1]
G plastic potential [Pa]
gy gravitational acceleration [m s−2]
K permeability [m2]
k thermal conductivity [W m−1K−1]
n stress exponent
p f fluid pressure [Pa]
ps solid pressure [Pa]
pt = (1− ϕ)ps + ϕp f total pressure [Pa]
R gas constant [J mol−1K−1]
T temperature [K]
t time [s]
Va activation volume [J MPa−1 mol−1]
vD = ϕ

(
v f − vS) Darcy velocity [m s−1]

v f fluid velocity [m s−1]
vS solid velocity [m s−1]
qi heat flux [Wm−2]
γ internal friction coefficient
ε̇′ij deviatoric strain rate tensor component [s−1]
ϕ porosity
ρ f = 1000 kg m−3 fluid density [kg m−3]
ρs solid density [kg m−3]
ρt = (1− ϕ)ρs + ϕρ f total density [kg m−3]
ηbulk = η/ϕb effective bulk viscosity of fluid-filled matrix [Pa s]
η f = 10−3 Pa s fluid viscosity [Pa s]
η effective shear viscosity of fluid-filled matrix [Pa s]
σI I second deviatoric stress tensor invariant [Pa]
σ′ij deviatoric stress tensor component [Pa]
σyield plastic yield strength [Pa]
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Table S2: Physical properties of the lithologies used in the experiments; other param-
eters for all the lithologies are: thermal expansion α = 3 · 10−5 K−1, isobaric
heat capacity Cp = 1000 J kg−1 K−1.

Rock type Density
Turcotte
and
Schubert
[2002]
kg/m3

Porosity
%

γ C MPa Thermal
con-
ductivity
W m−1 K−1

Flow law
Ranalli
[1995]

Upper basaltic
crust

3100 0.5 - 3.0 0.2 - 0.6 1 1.18 Plagioclase
An75

Lower gab-
broic crust

3150 0.5 - 1.0 0.6 1 1.18 Plagioclase
An75

Wet transform 3250 0.5 - 3.0 0.2 - 0.6 1 0.73 Wet olivine
Lithospheric
mantle

3300 ∼ 0 0.6 1 0.73 Dry olivine

Astenospheric
mantle

3300 ∼ 0 0.6 1 0.73 Dry olivine

Sticky water 1000 10.0 0.0 104 300 Newtonian,
10−18Pa · s
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Temperature, [K]

0.02 Ma

9.91 Ma

3.69 Ma

10.50 Ma

10.72 Ma
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b

c

d

e

km

Figure S1: Evolution of the temperature field for the model development of Fig. 2.
a. Temperature is initially distributed according to the cooling ages of the
plates Turcotte and Schubert [2002], is equal to 273 K on the surface and
reaches the value of 1600 K in the astenospheric mantle. b.-e. Hot astheno-
spheric mantle gradually overrides bending older oceanic plate forming
the slab.

13



Log10 (Porosity) , 10.86 Ma
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Figure S2: Fluid downward suction into the normal faults formed in the slab bending
region. a. Porosity diagram: opening of the pore space inside the shear
zones. b. Difference between total and fluid pressure; narrow limits of
colormap are imposed to increase the visibility of the fluid overpressure
zones (blue color). c. Darcy (fluid filtration) velocity: fluid percolation
inside the faults. d. Viscosity diagram with normal faults marked by the
zones of lowered effective shear viscosity. e. Strainrate diagram.
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Figure S3: Evolution of porous space inside the normal faults at the time moment
of 10.86 Ma (Fig. S3). a. Porosity change between two time moments
(present and -2300 yrs). Color limits of the diagram are intensified for the
better visibility. Red zones signify opening of the porous space, blue zones
imply pore closure. b. Viscosity diagram with normal faults distribution
for the previous time moment (-2300 yrs). Black contours stand for the red
areas from the diagram a which signify opening of the pores getting filled
with fluid. One can see that pore space opening happens inside the faults.
c. - d. Viscosity diagrams with normal faults distribution for two earlier
moments of time (-4800 and -7200 yrs). Black contours signify blue areas
from the diagram a which mean porous space closure. One can see that
the previously open fluid filled pores are collapsing after faults location is
shifted.
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