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1. Introduction

The problem of high viscosity contrasts is one of the computationally challenging problems in geodynamic modeling as
the fluid viscosity changes abruptly at the interface between two domains of different viscosity, and the use of standard
numerical techniques leads sometimes to significant numerical errors at and in the vicinity of the interfaces (see, e.g., [1–
3]). The problem of numerical handling of density and viscosity contrasts in geodynamic modeling were intensively studied
in 80–90s of the XXth century by Christensen [4,5], Lenardic and Kaula [6], Naimark and Ismail-Zadeh [7,8], and Naimark
et al. [9].

In simulation of two phase flows viscosity jumps are often supported on rather small sets [10]. In mathematical physics
and PDE theory perturbations supported on a small set are well known under names point perturbations, finite rank pertur-
bations and so on; first publications on the subject dates back to 1930-s, see e.g. [11]. The modern formulation of finite rank
perturbations is based on the Krein operator extension theory, boundary triples and similar techniques, and allows to quite
easily calculate resolvent for perturbations of partial-differential operator supported on curves, surfaces and fractals (see,
e.g., [12–14] and references therein). By authors opinion inclusion of the Stokes operator into the above mentioned frame-
work can be very fruitful, but this question will be discussed somewhere else. Few first steps in this direction were made for
2D Stokes equations with constant viscosity (see [15–17]).

In numerical computations Krein formula has its analog called Sherman–Morrison–Woodbury formula, which allows to
compute inverse of a small rank perturbation to a matrix [18–21]. We propose to apply the formula to the operator for Stokes
and continuity equations decomposed to two addenda: one can be inverted fast numerically using constant viscosity solver
and the other is of rank proportional to viscosity jump support. The Woodbury formula allows to obtain explicit solution for
variable viscosity problem, however the solution is cumbersome even for small rank perturbations. In the article we propose
algorithm that can be used to obtain the solution numerically. The described method is advantageous in terms of computa-
tion speed, which does not depend on scale of viscosity jumps.
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2. Physical problem

The flow of geomaterials over geological timescales is calculated by solving the momentum equation neglecting inertial
terms (Stokes equations) [22,23]
@rij

@xj
¼ �qgi: ð1Þ
The Stokes equations for the incompressible viscous fluid describe the balance between the external body forces and viscous
stresses. The viscous force is formulated as the gradient of the stress tensor r and the body force is written as the product of
the fluid density q and the gravitational acceleration vector g. Moreover, in the absence of melting and phase transitions,
geodynamic flows are considered as incompressible. Incompressibility is enforced by coupling the aforementioned equations
with the continuity equation
@v i

@xi
¼ 0; ð2Þ
where v is the velocity vector and xi is a spatial coordinate. Eqs. (1) and (2) are valid over the model domain which we denote
by X. The developed below method imposes no restriction on dimension of space Rd containing X; however for the sake of
simplicity below we focus only on two dimensional case.

To close the system (2), the equations for the conservation of momentum and mass are supplemented with two boundary
conditions. Decomposing the boundary of X into two non-overlapping regions, denoted by @XN and @XD, the boundary con-
ditions are written as
Xd

j¼1

rijnj ¼ ai; x 2 @XN ; i ¼ 1; . . . ; d ð3Þ
and
v ¼ b; x 2 @XD: ð4Þ
Here n is the outward point normal to the boundary of X;a is an applied traction and b is a prescribed velocity.
The mechanical behavior of the material is defined by a constitutive relationship. We relate the stress tensor r to the

strain rate tensor �, using a linear, isotropic viscous rheology given by
rij ¼ �pdij þ 2g _�ij; ð5Þ
where d is the Kronecker delta, p is the pressure, g is the viscosity and the strain rate is given by
_�ij ¼
1
2

@v i

@xj
þ @v j

@xi

� �
: ð6Þ
Prior to any discretization, the equations above are nondimensionalized by means of dynamic scaling. This scaling is
achieved by first defining a set of characteristic units such as a characteristic length (e.g., domain size), a characteristic time
(e.g., inverse background strain rate), a characteristic viscosity (e.g., minimum viscosity in the domain) and secondly deriving
all the related characteristic units (mass, stress, force. . .). We employ characteristic units that are equal to 1. The results are
not scaled back to dimensional units and therefore the velocity errors and pressure are dimensionless.

3. Discretization

We solve Eqs. (1) and (2) for the primitive variables v i and p. The governing equations can be written as follows
Xd

j¼1

@

@xj
g

@v i

@xj
þ @v j

@xi

� �� �
� @p
@xi
¼ �qgi; i ¼ 1; . . . ;d: ð7Þ

Xd

i¼1

@v i

@xi
¼ 0: ð8Þ
We use finite-difference discretization on non-staggered grid:
h�1
j rj g h�1

j Djv i þ h�1
i Div j

� �� �
þ
X
j–i

h�1
j Dj g h�1

j rjv i þ h�1
i riv j

� �� �
� h�1

i rip ¼ �qgi;

Xd

i¼1

h�1
i Div i ¼ 0;

8>>>><
>>>>:

ð9Þ
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where hi is a mesh size, Di is a forward difference, ri is a backward difference,
Djf ðx1; . . . ; xdÞ ¼ f ðx1; . . . ; xi þ hi; . . . ; xdÞ � f ðx1; . . . ; xi; . . . ; xdÞ;

rjf ðx1; . . . ; xdÞ ¼ f ðx1; . . . ; xi; . . . ; xdÞ � f ðx1; . . . ; xi � hi; . . . ; xdÞ:
4. Arrow-Hurwicz algorithm

Eq. (9) can be written in the form:
L
v
p

� �
¼
�qg

0

� �
; ð10Þ
where v is the velocity field, and the operator L acting in the space of described above discretizations of velocity and pressure
fields is defined by its matrix:
L ¼
S D

D� 0

� �
; ð11Þ
where submatrices S and D are defined by its action on velocity and pressure fields:
ðSvÞi ¼ h�1
j rj g h�1

j Djv i þ h�1
i Div j

� �� �
þ
X
j–i

h�1
j Dj g h�1

j rjv i þ h�1
i riv j

� �� �
; ð12Þ

ðDpÞi ¼ h�1
i ri p; D�v ¼

X
i

h�1
i riv i: ð13Þ
The equation belongs to saddle-point problems (see [18, Chapter 8.4]). The solution of Eq. (10) can be obtained by an iter-
ative method as the limit ðv ; pÞT of approximations ðvk;pkÞ. e.g. by a variant of Arrow-Hurwitz algorithm,
v ¼ lim
k!1

vk; p ¼ lim
k!1

pk; ð14Þ

vkþ1 ¼ vk þ � �qg þ Svk � Dpk
� �

; pkþ1 ¼ pk þxD�vk: ð15Þ
Unfortunately, the convergence of the iteration method is not guaranteed for arbitrary viscosity g, and choice of the relax-
ation parameters �;x is complicated. However assuming that g is constant, the solution can be found very fast using e.g. a
multi-grid method or the Fourier transform.

5. Multi-grid method

The multi-grid method can be used to solve Eq. (9) roughly in linear time with respect to size of the grid. Here we briefly
recall the method (see [19, Chapter 20.6], and [20, Chapter 7.6]). Convergence of the method and other details are described
in [24].

In the section we work with several grids, therefore we introduce notation Ln for the operator L in (10) on nth grid. We
assume that ðnþ 1Þth grid is coarse than the grid n. Let Rn be a restriction operator, which is a mapping from the fine grid n to
the coarse one nþ 1, and let Sn be a smoothing operator, which maps a function on the coarse grid nþ 1 to a function on the
grid n. A common choice for Rn and Sn is the bilinear smoothing.

We are going to solve the Eqs. (10) on the most coarse grid, which is written as
L0X ¼ Y ; ð16Þ
denoting
X ¼
v
p

� �
; Y ¼

�qg
0

� �
:

Let P0 be a precondition for the Eq. (16).
The considered multi-grid algorithm consists of the following steps:

1. Fix an approximation X0
0 to the solution X of Eq. (16). An appropriate choice is X0

0 ¼ P0Y .
2. Compute the residual qk

0 ¼ LnXk
0 � Y , where k is the iteration step.

3. Compute an approximate solution Ak
n of the equation L0Ak

0 ¼ qk
0, which is a correction to an approximate solution Xk

0.
The approximate solution is found solving the equation consequently on several coarser grids. First compute the
restriction of the residual to the coarsest grid,
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qk
n ¼ Rn�1 � � �R0q

k
0:
4. Find an approximate solution Ak
n to the equation
LnAk
n ¼ qk

n ð17Þ
Taking several iteration by Jacobi or Gauss–Seidel methods is enough.
5. Smooth Ak

m to the finer grid
Bk
m�1 ¼ Sm�1Ak

m;
where m is the last worked out grid.
6. Solve the equation
Lm�1Ck
m ¼ Lm�1Bk

m�1 � qk
n: ð18Þ
Again one can stop after several Jacobi or Gauss–Seidel iterations.
7. Set
Ak
m�1 ¼ Bk

m�1 � Ck
m�1:
8. Repeat steps 5–8 until the solution Ak
0 on the finest grid is obtained.

9. The next approximation is
Xkþ1
0 ¼ Xk

0 � Ak
0:
10. Repeat steps 2–10 until desired precision is obtained.

If only one grid is used (n ¼ 0), and the auxiliary Eq. (17) is solved by Jacobi iterations, then the whole algorithm is again
Jacobi iterations. A good choice of approximations to solutions of (18) can speed up convergence significantly, however this
choice is very tricky and easily can ruin convergence.

6. Operator splitting

The multi-grid method recalled in the previous section can be used for very fast calculation of the solution of Eq. (10) for a
constant viscosity g. If variation of g is small, the multi-grid iterations converge slower, but still the method converges fast
enough. Further we show, how to get the solution in a reasonable time, if g has large jump in a few points.

We write viscosity as a sum
g ¼ gr þ gs;
where the gradient of gr vanishes on most of the domain and can have arbitrary large values in a small region. The Stokes
operator S is decomposed to the sum
S ¼ Sr þ Ss;
where
ðSkvÞi ¼ h�1
j rj gk h�1

j Djv i þ h�1
i Div j

� �� �
þ
X
j–i

h�1
j Dj gk h�1

j rjv i þ h�1
i riv j

� �� �
; k ¼ r; s: ð19Þ
We suppose that Sr can be inverted somehow, e.g. by multi-grid method.
Denote by Ti the translation operator,
Tif ðx1; . . . ; xdÞ ¼ f ðx1; . . . ; xi þ hi; . . . ; xdÞ:
Using the identity
DiðabÞ ¼ ðDiaÞbþ ðTiaÞðDibÞ ¼ ðDiaÞðTibÞ þ aðDibÞ; ð20Þ
we write the operator Ss as the sum
Ss ¼ Sa þ Sp;

ðSavÞi ¼ grh
�1
j h�1

j rjDjv i þ h�1
i rjDiv j

� �
þ
X
j–i

grh
�1
j h�1

j Djrjv i þ h�1
i Djriv j

� �
; ð21Þ

ðSpvÞi ¼ h�1
j ðrjgrÞTj h�1

j Djv i þ h�1
i Div j

� �
þ
X
j–i

h�1
j ðDjgrÞTj h�1

j rjv i þ h�1
i riv j

� �
: ð22Þ
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The operator Sa is a symmetric diagonal dominated operator, which is only by a multiplier differs from the Stokes operator
with a constant viscosity, hence it can be easily inverted using an iterative technique. The addendum Sp is a non-symmetric
first order operator with large off-diagonal coefficients, which ruins convergence of iteration schemes for S. Our proposal is
to consider S as an additive perturbation of the operator S0 :¼ Sr þ Sa by the operator Sp, where the rank of Sp is much smaller
than rank of S0.

The whole operator L of the system (10) is also decomposed according to the decomposition of S:
L ¼ L0 þ Lp; L0 ¼
S0 D

DH 0

� �
; Lp ¼

Sp 0
0 0

� �
:

7. Woodbury formula

An analogue of the Krein formula in the discrete case is the so called Woodbury formula, see in [19, Chapter 2.7.3]. Other
applications of the formula, which are not covered here, can be found in [21].

Suppose that A is a N � N matrix, while U and V are N �M matrices with M < N. The Woodbury formula allows to
compute inverse to the matrix A perturbed by UVT as a correction to the inverse of A:
Aþ UVT
� ��1

¼ A�1 � A�1U Eþ VT A�1U
� ��1

VT A�1
; ð23Þ
where E is the identity matrix. By the formula, the inverse of N � N perturbed matrix Aþ UVT can be obtained by inversion
only M �M matrix Eþ VT A�1U, provided the inverse of the unperturbed matrix A is known.

Since our aim is to solve an equation instead of calculating the inverse matrix, we use the formula as follows. Choose the
column matrices uk;vk, k ¼ 1; ::; r, r :¼ rank UVT , such that
UVT ¼
X

k

ukvT
k :
Our purpose is to solve the following equation for every given b:
Aþ
X

k

ukvT
k

 !
x ¼ b: ð24Þ
To find the solution the following steps are required:

1. Solve r auxiliary problems,
Azk ¼ uk;
and construct the matrix Z by columns of the obtained solutions zk; Z ¼ ðz1; . . . ; zrÞ.
2. Do the matrix inversion
H ¼ Eþ VT Z
� ��1

;

where E is the identity operator.
3. Solve the one further auxiliary problem,
Ay ¼ b:
4. The desired solution is given by
x ¼ y � ZHVT y:
8. Application of Woodbury formula to Stokes-continuity equation

Consider the operator L ¼ L0 þ Lp. Denote by n the total number of the grid points and by r the number of points, where
the gradient Djgs does not vanish. Due to Eq. (22), the operator Sp has rank less or equals to r � d, where d is the space dimen-
sion. By definition, rank of Lp coincides with rank of Sp. Normally we want r to be much smaller than total number n of cells of
the grid. Let A ¼ L0;U be the identity operator E, and V ¼ Lp. Then we can apply formula (23), inverting L0 by a fast iterative
technique, such as multi-grid. The cost of the formula application consists of:

1. r þ 1 times solution of the equation L0x ¼ y for distinct y. The complexity of the procedure depends on the method and
can varies from OðndÞ to OðnÞ.

2. Inversion of r � r matrix, which requires less than Oðr3Þ operations.
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Clearly, for large r the cost of calculation of H ¼ ðEþ VT ZÞ�1
may be bigger than direct inversion of S. However, normally

the method has the following two advantages:

1. The solution can be obtained for sure whatever gs is given. There is no adjustable parameters, neither need to guess.
2. The convergence of S0 is generally better than one of Sp, hence for small r the application of Woodbury formula is faster

than traditional multi-grid.
Fig. 1. (a) L1-error (b) L2-error (c) L1-error via grid resolution in logarithmic scale; different curves correspond to different viscosity contrasts (marked).
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9. Numerical test

We compare the solution obtained using Woodbury formula with the explicitly known solution of the following config-
uration known as solCx problem. The analytic solution of the discussed test problem is given in [25]. The Stokes flow in a box
X ¼ ½0;1� � ½0;1� with free slip boundary conditions is considered. There is a viscosity jump: the viscosity is equal to gA in
x < 1

2 and is equal to gB in x P 1
2. The flow is driven by perturbation of density q, as follows:
Fig. 2.
q ¼ �r sin ðnzpzÞ cosðnxpxÞ: ð25Þ
(a) L1 (b) L2 (c) L1 norm of residue via grid resolution in logarithmic scale; different curves correspond to different viscosity contrasts (marked).



Fig. 3. Dependence of solution error on magnitude of noise added to body forces.

Fig. 4. Dependence of solution precision on precision of auxiliary problem with constant viscosity.
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The variable parameters are chosen to be:

� density parameter: r ¼ 1.
� wave number in z domain: nz ¼ 1.
� wave number in x domain: nx ¼ 2.

Convergence of the algorithm is shown on Figs. 1 and 2. L1-error, L2-error and L1-error have the same order with a grid
step.

Choice of relaxation parameters and solution time does not depend on the viscosities gA and gB, and this is one of the
main advantages of the method based on Woodbury formula. However, in contrast to iterative methods the Woodbury
formula has no error automatic correction property, hence precision of the solution has to be estimated. Numerical stability
of the methods for perturbation of body forces is demonstrated on example for solCx problem in Fig. 3. Dependence of
the solution precision on error of the solution of auxiliary unperturbed problem is shown in Fig. 4. One can see that the
described method can be used to compute the solution with the error less than discretization error for viscosity contrast
at least up to 106.
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10. Conclusion

The suggested method has the following advantages:

1. The Woodbury formula provides non-iterative method to compute solution to Stokes and continuity equations in fixed
time, which does not depend on viscosity contrast.

2. For very small rank of gp, the Woodbury formula requires less computations than standard iterations techniques.

It should be noted that large number of operations in described approach is related with the inversion of the operator L0

(for constant viscosity). Therefore for a fixed domain geometry this inversion should be made one time, and this result can be
used later for different distributions of high viscosity inclusions. Moreover, for simple domain geometry one can use the dis-
crete Fourier transform to find L�1

0 . The corresponding eigenfunctions for L0 should be known, but if one studies, e.g., the flow
in fixed domain for different distribution of inclusions (conventional situation), it is possible to find these eigenfunctions
once (a preliminary operation) and then use this result for all these problems (the eigenfunctions depend only on the domain
geometry and the boundary conditions only).

Thus, the following improvements to the described technique can be made:

1. For the case gr ¼ 0, the solution can be found much faster, using the Fourier transform to invert L0.
2. A variant of multi-grid technique can be used for simultaneous calculation of zk reducing complexity of the algorithm.

Acknowledgements

The work was made in the framework of Swiss–Russia Faculty Exchange Program. The work was partially financially sup-
ported by Government of Russian Federation (Grant 074-U01), by State contract of the Russian Ministry of Education and
Science, by Grant of Russian Foundation for Basic Researches and Grants of the President of Russia (state contract
14.124.13.2045-MK and Grant MK-1493.2013.1).

References

[1] T. Gerya, Introduction to Numerical Geodynamic Modelling, Cambridge University Press, Cambridge, 2009.
[2] A. Ismail-Zadeh, P. Tackley, Computational Methods for Geodynamics, Cambridge University Press, Cambridge, 2010.
[3] T. Duretz, D.A. May, T.V. Gerya, P.J. Tackley, Discretization errors and free surface stabilization in the finite difference and marker-in-cell method for

applied geodynamics: a numerical study, Geochem. Geophys. Geosyst. 12 (2011) Q07004, http://dx.doi.org/10.1029/2011GC003567.
[4] U. Christensen, Phase boundaries in finite amplitude mantle convection, Geophys. J. R. Astron. Soc. 68 (1982) 487–497.
[5] U. Christensen, An Eulerian technique for thermomechanical modeling of lithospheric extension, J. Geophys. Res. 97 (1992) 2015–2036.
[6] A. Lenardic, W.M. Kaula, A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces, J. Geophys. Res. 98

(1993) 8243–8260.
[7] B.M. Naimark, A.T. Ismail-Zadeh, Numerical models of subsidence mechanism in intracratonic basin: application to North American basins, Geophys. J.

Int. 123 (1995) 149–160.
[8] B.M. Naimark, A.T. Ismail-Zadeh, An improved model of subsidence of heavy bodies in the asthenosphere, Comput. Seism. Geodyn. 3 (1996) 54–62.
[9] B.M. Naimark, A.T. Ismail-Zadeh, W.R. Jacoby, Numerical approach to problems of gravitational instability of geostructures with advected material

boundaries, Geophys. J. Int. 134 (1998) 473–483.
[10] Y. Deubelbeiss, B.J.P. Kaus, J.A.D. Connolly, Direct numerical simulation of two-phase flow: effective rheology and flow patterns of particle suspensions,

Earth Planet. Sci. Lett. 290 (12) (2010) 1–12.
[11] R. de, L. Kronig, W.G. Penney, Quantum mechanics of electrons in crystal lattices, Proc. R. Soc. London 130 A (1931) 499–513.
[12] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics with an appendix by P. Exner, second ed., AMS Chelsea

Publishing, Providence, R.I., 2005.
[13] N. Bagraev, G. Martin, B.S. Pavlov, A. Yafyasov, Landau-Zener effect for a quasi-2D periodic sandwich, Nanosystems: Phys. Chem. Math. 2 (4) (2011) 32–

50.
[14] I.S. Lobanov, V.Yu. Lotoreichik, I.Yu. Popov, Lower bound on the spectrum of the two-dimensional Schrödinger operator with a d-perturbation on a

curve, Theor. Math. Phys. 162 (3) (2010) 332–340.
[15] I.Yu. Popov, Stokeslet and the operator extension theory, Revista Mat. Univ. Compl. Madrid 9 (1) (1996) 235–258.
[16] Yu.V. Gugel, I.Yu. Popov, S.L. Popova, Hydrotron: creep and slip, Fluid Dyn. Res. 18 (4) (1996) 199–210.
[17] I.Yu. Popov, Operator extensions theory and eddies in creeping flow, Phys. Scr. 47 (1993) 682–686.
[18] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003.
[19] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes, third ed., The Art of Scientific Computing, Cambridge University Press,

Cambridge, 2007.
[20] K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction, second ed., Cambridge University Press, Camdridge,

2005.
[21] I.A. Shereshevskii, A finite dimension analog of the Krein Formula, J. Nonlinear Math. Phys. 8 (2001) 446–457.
[22] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York, 1961.
[23] L.D. Landau, E.M. Lifschitz, Fluid Mechanics, Pergamon Press, New York, 1959.
[24] U. Trottenberg, C.W. Oosterlee, A. Schüler, Multi-grid, Academic Press, New York, 2001.
[25] S. Zhong, Analytic solutions for Stokes flow with lateral variations in viscosity, Geophys. J. Int. 124 (1996) 18–28.

http://refhub.elsevier.com/S0096-3003(14)00332-4/h0005
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0005
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0010
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0010
http://dx.doi.org/10.1029/2011GC003567
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0020
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0025
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0030
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0030
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0035
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0035
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0040
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0045
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0045
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0050
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0050
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0055
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0060
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0060
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0060
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0065
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0065
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0070
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0070
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0075
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0080
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0085
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0090
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0090
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0095
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0095
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0095
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0100
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0100
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0100
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0105
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0110
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0110
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0115
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0115
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0120
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0120
http://refhub.elsevier.com/S0096-3003(14)00332-4/h0125

	Numerical approach to the Stokes problem with high contrasts in viscosity
	1 Introduction
	2 Physical problem
	3 Discretization
	4 Arrow-Hurwicz algorithm
	5 Multi-grid method
	6 Operator splitting
	7 Woodbury formula
	8 Application of Woodbury formula to Stokes-continuity equation
	9 Numerical test
	10 Conclusion
	Acknowledgements
	References


