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Abstract The InSight mission to Mars is well underway and will be the first mission to
acquire seismic data from a planet other than Earth. In order to maximise the science re-
turn of the InSight data, a multifaceted approach will be needed that seeks to investigate the
seismic data from a series of different frequency windows, including body waves, surface
waves, and normal modes. Here, we present a methodology based on globally-averaged
models that employs the long-period information encoded in the seismic data by looking
for fundamental-mode spheroidal oscillations. From a preliminary analysis of the expected
signal-to-noise ratio, we find that normal modes should be detectable during nighttime in
the frequency range 5–15 mHz. For improved picking of (fundamental) normal modes, we
show first that those are equally spaced between 5–15 mHz and then show how this spec-
tral spacing, obtained through autocorrelation of the Fourier-transformed time series can
be further employed to select normal mode peaks more consistently. Based on this set of
normal-mode spectral frequencies, we proceed to show how this data set can be inverted for
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globally-averaged models of interior structure (to a depth of ∼ 250 km), while simultane-
ously using the resultant synthetically-approximated normal mode peaks to verify the initial
peak selection. This procedure can be applied iteratively to produce a “cleaned-up” set of
spectral peaks that are ultimately inverted for a “final” interior-structure model. To investi-
gate the effect of three-dimensional (3D) structure on normal mode spectra, we constructed
a 3D model of Mars that includes variations in surface and Moho topography and lateral
variations in mantle structure and employed this model to compute full 3D waveforms.
The resultant time series are converted to spectra and the inter-station variation hereof is
compared to the variation in spectra computed using different 1D models. The comparison
shows that 3D effects are less significant than the variation incurred by the difference in
radial models, which suggests that our 1D approach represents an adequate approximation
of the global average structure of Mars.

Keywords Mars · Seismology · Normal modes · Interior structure · Inverse problems

1 Introduction

The NASA InSight mission, which launched on May 5, 2018, will emplace a geophysical
package, consisting of a seismometer (SEIS, Lognonné et al. 2012), a heat flow probe (HP3,
Spohn et al. 2014) and a transponder for precise tracking (RISE, Folkner et al. 2012), on the
surface of Mars at the end of November 2018. The goals of the mission are to provide insight
on formation and evolution of Mars by investigating interior structure and processes of Mars
(Banerdt et al. 2013). To achieve this, InSight will make use of advanced single-seismometer
analysis techniques (e.g., Panning et al. 2015; Khan et al. 2016; Böse et al. 2017; Panning
et al. 2017), along with extremely precise measurements of variations in the spin axis of
the planet (Folkner et al. 2012), and the subsurface thermal gradient (Spohn et al. 2014), to
provide the first direct measurements of the internal structure of Mars, including thickness,
structure and composition of crust, mantle and core, thermal state of the interior, rate and
distribution of internal seismic activity, and rate of meteorite impacts.

InSight will be the first dedicated extraterrestrial seismology mission to study the inte-
rior of Mars. While the Viking missions carried seismometers to Mars in the mid-1970s,
the seismometers were fixed on the lander, which, because of wind-induced lander shaking,
precluded the unambiguous detection of events (Anderson et al. 1977; Solomon et al. 1991;
Lorenz et al. 2017). The SEIS experiment onboard InSight (Lognonné et al. 2012) consists
of a very broadband seismometer (in addition to a short-period seismometer) that will be
deployed on the ground and should enable detection of the normal modes of Mars, i.e., the
very long-period signal associated with the finite frequency response of the planet to an
excitation (marsquake). The advantage of using normal modes to estimate the globally aver-
aged 1D structure is that these are independent of the excitation mechanism, i.e., epicenter
location and origin time are not required (excitation mechanism and epicentral distance only
cause a relative modulation of eigenfrequency-amplitudes).

Normal mode seismology on the planets has been discussed before in the context of the
Apollo lunar seismic data (Carr and Kovach 1962; Derr 1969; Gudkova and Zharkov 2000,
2001, 2002; Gudkova et al. 2011; Gudkova and Raevskii 2013; Khan and Mosegaard 2001;
Gagnepain-Beyneix et al. 2006), in the framework of theoretical and pre-mission science
studies on Mars (e.g., Bolt and Derr 1969; Okal and Anderson 1978; Gudkova et al. 1993;
Lognonné and Mosser 1993; Gudkova and Zharkov 1996; Lognonné et al. 1996; Kobayashi
and Nishida 1998; Gudkova and Zharkov 2004; Lognonné and Johnson 2014; Zheng et al.
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2015; Lognonné et al. 2016; Zharkov et al. 2017; Schimmel et al. 2018) and on the giant
planets (Vorontsov et al. 1976; Lognonné and Mosser 1993; Lognonné et al. 1994; Gudkova
et al. 1995; Gudkova and Zharkov 2006; Gaulme et al. 2015). In the context of InSight,
the feasibility of spectral estimation and inversion of fundamental mode eigenfrequencies
has been illustrated by Panning et al. (2017), who found, based on seismometer response,
current expectations for lander-generated, wind-induced pressure, and temperature noise
that detection of normal modes in the frequency range 5–25 mHz should be possible during
nighttime. The inversion showed that structure down to a depth of ∼ 250 km, comprising
crust, lithosphere and uppermost mantle, could be constrained.

In this study we build upon and extend the findings of Panning et al. (2017) by first show-
ing that it is possible to extract a single “observable” related to the normal mode spectral
spacing following an earlier suggestion of Okal and Anderson (1978) that the spacing be-
tween fundamental modes is expected to be constant in a certain frequency range because
of a relatively constant phase velocity on Mars. Secondly, we employ the information con-
tained in the spectral spacing to reliably pick fundamental-mode peaks and invert these for
a globally-averaged structure following the approach of Khan and Mosegaard (2001). In
summary, the goal is to test this normal mode approach in anticipation of the return of seis-
mic data from Mars. In the following we describe 1) construction of radial reference models;
2) computation of synthetic seismic data; 3) seismic data processing and spectral estimation;
4) the inverse problem, including a synthetic test; and 5) discuss results. Finally, the forego-
ing is based on radial models and complexities related to three-dimensional (3D) structure
(e.g., in the crust and lithosphere) are likely to complicate the analysis. To investigate this in
more detail, we conclude with a 3D analysis in a final section.

2 Expected Seismicity and Seismometer Response

There are currently no direct observations of the seismicity of Mars. Instead, seismicity
models for Mars are based on geological evidence (e.g., Golombek et al. 1992; Golombek
2002) and simulations of thermal evolution and cooling of the Martian interior (Phillips
1991; Knapmeyer et al. 2006; Plesa et al. 2018). In spite of the apparent absence of detected
seismic events during the Viking missions (Anderson et al. 1977; Goins and Lazarewicz
1979), potential sources for seismicity are mainly expected to be meteorite impacts and
release of thermal and lithostatic stresses in the form of fracturing. The stresses are visible
as faults in images of the Martian surface and topographic data (Knapmeyer et al. 2006;
Plesa et al. 2018). Based on these models, the overall seismic moment release is expected
to be in the range 3 · 1016–4 · 1019 N m over the nominal mission lifetime (Golombek et al.
1992; Knapmeyer et al. 2006; Plesa et al. 2018). The distribution of seismic moment on
single events depends on the b-factor in the Gutenberg-Richter law and the largest event
that is statistically expected to happen each year (which can make up a considerable amount
of the seismic moment budget). Evaluation of all the evidence suggests the occurrence of
between 1 and 10 magnitude-5 events with seismic moment around 1017 N m during the
nominal lifetime of the experiment (2 Earth years) (e.g., Phillips 1991; Golombek et al.
1992; Knapmeyer et al. 2006; Lognonné and Johnson 2014; Teanby and Wookey 2011;
Ceylan et al. 2017; Plesa et al. 2018).

Table 1 compiles the annual occurrence rate for three events based on the fault-derived
model of Golombek et al. (1992). The average seismicity expectation of later models is
roughly identical to that of Golombek et al. (1992), but the uncertainty is large. For ex-
ample, Knapmeyer et al. (2006) estimated an uncertainty of around ±10,000% between
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Table 1 Occurrence rate of the three events shown in Fig. 1 per nominal mission duration of one Martian
year, according to the model by Golombek et al. (1992), based on surface faults and the lower and upper limits
of the model by Plesa et al. (2018), which is based on 3D geodynamical simulations. Moments correspond
to Mrr

Model Occurrence rate

(1 × 1017 N m) (3 × 1017 N m) (1 × 1018 N m)

Golombek et al. (1992) 1.76 0.92 0.44

Plesa et al. (2018) 0.048–36 0.024–18 0.012–8.4

their weakest and strongest model. Plesa et al. (2018) tried to further reduce the uncertainty
by considering more “realistic” models obtained from 3D thermal evolution modelling, but
were unable to reduce the uncertainty below ±2,000% relative to Golombek et al. (1992)
(Table 1).

Given the expected ambient noise level, Lognonné et al. (1996) and Panning et al. (2017)
estimated that normal modes should be observable between 5 and 20 mHz for a Mw6 event.
Figure 1 shows a comparison between signal amplitudes for a purely radial source located
at 10 km depth (epicentral distance of 45◦) and the mean noise levels based on an earlier
(labeled noise 2016) and the most recent noise model (labeled noise 2017). Noise time se-
ries generated from this noise model have been employed throughout for SEIS operation
readiness tests and for the MarsQuake Service Blind test (Clinton et al. 2017). It is based
on the work of the SEIS noise model working group (Mimoun et al. 2017; Murdoch et al.
2017a,b) and includes proper consideration of the thermal drift of the instrument. The noise
model includes contributions from several ambient noise sources due to pressure and mag-
netic effects, and dust devil-generated reverberations (Kenda et al. 2017). Here, we employ
noise time series based on the 2016 mission noise levels, because the prediction of this
noise is somewhat more conservative. Any improvement in the signal-to-noise ratio in the
period range of interest, implies that the proposed method should be applicable to “smaller”
magnitude, and therefore more likely, events.

For a Mw5.8 (Mrr = 1 · 1018 N m) event, mode peaks should be observable during night-
time from 5–15 mHz and possibly daytime from ∼ 10–15 mHz. For a Mw5.5 (Mrr =
3 · 1017 N m) event, normal modes could possibly be detectable in the range ∼ 10–15 mHz,
whereas for a Mw5.2 (Mrr = 1017 N m) event, mode peaks are unlikely to be detected.

3 Methods: Forward Problem

3.1 Overview

In the following we briefly describe the methodology summarised and illustrated in Fig. 2.
We have broadly divided the strategy into four main stages (colour coded).

Input (white box): In the absence of seismic data from Mars, the input stage consists of
computing representative seismic waveforms (Sect. 3.3) based on physically realistic mod-
els of the interior structure of Mars (Sect. 3.2). For increased complexity, waveforms are
combined with realistic noise to produce the equivalent of “real” (synthetic) Martian seis-
mograms.

Processing (blue boxes): A spectrum is computed for each seismogram via Fast Fourier
Transform (FFT; light blue) (Sect. 3.4). From the spectrum we compute the autocorrelation
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Fig. 1 Power spectral density for three different magnitude events of which 1–10 are expected to occur
during the nominal mission lifetime (2 years), compared to the expected ambient noise level from instrument,
barometric pressure, and magnetic fields during daytime (dashed line) and nighttime (solid line). The dotted
line shows the pure instrument self-noise level, which may be obtained by decorrelation of recorded pressure
and magnetic field from the seismic record (Murdoch et al. 2017a). The two noise response curves are both
based on the work of the InSight noise model working group (Murdoch et al. 2017a,b; Mimoun et al. 2017).
The grey area marks the frequency range of interest

to obtain the spectral spacing (blue). We then use the spacing to identify fundamental-mode
spectral peaks (dark blue).

Inversion (red boxes): Those represent the inversion stage, where spectral peaks are in-
verted for interior structure (Sect. 4). In a preliminary inversion (light red), model fits are
checked to ensure that all identified spectral peaks are properly assigned. Mis-assigned peaks
are labeled as outliers and removed from the data (red), whereas initially unassigned peaks
can, based on data fit, be added to the data set. The inversion is repeated to produce a set of
“final” models of the interior structure of Mars (Sects. 3.4.2 and 4.1).

Reiteration (yellow box): The entire procedure (input, processing, and inversion) is run
repeatedly as new data come in and previous models are updated.

The method is illustrated for a single relatively large (Mrr = 1018 N m) shallow (10 km
depth) event, which based on Fig. 1, is expected to be large enough to result in the detectable
excitation of normal modes throughout the frequency band of interest.

3.2 Generating Seismic Models

In constructing interior structure models of Mars we rely on a unified description of the elas-
ticity and phase equilibria of multicomponent, multiphase assemblages from which miner-
alogical and P- and S-wave speed (VP and VS ) and density (ρ) models as functions of pres-
sure (depth) and temperature are constructed. For this purpose, we employ the free-energy
minimization strategy described by Connolly (2009) that predicts rock mineralogy, elas-
tic moduli, and density along self-consistently computed mantle adiabats for a given bulk
composition. The thermodynamic formulation of Stixrude and Lithgow-Bertelloni (2005)
with parameters as in Stixrude and Lithgow-Bertelloni (2011) are employed. To estimate
bulk rock from single mineral properties we use Voigt-Reuss-Hill (VRH) averaging. Pres-
sure is obtained by integration of the load from the surface. Mantle compositions are ex-
plored within the Na2O-CaO-FeO-MgO-Al2O3-SiO2 (NCFMAS) model chemical system.



 114 Page 6 of 28 F. Bissig et al.

Fig. 2 Normal mode data processing and inversion scheme. Input (white box) consists of synthetically com-
puted seismograms (this study) but will be replaced with proper data as these become available. Processing
(blue boxes) relies on spectral estimation in the form of computation of the autocorrelation of the spectrum
to determine the frequency spacing which is applied to select peaks (frequencies) corresponding to normal
modes. In the inversion (red boxes) the selected spectral peaks are inverted for globally-averaged interior
structure models. Finally, the entire procedure is reiterated (yellow box) with the availability of additional
data

This model accounts for > 98% of the mass of the mantle in the experimental Martian model
of Bertka and Fei (1997).

Information on the mantle composition of Mars come from geochemical analyses of
Martian meteorites (e.g., Dreibus and Wänke 1985; Treiman 1986; McSween 1994; Taylor
2013). In the model of Taylor (2013), which is adopted as reference model in this study,
the mantle is found to contain 18.7 wt% FeO implying a Martian mantle Mg# of ∼ 73
(100 × molar Mg/Mg + Fe), in comparison to the magnesium-rich terrestrial upper mantle
value of ∼ 90 (e.g., McDonough and Sun 1995; Lyubetskaya and Korenaga 2007). This and
other chemical models are discussed in more detail by Khan et al. (2018). The sublitho-
spheric mantle is assumed to be compositionally uniform. In the crust, we rely on the model
of Taylor and McLennan (2009). In the lithosphere, we compute temperature using a linear
gradient, which is determined from the surface temperature (273 K) and the temperature
(1573 K) at the bottom of the lithosphere (190 km depth). The bottom of the lithosphere
is defined by the intersection of the conductive geotherm and the mantle adiabat. The sub-
lithospheric mantle adiabat is defined by the entropy of the lithology at the temperature at
the base of the lithosphere. In the crust, we follow Khan et al. (2018) and reduce the seismic
properties by multiplying by a constant porosity factor of 0.6, which increases linearly to 1
at the bottom of the crust. Due to lack of sensitivity, core parameters are unimportant.

To incorporate effects of anelasticity, we follow the approach of Nimmo and Faul (2013)
as implemented in Khan et al. (2018), who employed the laboratory-based viscoelastic
model (extended Burgers) of Jackson and Faul (2010). This viscoelastic model is based
on laboratory experiments of torsional forced oscillation data on melt-free polycrystalline
olivine and is described in detail in Jackson and Faul (2010). However, to simplify matters,
we employed a single shear-wave attenuation (Q) model at a reference-period of 1 s and
a grain-size of 1 cm. The shear attenuation Q model is fixed to 500 and 150 in the crust
and upper mantle, respectively, after Zharkov et al. (2017) and Khan et al. (2018). As for
the frequency dependence (α) of Q, Khan et al. (2018) obtained Q values at periods of
1 hr and 1 s of ∼ 140 and ∼ 150, respectively. This implies a near frequency-independent
Q (α < 0.01) in the seismic frequency band for the extended Burgers model. We ignore
dissipation in bulk (Qκ = 104) in line with terrestrial applications (e.g., Durek and Ekström
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Fig. 3 Radial profiles of density (A) and P-wave (B) and S-wave (C) speed (VP and VS ) computed for the
five models described in Sect. 3.2. Only crust, lithosphere, and upper mantle structure is shown

1996). Radial profiles of isotropic P- and S-wave speeds, and density are shown in Fig. 3 to
a depth of 250 km. These models were produced by keeping mantle composition fixed, but
varying Moho depth (40–70 km), and temperature (1273–1673 K) and depth (100–220 km)
to the bottom of the lithosphere.

3.3 Computing Waveforms and Normal Mode Spectra

We use the full waveform method Yspec of Al-Attar and Woodhouse (2008), which is
applicable to spherically symmetric models, to compute synthetic seismic waveforms for
the 1D Martian models described previously. The seismograms include the full numeri-
cal solution of the visco-elastic wave equation (including attenuation and self-gravitation).
Time series were computed in the frequency range 0.2–25 mHz for a purely radial source
(Mrr = 1018 N m) located at 10 km depth and for a length of 8 hours. Effects related to
ellipticity and rotation are expected to be small and are ignored (Dahlen and Sailor 1979).
Effects arising from lateral variations in crustal properties (e.g., surface and Moho topogra-
phy, lateral variations in seismic wave speeds and density) will be discussed in Sect. 6.3 (see
also Larmat et al. 2008; Bozdağ et al. 2017).

“Realistic” noise is added to the synthetic seismograms using the InSight noise model
described earlier in Sect. 2. An example of 4 hours of the resulting three-component syn-
thetic velocity seismograms filtered in the passband 2–25 mHz are shown in Fig. 4 (only the
vertical component is shown here since we are only interested in spheroidal modes) at an
epicentral distance of 60◦ for model 4.

To compute amplitude spectra from the time series, we filter these by applying a But-
terworth bandpass filter in the frequency range of interest (5–15 mHz). The seismograms
are subsequently de-trended, tapered using a cosine-taper, zero-padded and finally Fourier-
transformed. Resultant amplitude spectra are also shown in Fig. 4. From the amplitude spec-
tra, we can deduce that detectable signal (spectral peaks) above the background noise level
is only present during nighttime and limited to the frequency range 5–25 mHz in line with
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Fig. 4 Synthetic Martian seismograms and amplitude spectra at nighttime (A–B) and daytime (C–D). The
waveforms and spectra were computed for model 4 at an epicentral distance of 60 degrees for a Mw5.8 event
(Mrr = 1018 N m). The noise (red line) is the mean 2016 noise level shown in Fig. 1

the earlier determination of Panning et al. (2017). In reality, we will employ a slightly nar-
rower frequency range 5–15 mHz (see next section). In what follows, we assume that the
amplitude spectrum is dominated by fundamental spheroidal modes.

3.4 Spectral Estimation

3.4.1 Spectral Spacing

To extract “observables” from the spectra, we follow an approach based on a suggestion by
Okal and Anderson (1978, p. 522, reprinted with permission from Elsevier), who noted that
“. . . the property of relatively constant phase velocities along the fundamental branch might
help identify normal modes by using a sequence of them to assign angular orders: A family
of modes should closely obey a relation of the form (l + 1/2)/ωl = constant. This makes
it possible to discriminate between models with otherwise similar periods. . . ”, where l and
ωl denote angular order and associated frequency, respectively. The key to this approach
is thus the observation of regularity in spacing of fundamental-mode spectral peaks. This
is illustrated in Fig. 5, which shows computed fundamental-mode dispersion curves and
frequency spacing (�f hereinafter) as a function of angular order for the five theoretical
models displayed earlier (Fig. 3). Dispersion is found to increase linearly and the associated
frequency spacing to be constant, i.e., �f/�l = constant, for angular orders in the range
∼ 20–80 corresponding to frequencies of 5–15 mHz (gray areas in Fig. 5).

A host of additional globally-averaged models have been investigated. In particular, we
examined the change in �f for five models with larger variation in seismic properties of the
uppermost mantle (see Online Resource, Figs. S.1 and S.2). Although qualitatively similar to
Fig. 5, the slope of the dispersion curves for each of these models was distinct, but remained,
unlike the curves shown in Fig. 5, almost constant across the 5–15 mHz frequency range.
As for the models studied presently (Fig. 3), �f varied by ∼ 0.01 (0.158–0.169).
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Fig. 5 Computed fundamental-mode dispersion curves (A) and frequency spacing (�f ) (B) as a function of
angular order for the five theoretical models displayed in Fig. 3. Gray areas indicate the region over which
the frequency spacing is assumed constant

Proceeding thus to obtain �f from the data, we compute the autocorrelation of the spec-
trum, which is shown in Fig. 6A–B (only the positive part of the correlation is shown). Since
the spacing is constant, the autocorrelation shows a maximum occurring at �f and multi-
ples thereof (i.e., at k · �f , where k is an integer), which are used to “pick” the “observed”
�f . Figure 6A–B also compares the autocorrelation of the spectrum at nighttime with that
at daytime. Clearly, �f can only be picked during nighttime. To quantify the uncertainty on
�f , we compute the standard deviation using the �f estimates for all picked peaks. In case
only one detectable peak should be present, the width of this peak at half-amplitude will
be considered as uncertainty. Picking quality can be improved 1) by rescaling the spectrum
with a factor of 1/ωk , such that all peaks within 5 and 15 mHz have similar amplitudes and
2) by restricting computation of the autocorrelation to this frequency range.

As a further test of this method, we computed and plotted the theoretical �f (using the
MINEOS software package (Masters et al. 2011) and linear regression in f -l-space) for all
five models shown in Fig. 3 against the picked �f from the corresponding synthetic wave-
forms (as described above) for a range of epicentral distances (20◦–160◦) during nighttime.
The results are plotted in Fig. 6C and the following observations can be made: 1) we obtain
a line with a slope ∼ 1 as would be expected in case of a perfect match between theoretical
and observed predictions of �f (uncertainties are due to picking errors in �f for model 4);
2) �f varies between 0.165–0.176 mHz, but differs for all five models and thereby holds
the potential of acting as discriminant between models.

For completeness, we performed the same test on a different event (Mw5.9) with non-
zero moment tensor components (Mrr = 5.426e17, Mrθ = 1.174e18, Mrφ = −8.5e16,
Mθθ = −3.682e17, Mθφ = 5.328e17, Mφφ = −1.744e17, all numbers in N m), and located
at depths of 10 km, 30 km, and 60 km, respectively. For the 10-km deep source, and for the
same range of epicentral distances (20◦–160◦) and conditions (nighttime) as for the purely
radial source, theoretical and picked �f are plotted in Fig. 6D. This plot corroborates the
results for the purely radial source in the form of a model-dependent frequency spacing,
implying that the method also works for more general sources that are not necessarily opti-
mised toward observing spheroidal modes. Similar observations are made for other models
and modeled seismic sources (see Online Resource, Fig. S.3).

3.4.2 Spectral Peaks

In the second step of the spectral estimation, we consider the (nighttime) spectral peaks
shown in Fig. 4 directly. However, rather than simply picking peaks above a certain thresh-
old, where we potentially run the risk of including peaks related to noise and/or overtones
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Fig. 6 Autocorrelation of the spectrum for the Mw5.8 event (purely radial source) and model 4, recorded at
60◦ epicentral distance and 10 km depth (Fig. 4) during nighttime (A) and daytime (B) and filtered between
5 and 15 mHz. The regular spacing of normal mode eigenfrequencies is clearly detectable during nighttime.
(C) Comparison of theoretical and estimated frequency spacing (�f ) for the five radial models shown in
Fig. 3 and 8 receivers distributed evenly between 20◦ and 160◦ epicentral distance. (D) As in (C), but for a
second Mw5.9 event with a non-radial source (see main text). Noise (red line) is the mean 2016 noise level
shown in Fig. 1

(peaks indicated with empty circles in Fig. 7), we use the information contained in the spec-
tral spacing to assign fundamental-mode spectral peaks. The main idea is to first select a
peak (typically we start with a relatively large peak in the middle of the spectrum, e.g.,
0S54) and then to assign neighbouring peaks based on the observed spectral spacing. This
method is illustrated in Fig. 7 for noise-free data. The peaks that are picked based on the
estimated spacing (blue vertical lines) starting from a given peak are shown with red dots.
As a means of verification, we are also showing the theoretically-computed fundamental-
mode eigenfrequencies (vertical green lines) for the underlying model (model 4). We ob-
serve that between 6.5–12.5 mHz theoretical and estimated eigenfrequencies are in com-
plete agreement, which allows us to correctly assign fundamental-mode peaks. Above and
below this frequency range, the blue and green lines differ slightly, suggesting that we are
starting to move beyond the straight-line slope indicated in Fig. 5 (gray area). The spec-
tral spacing should be varied within the estimated uncertainty to find the optimal value of
�f that most closely matches a set of spectral peaks. This implies trying different values
for �f (within the estimated uncertainty) across different frequency bands of the spec-
trum.

The advantage of assigning peaks in this manner is that a significant number of small-
amplitude peaks are visibly (empty circles) “out-of-tune” with the estimated spacing. Thus,
the observed spectral spacing provides a tool for positively assigning peaks otherwise dif-
ficult to label conclusively. It also provides us with a means of identifying and discarding
“outliers” (either noise or overtones) that were initially assigned, but could not be fit in the
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Fig. 7 Noise-free spectrum showing peaks associated with the fundamental spheroidal modes of which some
are labeled. For comparison, theoretically-computed and estimated (i.e., selected based on observed frequency
spacing) eigenfrequencies are indicated as green and blue vertical lines, respectively. Red dots indicate posi-
tively identified fundamental spheroidal mode peaks, whereas open circles identify peaks that have not been
selected because of the observed mismatch with the estimated eigenfrequency. This mismatch can be im-
proved by trying to fit different spectral spacings (within the uncertainty of estimated eigenfrequency) across
the spectrum. The spectrum is based on model 4

inversion (to be described further in Sect. 5). In addition to these criteria, as a baseline we
only pick spectral peaks above a certain threshold amplitude (based on an average pre-event
noise level) to ensure that we are above noise level. Since the spectrum in Fig. 7 is noise-free,
small-amplitude peaks not identified as fundamental modes have to correspond to overtones
and their contribution to the autocorrelation is invariably negligible. When physical noise is
added, overtones are not unambiguously identifiable and are hence treated as noise.

3.5 Forward Problem Summary

The forward model consists of computing fundamental-mode spectral frequencies given a
model of the interior structure of the crust and thermochemical structure of mantle (this in-
cludes the core but because of lack of sensitivity we abstain from discussing core-related
aspects). To determine stable mineralogy (M), isotropic shear (VS ) and compressional (VP )
wave speeds, and density (ρ) along self-consistent mantle adiabats, we employ, as described
in Sect. 3.2, Gibbs free-energy minimization. Based hereupon, we can summarize the for-
ward problem in the form of the following modeling scheme

{X,Tlit, dlit, dMoho
︸ ︷︷ ︸

primary parameters

}
operator
︷︸︸︷

g1−→ M g2−→ {ρ,VP ,VS} g3−→ { nωl
︸︷︷︸

data

}

where the primary parameters are described in Sect. 3.2 and (M, VS , VP ) are secondary
parameters that are required for the purpose of computing fundamental-mode spheroidal
eigenfrequencies nωl where n and l designate mode number and angular order, respec-
tively (Sect. 3.4). The operators (g1, . . . , g3) describe the Gibbs free-energy minimization,
equation-of-state modeling, and spectral estimation problems, respectively. Model parame-
ters and forward operators are summarised in Table 2.
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Table 2 Model and data parameters, prior range (prior information), and forward model operators. Note
that we only invert for primary parameters; secondary parameters are conditional, i.e., depend on primary
parameters. Primary parameters are all uniformly distributed

Model parameters (primary) Prior range Description

φ0 0.6 Crustal porosity (fixed)

Tsurface 273 K Surface temperature (fixed)

Tlit 1373–1773 K Adiabatic temperature at dlit

dMoho 10–100 km Moho thickness

dlit 100–300 km Depth to conductive geotherm-adiabat crossing

Xcr Taylor and McLennan (2009) NCFMAS crustal composition (fixed)

Xm Taylor (2013) NCFMAS mantle composition (fixed)

Rcore 1765 km Core radius (fixed)

XS 21 wt% Core Sulphur content (fixed)

Qμ Shear attenuation (fixed)

Model parameters (secondary)

M Equilibrium mineralogy

VP , VS Isotropic (anelastically-corrected) P- and
S-wave speed

ρ Density

Data

nωl Fundamental-mode eigenfrequencies

Method

g1 Thermodynamic modeling

g2 Equation-of-state modeling

g3 Prediction of normal mode eigenfrequencies

4 Methods: Inverse Problem

To solve the inverse problem d = g(m), where d is a data vector consisting of observations
(nωl) and g is an operator that maps from the model space into the data space (see forward
modeling scheme above), we employ a Bayesian approach (e.g., Mosegaard and Tarantola
1995)

σ(m) = k · f (m)L(m), (1)

where f (m) is the prior model parameter probability distribution, L(m) is the likelihood
function, which measures the misfit between observed and predicted data, k is a normaliza-
tion constant, and σ(m) is the posterior model parameter distribution and the solution to the
inverse problem.

The Metropolis algorithm is employed to sample the posterior distribution (Eq. (1)) in
the model space (Mosegaard and Tarantola 1995). This algorithm is an importance sampling
algorithm that ensures that models that fit data well and are simultaneously consistent with
prior information are sampled more frequently. The Metropolis algorithm samples the model
space with a sampling density that is proportional to the (target) posterior probability density
and thus ensures that low-probability areas are sampled less excessively. This is an important
feature of any algorithm that wishes to randomly sample high-dimensional model spaces
where the probability density over large proportions of the volume are near-zero.
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The intervals within which the primary parameters (Table 2) are sampled are uniformly
distributed. This prior information (f (m) in Eq. (1)) represents a “minimal prior” that sam-
ples wide ranges for the individual parameters with bounds set by various laboratory mea-
surements and previous inversion results (e.g., Nimmo and Faul 2013; Khan et al. 2018).
Upper and lower limits on model parameter ranges are summarized in Table 2 and, for ref-
erence, are larger than InSight mission requirements (±5% for S-wave speed).

4.1 Computing the Misfit Function

To compute the likelihood function in Eq. (1), we have to define a misfit criterion between
observed and synthetically-computed fundamental-mode eigenfrequencies. This would be
trivial for the case where we could assign individual peaks with a fundamental spheroidal
mode label (nSl). However, this information is not available and we have to resort to a
different approach where a computed catalogue of fundamental spheroidal modes in the fre-
quency range 5–15 mHz are fit to the frequencies of the observed (regularly-spaced) peaks.
The problem is further compounded by absence of information on focal mechanism, which
precludes determining synthetic amplitudes using waveform modeling or normal mode sum-
mation techniques, for example.

In this study, we use the method of Khan and Mosegaard (2001) who fitted lunar free
oscillation periods in the following manner. The main idea resides in creating a synthetic
spectrum for a given interior-structure model based on the eigenfrequencies for that partic-
ular model and the observed spectrum and then to compare the latter with the so-computed
synthetic spectrum to obtain the likelihood function (misfit)

L(m) ∝ exp

(

−
∑

l

‖Aobs(0ωl) − Asyn(0ωl)‖2

2σ 2
l

)

, (2)

where Aobs(0ωl) and Asyn(0ωl) are the amplitudes of the observed and synthetic spectrum at
the observed frequency 0ωl , respectively, and σl is the uncertainty on the spectral amplitude
of mode l. An example of a synthetic spectrum (to be discussed further below) is illustrated
in Fig. 8. While difficult to estimate accurately, a conservative value for σl chosen here is
±30% of the observed value. In summary, models that result in calculated spectral peaks
that match the observed spectral peaks are more likely to be sampled than others.

We compute synthetic spectra by a superposition of functions of the form k/(1 + k′ω2)

(black line in Fig. 8), where k = 1 and k′ = 2500 and ω is frequency. This implies that for a
particular 0ω̂l′ (green vertical line in Fig. 8), the optimal amplitude (i.e., the amplitude of the
observed spectrum at 0ω̂l′ ) is fitted (intersection of green and red lines in Fig. 8). Based on
this optimal amplitude, we can solve Aobs(0ω̂l′) = ∑

l′ χl′Mll′ for the coefficients χl′ , where
Mll′ = k/[1+k′(0ω̂l − 0ω̂l′)2]. This is a linear problem and solved using standard techniques
(e.g., Menke 2012). Armed with these χl′ can now be determined Asyn(0ωl) by solving

Asyn(0ωl) =
∑

l′
χl′

k

1 + k′(0ωl − 0ω̂l′)2
(3)

The resultant synthetic spectrum is shown in Fig. 8 (black line) and indicates the value
of Asyn(0ωl) (intersection of blue and black lines), which is used in determining the misfit
(Eq. (2)). With the absence of long uninterrupted recordings from numerous global stations,
which are routinely used in terrestrial normal mode studies, the presently computed spec-
trum is deemed to be an adequate approximation to the “actual” synthetic spectrum. The lat-
ter differs from the present Asyn(0ωl) by including proper amplitude and phase information,
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Fig. 8 Illustration of how the synthetic spectrum is constructed from the observed spectrum and the theoret-
ically-computed fundamental-mode frequencies

which, however, implies solving for source mechanism in addition to velocity model (e.g.,
Gilbert and Dziewonski 1975; Okal et al. 2012; Bogiatzis and Ishii 2014). Finally, k and k′
have been chosen so as to approximately reproduce the width of the observed spectral peaks.
Changing k and k′ affects the resultant misfit in the same manner as varying uncertainty in
peak amplitudes, i.e., increasing/decreasing peak width results in a smoother/coarser misfit
surface as a result of which broader/narrower probability distributions are obtained.

5 Inversion Results

To test the method, we perform a synthetic inversion following the scheme outlined in Fig. 2.
Synthetic data acquisition and processing has already been described. Because of the fre-
quency range considered, we only invert for parameters that are sensitive to crust and upper
mantle structure, i.e., temperature at the bottom of and thickness of the lithosphere, and
Moho depth (Tlit, dlit, and dmoho).

5.1 Preliminary Inversion and Spectral Peak Verification

As a first step, we perform a preliminary inversion where all picked fundamental-mode
peaks (red and yellow dots in Fig. 9) are inverted. This results in a preliminary set of models
and corresponding set of (synthetic) spectra (in gray), which are shown in Fig. 9 and also
includes the spectrum for the initial model (in green). Based on this preliminary inversion,
we are able to verify our initial selection of peaks and “filter” out those peaks (yellow dots)
that are unable to match the fundamental-mode data. This is illustrated in the zoomed-in
plots (Fig. 9B–C) where several selected peaks are identified as false (indicated by yellow
dots) on account of the consistent mismatch between observed and synthetic spectra (blue
peaks), which otherwise provides an excellent fit to the data over the entire frequency range.
These “outliers” (related to noise and/or overtones) are subsequently discarded resulting in
a “cleaned-up” spectrum (red dots). In addition to removing peaks, we can also employ
the preliminary inverted spectra to identify peaks that initially were not selected because
the peaks did not match the spectral spacing, but where the synthetically-computed spectral
peaks are observed to provide an excellent fit. As an example, after a preliminary inversion,
three peaks (green dots) were subsequently identified that qualify as proper peaks (Fig. 9C).
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Fig. 9 Example of preliminary data fit (compare blue and black peaks) used for verifying initially-selected
peaks (red and yellow dots), including peaks that were not initially selected (green dots). Panels (B) and (C)
are zoom-ins of the frequency band (two boxes) shown in panel (A). The noise (red line) is the mean 2016
noise level shown in Fig. 1. The spectrum was computed using model 4

This “new” set of spectral peaks (red and green dots) is now re-inverted to produce a set of
“final” models.

5.2 “Final” Inversion

With the removal and addition of signal, the data set is re-inverted for an updated set of
interior structure models. Sampled “final” model parameters and seismic profiles are shown
in Fig. 10. Both figures indicate that we are generally able to retrieve the “true” model in
terms of the main parameters (Tlit, dlit, and dmoho) in this synthetic test. But it should be
clear that because of the assumed uncertainty on peak amplitudes (see Sect. 4.1), a perfect
match with the “true” model is not expected. Figure 10 also shows the information gain (cf.
histogram widths) that has been obtained through inversion of the “cleaned-up” spectrum
relative to prior information (Sect. 4).

While not directly apparent from the seismic profiles (Fig. 10), the depth range to which
fundamental modes (0S30–0S75) in the 5–15 mHz frequency range are sensitive is 0–250 km
(see also Panning et al. 2017). In short, the results of this synthetic inversion show the capa-
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Fig. 10 Sampled prior and posterior distributions for the main crustal and lithospheric parameters of inter-
est. (A) Temperature at the bottom of the lithosphere; (B) Moho thickness; and (C) lithospheric thickness.
Corresponding radial profiles of seismic properties in the form of density (D), P-wave speed (E), and S-wave
speed (F)

bility of the method to 1) retrieve the sought-for model and 2) to improve results through a
data verification stage where picks are consistently checked against the observations for con-
sistency. In case of more complicated spectra, the procedure could be performed repeatedly
so as to iteratively refine models and spectra until the desired spectral match is achieved.
Finally, as new data become available, we can proceed to update and improve results (final
“Reiteration” stage).

Finally, to test the inversion method proposed here, we performed a “full” spectral in-
version, i.e., inversion of proper amplitude and phase, assuming a perfectly known source.
Results from this inversion (see Appendix A) are similar to those obtained from the present
method. This benchmark serves to show that our method is a useful approximation.

6 Application to 3D

6.1 3D Model Construction

To construct a 3D model of Mars’ interior, we generally employ the same methodology
outlined in Sect. 3.2, but make a number of modifications by including lateral variations
in crust and mantle temperature and surface and Moho topography. Relative to the 1D ap-
proach, 3D modeling extensions include a gravity- and topography-based crustal thickness
model and a thermal model that derives from thermal evolution simulations of Mars (Plesa
et al. 2016). The crustal thickness model is that of Neumann et al. (2004), which assumes
a uniform crustal density of 2.9 g/cm3 and average and minimum crustal thicknesses of
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40 km and 1 km, respectively. Based on these modifications, we rerun the Gibbs free-energy
minimisation pixel-by-pixel, assuming a homogeneous bulk mantle composition. Crust and
attenuation model follows the parametrization described in Sect. 3.2. Examples of lateral
variations in seismic properties are shown in Fig. 11 in the crust and mantle at depths of 66,
100, and 196 km, respectively.

We would like to note that this 3D model is constructed solely for the purpose of assess-
ing the effects of lateral variations on fundamental spheroidal normal modes. The question
of whether this model is realistic is not so relevant in this context. Although the mantle com-
position is unlikely to be homogeneous on account of geochemical evidence (e.g., Debaille
et al. 2008), the simplifying assumption of constant bulk composition was made purely
for computational ease. The variations in the mantle are therefore temperature-dominated,
although variations in the crust clearly bear the signature of surface topography. Overall,
variations in S-wave speed span a range of the order of ±2%, and are probably larger in
reality as indicated by Khan et al. (2018), who found variations in S-wave speed of ±4.5%
in the crust and ±3.5% at the base of the lithosphere (200–400 km depth).

6.2 3D Waveform Modeling

We use the Salvus software package (Afanasiev et al. 2018) to compute coupled elas-
tic/acoustic wave propagation based on the spectral element method. The mesh respects
the surface and Moho topography exactly and is designed to resolve a shortest period of
50 s at one element per wavelength using 4th order basis functions and comprises a total of
221K elements. Waves are propagated for 8 hours with a total of 1.8M time steps. As source
we used a vertical dipole (Mrr ) with a moment magnitude of 1018 N m located at the equa-
tor at 0◦ longitude. Receivers were located at the InSight landing site (Mare Elysium) and
at additional 100 random locations to allow for statistical analysis. Because we presently
only consider a relative comparison between waveforms based on 3D and 1D simulations,
we ignore effects due to gravity and attenuation and effectively compute the purely elastic
solution. Gravity will be integrated in the near future.

6.3 1D and 3D Normal Mode Comparison

3D waveforms are processed using the same procedure applied to the 1D data. Resultant
spectra are shown in Fig. 12 along with a series of 1D spectra based on the radial mod-
els (Fig. 3). Note that in computing waveforms (Yspec) and eigenfrequencies (MINEOS)
gravity and attenuation are ignored. All spectra have been rescaled for comparison. This fig-
ure depicts the relative variation in the frequencies of the spectral peaks among 3D spectra
determined at several stations (Fig. 12A–B) and among 1D spectra at a single station but
different radial models (Fig. 12C–D). The comparison (see zoom-ins) seems to indicate that
the inter-station frequency variation in the 3D spectra is smaller than the across-model vari-
ation observed in the case of 1D. This is apparent in the variation of the vertical lines, which
indicates the variation in �f . For the five spectra shown in Fig. 12A–B and Fig. 12C–D,
�f lies in the ranges 0.172–0.174 mHz (3D) and 0.166–0.177 mHz (1D), respectively. This
suggests that variations in the globally-averaged structure are likely to be more significant
than perturbations arising from 3D variations.

A quantitative means of assessing differences between 3D and 1D approaches would be
to compare radial profiles obtained from inversion of 3D data at several locations to the
profiles obtained from inversion of the average 3D model. However, because a statistically
meaningful analysis implies performing inversions at many stations, which is computation-
ally prohibitive, we rely on the following approach:
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Fig. 12 Relative variation in spectral peak frequencies. (A) frequency variation among 3D spectra deter-
mined at a number of stations across the planet for the model in Fig. 11; (B) zoom-in of (A). (C) frequency
variation among 1D spectra at a single station but different radial models (see Fig. 3); (D) zoom-in of (C).
Vertical lines and dots in (B) and (D) indicate selected spectral peaks. Spectra are rescaled for comparison

1. Pick spectral peaks: fundamental-mode peaks in the 3D spectra are selected for 20 ran-
domly chosen stations according to the spectral estimation scheme (Sect. 3.4);

2. Identify peak clusters: selected peaks appear to form clusters with similar frequencies in
agreement with the observation of little variation in 3D spectral peak frequencies between
stations as seen in Fig. 12B. As a consequence, it should be possible to find groups of
peak frequencies that correspond to the same mode. A binning procedure is applied for
grouping the frequencies into these clusters. The width of each bin is set to be equal to
the mean value of �f over the 20 spectra examined. Many sets of bins are tested and the
squared distance of the ith frequency (f i

k ) to the mean frequency (f k) in a given bin k is
computed from

Φ =
∑

k,i

∥

∥f i
k − f k

∥

∥
2

(4)

and the set of bins that minimises this function is chosen for further analysis;
3. Compute standard deviation: after having determined the bins, the standard deviation of

the observed spectral peak frequencies in each bin is computed, which is interpreted as a
measure of the relative spectral variation. The maximum value of this standard deviation
is on the order of �f /2 given the fixed bin-width; and

4. Repeat steps 1–3 for the 1D-model spectra: 200 models are drawn randomly from the
sampled prior (gray histograms in Fig. 10), which represent plausible Martian 1D mod-
els. For these 200 models, we compute fundamental-mode frequencies directly using
MINEOS. For consistency, we keep the same binning-procedure and bin-width as in the
3D case. Finally, we compute the standard deviation for each bin.
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Fig. 13 Comparison of spectral variation based on globally-averaged models (Fig. 3) and a three-dimen-
sional model (Fig. 11) as a function of frequency. The 3D frequency variation is determined by investigating
how the frequency changes across a number of stations distributed over the planet based on a single 3D seis-
mic model (Fig. 11); the 1D frequency variation is obtained by considering the frequency change at a single
station but different radial models (Fig. 3)

Figure 13 summarises the variation in standard deviation as a function of frequency for
both 1D and 3D cases. We limited the frequency range to 7–13 mHz, because 3D spec-
tral peaks are too sparse above and below this frequency range. Identification of additional
fundamental-mode spectral peaks might be possible after a preliminary inversion run. The
figure indicates that the standard deviation and thus relative spectral variation among dif-
ferent 1D models is about twice as large as the standard deviation in the case of 3D. Con-
sequently, variations in the globally-averaged structure appear to have a larger influence on
fundamental-mode frequencies than the features included in our 3D model. A similar anal-
ysis conducted using a different 3D model that includes larger crustal variations confirms
these conclusions (see Appendix B). In summary, 3D structure as modelled here appears
not to present a limitation to our method. Models that incorporate compositional variations
should be explored in the future (e.g., Baratoux et al. 2014; Bozdağ et al. 2017).

7 Summary and Conclusions

In this study, we have developed an approach for extracting information on the interior
of Mars by focussing on the long-period part of the seismogram (> 60 s), where normal
modes are expected to be dominant. Based on vertical-component simulations of ground-
motion for a relatively large Mars quake (Mw5.8), we 1) computed the amplitude-spectrum
and its autocorrelation to determine the frequency spacing of the fundamental spheroidal
modes; 2) identify evenly-distributed fundamental-mode spectral peaks in the frequency
range 5–15 mHz and invert the spectral peak frequencies for globally-averaged models of
the interior structure of Mars; 3) verify the set of peaks by either discarding and/or adding
peaks based on how well the synthetic spectral peaks fit the observations; and 4) re-invert
the revised spectral peak frequencies for a final set of interior models fitting the observations
within their uncertainty. The method was successfully applied to a synthetic test where it was
demonstrated that the “true” model could be retrieved. This test also showed that inversion
of fundamental spheroidal modes in the frequency range 5–15 mHz, information is limited
to the depth range 0–250 km. The method is generally formulated and can easily be extended
to include short-period seismic data and other observables such as geodetic data as these are



Normal Modes on Mars Page 21 of 28  114 

recorded by InSight. Here, we made the simplifying assumption of uniform and fixed bulk
composition. More generally, this constraint should be relaxed, preferably in combination
with the addition of other data.

The choice of parameters determining the width of the synthetic peaks, although some-
what subjective, is less significant as inversions using different peak widths have shown.
Increasing the width of the peaks will result in broader probability distributions, but simi-
lar mean model. In the case of low signal-to-ratio, for example, we could envision starting
with relatively broad peaks and then to decrease modelled peak width iteratively in several
inversion stages to improve convergence.

In this context, it is important to emphasise that the method, because of the observa-
tion of a constant frequency spacing in the fundamental spheroidal mode branch, is robust
in spite of the fact that we are not properly modeling the spectral amplitudes. This can be
understood as follows: let us assume that a specific peak contains contributions from a fun-
damental mode and an overtone. The contribution of the overtone, if located at exactly the
same frequency as the fundamental mode, will act to change the amplitude of the peak.
But, since we are not fitting the observed amplitudes per se, which would require model-
ing the moment tensor in addition to the seismic model, this change in amplitude is of no
relevance in the inversion as we are focusing on the frequency of the peak. If, however,
the overtone is slightly off in frequency, which would act to either broaden and/or slightly
modify the frequency of the observed resultant peak, then this would be detected by the con-
stant frequency-spacing analysis whereby peaks are selected in the first place. Therefore, if
modified in frequency, then that particular peak would not match the observed frequency
spacing coherently and thus not be singled out in the first place. It might eventually, after
a preliminary inversion, reveal itself as a potential fundamental mode contaminated by sig-
nal from overtones and/or proper noise. The same arguments essentially apply in the case
of low signal-to-noise ratio. First off, for very low signal-to-noise ratio, the autocorrelation
would simply not yield a useable frequency spacing. For intermediate signal-to-noise ratio,
we could potentially find ourselves in the situation where we initially select a noise rather
than a fundamental mode peak. However, assigning peaks based on the estimated frequency
spacing when moving across the spectrum would be incoherent and therefore an indication
that the initially-selected peak is very likely an “outlier”. It should be clear that the procedure
is dependent on data quality and will require some manual fine-tuning, but it is nevertheless
the case that the use of data as a means of pre-selecting and refining models (and modes) is
the strong point of the method.

We have tested a relatively large event, which is not expected to occur more than once
during the nominal mission lifetime. However, it stands to reason that the method works
equally well for a lower magnitude event, such as Mw5.5 of which 1–10 are expected to
occur within the 2 years of the nominal mission, and based on the currently expected signal-
to-noise ratio (Fig. 1), normal modes should be detectable during nighttime for ∼ 5.5 events.
Moreover, in this study we adhered to a more conservative noise model, whose signal-to-
noise ratio is lower than that of the recent model produced by the InSight noise model
working group. As a consequence, any improvement in the signal-to-noise ratio relative to
what has been implemented here, translates into an improvement of the results.

Finally, to assess the impact of 3D structure on the fundamental spheroidal modes of
Mars, we first constructed 3D models of Mars’ interior and subsequently performed full
3D waveform simulations in these models. Comparison of 3D and 1D spectra showed that
changes in global radial structure are more important than the lateral variations in seismic
properties that were modeled here. This suggests that, to first order, our 1D analysis presents
an additional and independent means for obtaining information on the interior of Mars.
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Additional 3D models including plausible compositional variations across the planet will
have to be investigated to test the relative importance of 1D versus 3D structure further.

Ultimately, the success of the methodology developed here for determining upper man-
tle structure will depend on installation characteristics of the seismometer and the hitherto
unknown levels of Martian seismicity and background seismic noise. These parameters will
be estimated as of the end of 2018.
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Appendix A: “Benchmark Inversion”

In the method proposed here, the computation of synthetic spectra relies on an approxima-
tion and only serves as a tool for fitting eigenfrequencies. This principally arises because
of lack of knowledge of the seismic source. To quantitatively test the proposed method,
we shall assume that source parameters (location and mechanism) are perfectly known and
proceed to compute the “true” amplitude- and phase-spectrum. This “real spectrum” can be
inverted for interior structure and the results compared to those obtained from our approxi-
mate method. For the inversion of amplitude and phase, we rely on the Bayesian approach
used earlier, but 1) adjust the forward routine by including Yspec for the computation of time
series for each new sampled model and 2) re-formulate the likelihood function as follows

L(m) ∝ exp

(

−
∑

i

( |Aobs(ωi) − Asyn(ωi)|2
2(σA

i )2
+ |φ∨

i |2
2(σ

φ

i )2

))

(5)

where Aobs and Asyn denote observed and synthetic amplitude, respectively, and φ∨ the angle
between observed and synthetic phase, evaluated at the frequency ωi of the observed peaks.
Since all peaks are considered, this automatically includes overtones and noise alongside
fundamental-mode peaks. For the purposes of this test, uncertainty in amplitude (σA) is set
to 30% and uncertainty in phase (σφ) to ±0.1π . Inverting amplitude and phase for the
same parameters (Moho depth and lithosphere thickness and temperature) as done previ-
ously (Sect. 5) results in the sampled posterior distributions for model and data parameters
displayed in Fig. 14A–E. To ensure adequate coverage of the model space, multiple inver-
sions starting with different initial models were run in parallel. Relative to previous results
(Fig. 10A–C), sampled model variances are smaller and simply reflects inversion of a larger
dataset, i.e., more information. Nevertheless, the results are generally in good agreement
with those obtained from the approximate method and attests to proper performance of the
latter. In addition, our approximate method is computationally much cheaper (∼ 0.85 s for
one forward routine on a single CPU) than the “full” approach (∼ 200 s for one forward
routine on a single CPU).

Appendix B: Additional 3D–1D Comparison

To additionally test the importance of 3D effects, we analyzed a second model with stronger
lateral variations (S-wave speed of ±5%) in the crust following Khan et al. (2018) on top of
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Fig. 14 Inversion results using full amplitude and phase information. (A)–(C) sampled prior and posterior
distributions for the main crustal and lithospheric parameters of interest (temperature at the bottom of the
lithosphere, Moho thickness, lithospheric thickness). (D)–(F) Corresponding radial profiles of density, P- and
S-wave speed. (G)–(H) fitted amplitude (D) and phase (E) spectra. Misfit is evaluated at the frequencies
indicated by the red dots
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Fig. 15 Slice through a three-dimensional seismic model showing lateral variations in S-wave speed in the
crust at a depth of 54 km

Fig. 16 (A) frequency variation among 3D spectra determined at a number of stations across the planet
for the model in Fig. 15; (B) zoom-in of (A). (C) frequency variation among 1D spectra at a single station
but different radial models (see Fig. 3); (D) zoom-in of (C). Vertical lines and dots in (B) and (D) indicate
selected spectral peaks. Spectra are rescaled for comparison. (E) comparison of spectral variation based
on globally-averaged models (Fig. 3) and a three-dimensional model (Fig. 15) as a function of frequency.
The 3D frequency variation is determined by investigating how the frequency changes across a number of
stations distributed over the planet based on the model in Fig. 15; the 1D frequency variation is obtained by
considering the frequency change at a single station but different radial models (Fig. 3)
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a 1D mantle. In this model lateral variations in the mantle are neglected because these are
unlikely to be seen given the large crustal perturbations combined with decreased sensitivity
at greater depth. In the crust, the ratio of S- to P-wave speed is 0.55 and the ratio of density
to P-wave speed is 1.2. Repeating the analysis outlined in Sect. 6.3, 3D and 1D spectra are
compared in Fig. 16A–E. While the quality of the spectra is generally worse in comparison
to the previous 3D model, it is nonetheless possible to pick �f and select fundamental-
mode peaks across 20 different stations. As in the previous analysis, �f varies between
0.169 and 0.172 and is thus of the same order as observed previously. This suggests that for
the expected long-wavelength 3D variability, peak frequency variability is less important
than the variability due to the range of possible 1D models.

Appendix C: Description of Supplementary Material

Additional material can be found in the Online Resource of this article. It contains figures
showing 1) additionally investigated radial models, 2) corresponding dispersion curves and
spacing of fundamental modes (�f ), and 3) comparison of estimated and theoretical �f .
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