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Abstract We image the thermochemical structure of crust and mantle underneath the North
American continent by inverting recordings of P-to-s (Ps) and S-to-p (Sp) converted seismic body waves
(receiver functions [RFs]). Through careful data selection and processing, we construct a multifrequency
Ps (5-, 8-, and 10 -s) and Sp (10- and 15- s) RF data set from USArray recordings. The inversion is interfaced
with petrological phase equilibria computations to build self-consistent radial seismic velocity and density
models for RF waveform simulations. Inverted models are combined through back-projection along
converted raypaths and interpolation to tomographic images of crust and mantle structure. Through
clustering analysis we identify three major tectonic regions based on mantle thermochemical and seismic
structure: the tectonically active West (TAW), the central transition region (CTR), and the
cratonic-orogenic East (COE). TAW is chemically more fertile with a Mg#∼ 0.90 (molar
Mg#=Mg/(Mg+Fe)) and characterized by an elevated mantle potential temperature of 1490± 27◦C
relative to COE, which is chemically more depleted (Mg#∼ 0.91) and colder (1419± 27◦C). CTR is
intermediate to TAW and COE. We find significant thermochemically induced topography associated with
the base of the lithosphere (±90 km), while the mantle transition zone is mostly influenced by thermally
induced topography on the 410-km discontinuity (±15 km). In contrast, the 660-km discontinuity, where
variations are only ±5 km, reflects a more complex thermochemical interplay. To place the results in a
tectonic context, thermobarometric estimates from basaltic rocks across the western United States are
integrated with the seismic inversions to produce a thermal model of the underlying mantle.

1. Introduction
Earth's thermal and compositional structure is the result of wide-ranging dynamical processes that have
shaped and continue to shape the planet's surface and interior. Seismology provides tools for imaging traces
of these processes, such as subducting slabs, thick continental roots, and mantle plumes, through their
influence on material properties and thus seismic wave velocities and propagation.

The aforementioned geologic features can be seismically imaged using converted, reflected, and refracted
body waves (e.g., Farra & Vinnik, 2000; Flanagan & Shearer, 1998; Tan & Helmberger, 2007). For example,
the construction of receiver functions (RFs) allows to extract timing and amplitude of P-to-s (Ps) and S-to-p
(Sp) converted phases, which serve as proxy for imaging depth and sharpness of seismic discontinuities
beneath a station, respectively (Langston, 1979; Vinnik, 1977). Important seismic discontinuities include the
base of the crust (Moho), the lithosphere-asthenosphere boundary (LAB), and the bounding discontinuities
of the mantle transition zone (MTZ; cf. Figure 1).

While the LAB primarily marks a change in thermal and rheological regime (e.g., Artemieva &
Mooney, 2001; Eaton et al., 2009; Jaupart & Mareschal, 1999), two globally observable discontinuities bound
the MTZ that are associated with the transformation of the mantle minerals olivine to wadsleyite and ring-
woodite to bridgemanite+ ferropericlase at depths of ∼410- and ∼660-km depth, respectively (Dziewonski
& Anderson 1981; Ringwood, 1975). The exact depth of these discontinuities (hereafter referred to as 410
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Figure 1. Illustration of conversions of body waves at (a) the Moho and the 410- and 660-km seismic discontinuities in
the Earth and corresponding synthetic (b) Ps and (c) Sp receiver functions based on the seismic reference model
IASP91 (Kennett & Engdahl, 1991). P and S waves are shown as green (solid) and blue (dashed) lines, respectively.
Time windows including arrivals of converted waves are shaded in green. Note that the polarity and time axis of Sp RFs
are flipped as a result of which arrivals with positive travel times arrive prior to the S wave and are not masked by
crustal reverberations as is the case for Ps conversions.

and 660) is a nonlinear function of local temperature, pressure, and composition (Bina & Helffrich, 1994;
Helffrich, 2000; Xu et al., 2008). The RF technique serves as an excellent tool to study lateral thermochem-
ically induced variations in discontinuity structure (e.g., Andrews & Deuss, 2008; Cottaar & Deuss, 2016;
Geissler et al., 2010; Kumar et al., 2005; Knapmeyer-Endrun et al., 2017; Lawrence & Shearer, 2006;
Makushkina et al., 2019; Monna et al., 2019; Munch et al., 2020; Sodoudi et al., 2006; Tauzin et al., 2008, 2017;
Vinnik, 2010).

Here, we consider Ps and Sp RFs to study crust, lithosphere, and mantle underneath the contiguous
United States, which offers a plethora of past and recent geologic processes and encompasses areas from
active tectonic regions in the west to precambrian and phanerozoic continental masses in the central
and eastern parts (cf. Figures 2a and 2b; Hoffman, 1989; Mooney & Kaban, 2010; Williams et al., 1991;
Whitmeyer & Karlstrom, 2007). Extensive seismic studies of the North American lithosphere, its base,
and intralithospheric discontinuities have been conducted and provided insights into the processes that
formed these complex continental entities (e.g., Abt et al., 2010; Afonso et al., 2016; Boyce et al., 2019;
Calò et al., 2016; Eilon et al., 2018; S. M. Hansen et al., 2015; Kind et al., 2015, 2020; Rychert et al., 2007;
H. Yuan & Romanovicz, 2010; H. Yuan et al., 2014). Seismic imaging of the mantle have tracked both recent
(e.g., Juan de Fuca slab and Yellowstone plume) and ancient tectonic features (e.g., Farallon slab) (e.g., Bur-
dick et al., 2008; C. Chen et al., 2015; Krischer et al., 2018; Maguire et al., 2018; Nelson & Grand, 2018; Nettles
& Dziewonski, 2008; Obrebski et al., 2010; Porritt et al., 2014; Sigloch, 2011; van der Lee & Nolet, 1997).

In this study, we aim to improve our current understanding of mantle structure and its relation to past and
present dynamical processes underneath the North American continent by providing a more detailed view
of the combined thermochemical structure of Moho, LAB, upper mantle, and MTZ. For this purpose, we will
build upon and extend the work of Munch et al. (2018), who combined mineral phase equilibrium computa-
tions with geophysical inversion to self-consistently image the thermochemical structure of the MTZ using
Ps waves converted at the 410 (P410s) and 660 (P660s). The advantage of this approach is that it anchors tem-
perature, composition, seismic properties, and discontinuities that are in laboratory-based forward models,
while simultaneously permitting, through inversion, to optimize profiles of physical properties (e.g., S wave
velocity) to match seismic data.

We consider a number of improvements and extensions to our previous work by (1) including Sp RFs; (2)
considering multiple frequency bands for both Ps and Sp RFs; and (3) applying the methodology to USArray
data to perform a tomographic study of the North American continent. Points 1 and 2 allow for improvement
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Figure 2. (a) Main physiographic features (Fenneman, 1928) of the contiguous United States: P1: Pacific mountain
system (including Cascade Range); P2: Columbia plateau (including Snake River Plain and Yellowstone Hotspot);
P3: Basin and Range (including Rio Grande Rift); P4: Colorado plateau; P5: Rocky Mountain system; P6: Interior
Highlands; P7: Laurentian Highlands; P8: Interior Highlands; P9: Appalachian Highlands; P10: Atlantic Plain.
(b) The tectonic provinces (Hoffman, 1988; Whitmeyer & Karlstrom, 2007) represent the long-term geological history
of the continent: the oldest parts of the continent, i.e., of Precambrian age, include the Greater Wyoming province (T2)
and Superior craton (T4), which are connected along the Trans-Hudson orogen (T3). Proterozoic orogenies accreted the
Yavapai (T5), Mazatzal (T6), Granite-Rhyolite (T7), and Grenville provinces (T8) to the cratonic core. During episodes
of extension in proterozoic times, the mid-continental rift was formed but abandoned, and later, the Pacific and
paleo-Atlantic oceans were opened. The closure of the latter during the paleozoic formed the Appalachian mountain
belt (T9 and P9), which, nowadays, is bordered by the Atlantic plains (P10), i.e., the relatively young passive
continental margin, to the east and south. In contrast to the east, the western margin (T1) is dominated by subduction
processes acting since the mesozoic (e.g., Dickinson, 2004; Humphreys, 2009; Sonder & Jones, 1999), which have
resulted in accretion of terrane to the American continent, volcanism (Cascade range, P1), and extensional tectonics
(Basin and Range, P3). The topography model underlying the maps is that of ETOPO1 (Amante & Eakins, 2009).
(c) Location of USArray reference stations (www.usarray.org). White circles indicate stations, where either Ps or Sp RFs
or both were inverted, while black triangles represent stations for which data were processed but because of quality
constraints were not considered in the inversion. Station numbering and details are given in Table S1. Magenta lines
indicate profiles along which cross sections of mantle seismic properties are shown.
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in resolution of lithosphere, upper mantle, and MTZ structure. With these improvements in place, we are
able to identify three major tectonic provinces based directly on differences in mantle thermochemical and
seismic structure that show significant thermochemically induced variations across the LAB and MTZ. We
further observe well-known tectonic features in our tomographic images, such as hot mantle upwelling
underneath the western United States as well as traces of active and ancient subduction.

This paper is divided into two parts: a methodological and an application part. In part 1 (sections 2 and 3),
we describe how seismic data are processed to construct a new set of multifrequency Ps and Sp RFs using
USArray data with particular emphasis on Sp RFs (Ps RFs are detailed in Munch et al., 2018), including data
selection, deconvolution, spatial sensitivity analysis, stacking and uncertainty estimation, and RF model-
ing as part of which we perform a benchmark of one-dimensional (1-D) synthetic waveforms against three
dimensional (3-D) full waveform synthetics to validate our 1-D modeling approach to computing seismo-
grams. In part 2 (sections 4–7), we apply the developed methodology to obtain self-consistent tomographic
images of the crust, lithosphere, and mantle underneath the North American continent. Part 2 includes
model parametrization, inversion procedure, and discussion of results. Finally, to further test the results
presented here, we compare our seismic thermal model with an independent model of the western United
States constructed from thermobarometry data.

2. Data Processing
The fundamental idea of the RF method is to separate signals generated by the direct and converted phases
on three-component ground-motion recordings based on their distinct particle motion (e.g., Kind et al., 2012;
Rondenay, 2009). In the case of a Ps conversion, the P motion is recorded on the vertical component and
the converted wave on the radial component, while the order is reversed for Sp conversions. The converted
signal can be considered as the convolution of the direct wavefield with the local structural response. Thus,
deconvolving the “source” (i.e., direct phase) from the “response” trace (i.e., converted phase) results in a
time series representing the structure below the receiver (Langston, 1979; Vinnik, 1977). This time series is
called the receiver function (cf. Figures 1b and 1c). Source and path effects between event and conversion
point are assumed to be removed through the deconvolution operation, as all this information is contained
in both, source and response traces (Kind et al., 2012).

In spite of certain advantages of Sp over Ps RFs, the use of the former for making structural inferences is
limited relative to the latter because of limitations that beset S waves (e.g., Bock, 1994; Farra & Vinnik, 2000;
Wilson et al., 2006; X. Yuan et al., 2006). First, the incidence angle of Sp converted phases is larger than that
of the original S wave, causing post-critical incidence to restrict the usage of Sp RFs to narrower epicentral
distance ranges and depths shallower than 660 km (cf. Figure 1a). Also, because of the large incidence angle,
Sp conversion points are located farther away from the station than in the case of Ps, which ultimately results
in broader regional sampling. Added to this is a lower spatial resolution because of a lower frequency content
of S waves relative to P waves. Second, the signal-to-noise ratio (SNR) of S waves is lower than for P waves
because of a range of interfering phases, which generally complicates observation of Sp conversions. In this
context, Bock (1994) and Wilson et al. (2006) have pointed out that amplitudes of P wave multiples between
the surface and the MTZ can become significant to the extent that these can be mistaken for conversions.
Third, core phases (ScS, SKS, and their respective conversions) in the epicentral distance range ∼85◦ to
100◦ interfere with Sp conversions, in particular the S660p phase (X. Yuan et al., 2006). These issues can,
however, to a large extent be mitigated through careful data selection and processing steps as described in,
for example, Monna et al. (2019); X. Shen et al. (2019); and Wilson et al. (2006).

2.1. Data Selection

We collected and processed data recorded at stations of the USArray (Figure 2c), which includes about 100
reference stations in complementary use to the denser transportable network. Seismic data were acquired
from the IRIS datacenter (Incorporated Research Institutions for Seismology, ds.iris.edu/ds/nodes/dmc/)
using ObspyDMT (Hosseini & Sigloch, 2017). Event selection is based on information available from the
global centroid moment tensor catalogue (www.globalcmt.org, Dziewonski et al., 1981; Ekström et al., 2012).
Only events with a magnitude of at least 5.5 and a focal depth shallower than 150 km were selected. The lat-
ter criterion is applied to reduce the interference of Sp conversions with surface-reflected multiples (Wilson
et al., 2006). For constructing Ps RFs, we select events in the epicentral distance (Δ) range of 40◦ to 95◦ (e.g.,
Andrews & Deuss, 2008). For Sp RFs, we are restricted to a Δ range of 55◦ to 90◦ because of post-critical
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incidence. Also, because of the simultaneous arrival of SKS and ScS (including their conversions) beyond
85◦, the S660p conversion is very difficult to observe (X. Yuan et al., 2006). We therefore focus on Sp con-
versions at discontinuities between the Moho and the 410. The selected distance ranges and the respective
travel times of direct and converted waves are shown in Figure S1 in the supporting information.

2.2. RF Processing

For each event, recordings are filtered between 0.02 and 1 Hz using a Butterworth bandpass filter of sec-
ond order and are then rotated to the vertical-radial-transverse (ZRT) system under consideration of the
back-azimuth computed from the source and receiver locations. In the Sp case, we additionally rotate wave-
forms to the LQT system, where the orthogonal L and Q components are approximately aligned with the
S and Sp converted phases, respectively, improving their detectability (Kind et al., 2012; Rondenay, 2009).
The orientation of the L and Q axes is determined by maximizing the energy in the window from −30
to +50 s on the Z/L component around the theoretical S-wave arrival by means of principal component
analysis (PCA; see Figure S2). In order to determine the SNR and exact arrival of the direct phase, we imple-
mented the automated picking approach of Abt et al. (2010). An illustration hereof is shown in Figure S3. To
ensure high-quality data, we only consider waveforms with a SNR> 5. Alternative SNR criteria for detecting
lithospheric Sp conversions have also been proposed by X. Shen et al. (2019) and Monna et al. (2019).
2.2.1. Deconvolution
RFs are obtained from deconvolving source (direct phase) from response waveform (converted phase). The
source wavelet is extracted by trimming the corresponding trace around the picked arrival of the direct
phase within windows from −50 to +150 s and from −100 to +30 s for Ps and Sp RFs, respectively. Analo-
gously, the response trace is cut within a window from −50 to +150 s and from −150 to +50 s for Ps and Sp
RFs, respectively. The tapered source and response waveforms are subsequently deconvolved using iterative
time-domain deconvolution (Ligorría & Ammon, 1999). For removing high-frequency noise from the RFs,
a Butterworth low-pass filter of second order is applied for different corner periods: 5-, 8-, and 10- s for Ps
RFs and 10- and 15- s for Sp RFs. This choice is dictated by the increased noise content at shorter periods
and lack of resolution at longer periods, respectively. Maximum wavelengths associated with these periods
are 28–56 km for Ps and 90–135 km for Sp RFs, respectively. Since the arrival times of converted phases not
only depend on the structure below the receiver but also on the slowness of the ray, we stretch and compress
the time axis of each RF to a reference slowness (moveout correction), i.e., 6.5 s/◦ for Ps RFs and 9.9 s/◦ for
Sp RFs. For comparison with Ps RFs, the time axis and polarity of Sp RFs are flipped.
2.2.2. Stacking and Uncertainty Estimate
To further enhance SNR, we stack individual RF traces at a given station. This ensures that information
from many events, where focal depth, mechanism, and epicentral distance differ, are combined coherently.
Phases not aligned through the moveout correction are canceled and hence direct conversions enhanced.
To determine uncertainties on RFs, we employ a bootstrap resampling approach (Efron & Tibshirani, 1991)
and compute the standard deviation of 100 stacks, where each stack is formed from n randomly recombined
RFs, with n being the number of available RF traces. A crucial choice has to be made on the selection of
RF traces to be included in a stack, as this depends on the spatial sensitivity of the data set, i.e., location of
conversion points relative to station and frequency content.
2.2.3. Spatial Sensitivity of Sp RFs
Assuming the main sensitivity of a RF to be confined to the region directly beneath the station allows us
to sum all moveout-corrected RF traces available to form a stack. While this assumption is reasonable for
Ps conversions and therefore applied to the Ps RF data set, it is not directly applicable to the Sp conver-
sions, because of the high incidence angles compared to the direct S wave. Consequently, Sp conversion
points are located significantly further away from the station than those of Ps converted waves from the
same depth (cf. Figure 1a). Moreover, Sp converted waves propagate faster and hence have longer wave-
lengths. These effects are illustrated for Sp RFs obtained at station 39-COWI (“39” referring to the station
ID in Figure 2c and “COWI” being the station abbreviation) and filtered at 10s period by computing and
plotting the Fresnel volumes of converted waves at different depth slices following the approaches of Lekić
et al. (2011) and Cottaar and Deuss (2016). For each event present in the Sp RF data set for station 39-COWI,
we (1) determine Sp conversion points at depth Z using ray tracing through IASP91 (Crotwell et al., 1999;
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Figure 3. (a–d) Normalized Fresnel zone weights of Sp piercing points (color coded by back-azimuth; see panel e) at a
depth of 210- (a and c) and 410- km (b and d) for the events recorded at 39-COWI (red triangle) and 12 nearby
transportable USArray stations within a distance of ∼70- (TA1; magenta triangles) and ∼140- km (TA2; blue triangles),
respectively. (e) Location of station 39-COWI and the seismic events used for computing Sp receiver functions colored
by back-azimuth (dots).
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Kennett & Engdahl, 1991) and (2) compute the Fresnel zone half-width, 𝛿HW , at the same depth Z, which is
a function of wavelength, 𝜆, via

𝛿HW =
√(

𝜆

3
+ Z

)2
− Z2, (1)

where 𝜆 is obtained by multiplying the P wave velocity above Z, i.e., the velocity of the converted wave, with
the dominant period (here 10 s). Knowing the location of conversion points and Fresnel zones, we evaluate
the lateral sensitivity of the ray by comparing 𝛿HW for each node on a discrete grid at distance 𝛿 to the
conversion point of interest via normalized cubic splines:

w =
⎧⎪⎨⎪⎩

3
4
𝛿

3 − 3
2
𝛿

2 + 1, if𝛿 ≤ 1
1
4
(2 − 𝛿)3, if1 < 𝛿 ≤ 2

0, if𝛿 ≥ 2,
(2)

where 𝛿 = 𝛿∕𝛿HW . We performed this analysis for conversions at 210- and 410-km depth (see Figures 3a
and 3b). The weights of all rays included in a certain back-azimuth bin are summed and rescaled by the
maximum value to facilitate comparison. Note that the width of the Fresnel volume is not the resolution
limit of a seismic wave (Spetzler & Snieder, 2004) but serves as a useful illustration of the latter.

For station 39-COWI, we observe that the group of events emanating from the western Pacific, South Amer-
ica, and Europe (Figure 3e) produce distinct sensitivity clusters at 210- and 410-km depth (Figures 3a
and 3b). Their clear separation indicates that summing RFs from the entire data set would lead to averaging
of lithospheric and upper mantle structure from different regions. Instead, it requires forming stacks that
are sorted by back-azimuth (e.g., Monna et al., 2019; Vinnik, 2005, 2010). However, back-azimuth binned
stacks reduce the number of useful traces available in one back-azimuth bin to between 10 and 80; yet Sp
RF stacks containing less than ∼100 traces tend to be noisy and, consequently, less robust (see section S2).
A possible work-around is to increase the number of traces within a back-azimuth bin by incorporating
additional data as shown in the following.
2.2.4. Back-Azimuth Stacking Using Additional Stations
In addition to the reference network (Figure 2c), USArray also consists of a dense network of transportable
stations. Since stations are only spaced about 60 km apart, events of similar back-azimuth recorded at neigh-
boring stations will produce Sp converted waves that sample a similar region as illustrated in Figures 3c
and 3d. Thus, the amount of data in a back-azimuth bin for a given reference station can be increased by
including data recorded at nearby transportable stations.

This is illustrated in Figure 4 for the reference station 39-COWI, which shows how the uncertainty and
amplitudes of the Sp RF stack evolve as traces from the transportable stations closest to 39-COWI are added
for events in the western Pacific (back-azimuth bin #1, panels a and b) and Europe (back-azimuth bin
#3, panels c and d), respectively. For both back-azimuth clusters, we see that the bootstrap-derived mean
uncertainty of the cumulative stack decreases and that RF amplitudes change when the number of traces
is increased. The improvement in the quality of the Sp RF is particularly evident in the case of the S410p
phase that emerges in back-azimuth bin #3, which is far less apparent in the Sp RF 39-COWI-only stack.
Although the final number of traces used (∼50) for this particular event cluster remains below the threshold
associated with a robust stack, back-azimuth bin #1 includes more than 150 traces. In combination with the
clear signals emanating from Moho, lithosphere, and the 410, we therefore consider this to be a high-quality
stack and retain it for the inversion.

An alternative approach would be common-conversion point (CCP) stacking, which migrates each indi-
vidual RF trace from time to depth domain according to its conversion points (e.g., Cottaar & Deuss, 2016;
Dueker & Sheehan, 1997; Kosarev et al., 1999; Kind et al., 2020; Lekić & Fischer, 2014; Lekić et al., 2011;
Lekić & Fischer, 2017; Rondenay, 2009). This method, however, depends crucially on the background veloc-
ity model used for migration and, unless data are properly reprocessed during inversion using the currently
updated velocity model, is not self-consistent and therefore limited in accuracy.

2.3. Data Workflow Summary

We processed Ps and Sp RFs for all USArray reference stations (Figure 2c). This included the following steps:
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Figure 4. Sp receiver function stacks, mean uncertainty (σ), and number of summed traces (green bars) for two
distinct back-azimuth bins related to events in the (a and b) west Pacific (#1) and (c and d) Europe (#3), respectively.
Including data recorded at transportable stations (blue and magenta dots; TA1 and TA2, respectively) of the reference
station (39-COWI; red dot) reduces uncertainty and enhances the S410p phase in back-azimuth bin #3 (d).

• Construction of a multifrequency Ps (5-, 8-, and 10-s low-pass period) and Sp (10- and 15-s low-pass
period) RF data set.

• Formation of Sp RF stacks sorted by back-azimuth by combining data recorded at USArray reference and
transportable stations that are located at a maximum distance of 140 km from the former.

• Selection of robust and only highest quality Ps and Sp RFs with clear signals emanating from the Moho,
lithosphere, 410, and 660 for the inversion (cf. Table S1).

3. Synthetic RF Modeling
In order to generate a synthetic RF stack equivalent of the observed RF stack, we first compute waveforms
using the reflectivity method (Fuchs & Müller, 1971; Müller, 1985). In order to ensure consistency, synthetic
waveforms are processed the same way as the observed data (Munch et al., 2018). For optimal radiation of P
and SV waves, we model the source as an explosion for Ps RFs and a normal-fault mechanism for Sp RFs. The
source-time function is a Heaviside function and the modeled focal depth is imposed by the median of the
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depth distribution of the observed events. As the amplitudes of converted waves depend on slowness, their
relative contribution to the final RF stack has to be mimicked in the synthetic RF modeling. The distribution
of receivers and their relative weights in the stack therefore follows that of the distribution of the theoretical
slownesses of the direct phase as imposed by the data set (Munch et al., 2018).

We exclude the uppermost layer of the model from the reflecting zone when computing waveforms for Sp
RFs (cf. Figure S6). This suppresses multiple surface reflections which otherwise would constructively inter-
fere and bias the RF. This approach is similar to the one by X. Yuan et al. (2006), who argue that propagation
of multiples in a laterally heterogeneous Earth is ineffective. Ultimately, synthetic waveforms also have to
conform to the following criteria: (1) the L and Q axes as imposed by the data set are employed to ensure con-
sistency between observed and synthetic LQT-systems, since these affect RF amplitudes, and (2) the arrival
time of the direct phase for the underlying model is determined via ray tracing (Crotwell et al., 1999), since
the automated picking algorithm is unable to distinguish core phases from S waves for Δ> 85◦.

Finally, in order to validate our 1-D modeling approach to computing synthetic seismograms, we bench-
marked modeled 1-D RFs against 3-D full waveform synthetics (see section S3.2). For this purpose, we
employed the spectral element based software package Salvus (Afanasiev et al., 2019) to compute full wave-
forms in a 3-D velocity model. Comparison of 1-D and 3-D RFs is shown in Figure S7 and the modeled
waveforms are seen to be in good agreement. On the basis of this benchmark, the 1-D approach pursued
here appears to be reliable for modeling both, Ps and Sp RFs, and, from a practical viewpoint, computation-
ally much more efficient (1-D: ∼15–20 s on a normal desktop-computer per RF stack, 3-D: ∼25 nodehours
on a supercomputer).

4. Model Parametrization
4.1. Petrological Model

Building on previous experience (e.g., Khan et al., 2009; Munch et al., 2018), we model mantle composition
by the weight fraction of basalt in a basalt-harzburgite mixture. This compositional model is based on the
recognition that basaltic crust is generated at ridges through partial melting, leaving behind the depleted
complement harzburgite (Xu et al., 2008). At subduction zones, this physically and chemically stratified
oceanic lithosphere is continuously being recycled back into the mantle, where it remixes (e.g., Helffrich &
Wood, 2001; Tackley et al., 2005). The resultant mineralogy depends on the degree of equilibration between
basalt and harzburgite and two mixing models have been proposed (Xu et al., 2008): equilibrium assemblage
(EA) and mechanical mixture (MM). The EA model assumes full equilibration, whereas in the MM model
the mantle is a mixture of the end-members. Here, we focus on the EA model as Munch et al. (2018) have
shown that RFs are less sensitive to differences between MM and EA.

For a given basalt fraction f , mantle composition X is computed from

X = 𝑓XB + (1 − 𝑓 )XH , (3)

where XB and XH are basaltic and harzburgitic end-member compositions, respectively. To predict the rela-
tive amount of stable minerals and physical properties along a self-consistent mantle adiabat for harzburgite
and mid-ocean ridge basalt (MORB) chemical compositions in the Na2O-CaO-FeO-MgO-Al2O3-SiO2
system (Table 1), we employ Gibbs free energy minimization and equation-of-state modeling
(Perple_X software package; Connolly, 2009). For this purpose, we adopt the thermodynamic formulation
of Stixrude and Lithgow-Bertelloni (2005) and parameters and uncertainties as given by Stixrude and
Lithgow-Bertelloni (2011). Density and elastic moduli are accurate to within ∼0.5% and ∼1–2%, respec-
tively (Connolly & Khan, 2016). To obtain the mantle pressure profile, we integrate the vertical load from
the surface pressure boundary condition. Within the crust and lithosphere, temperature is computed by
assuming a conductive geothermal gradient, while the sublithospheric mantle adiabat is defined by the
entropy of the lithology at the base of the lithosphere (see Figure S8 for an illustration).

The present thermodynamic model of Stixrude and Lithgow-Bertelloni (2005, 2011) has limitations: (1) the
equilibrium assumption is dubious at low temperatures as equilibrium is not likely to be achieved (e.g.,
Wood & Holloway, 1984). Consequently, we compute mineralogy for temperatures below 500◦C at 500◦C,
and the resultant mineralogy is used to calculate physical properties at the temperature of interest; and (2)
the thermodynamic model does not account for redox effects (e.g., Cline II et al., 2018), minor phases, and
water and melt due to lack of thermodynamic data. Both, water and melt, can significantly affect elastic

BISSIG ET AL. 9 of 30



Journal of Geophysical Research: Solid Earth 10.1029/2020JB020350

Table 1
Model Mantle Compositions in wt% of Mid-Ocean Ridge Basalt
(MORB) and Its Depleted Residue, Harzburgite (from Khan
et al., 2009)

Component MORB, XB Harzburgite, XH

CaO 13.05 0.5
FeO 7.68 7.83
MgO 10.49 46.36
Al2O3 16.08 0.65
SiO2 50.39 43.64
Na2O 1.87 0.01
Mg# 0.709 0.913

Note. Mg# (molar) is given by Mg/(Mg+Fe).

properties at lithospheric and MTZ depths. Negative gradients in S wave velocity (>5%) within the continen-
tal lithosphere could arise from hydrous minerals (Green et al., 2010; Rader et al., 2015; Selway et al., 2015)
and low wave velocities near the LAB in oceanic and active regions have been attributed to partial melt
(e.g., Clark & Lesher, 2017; Karato & Park, 2019; Kawakatsu et al., 2009; Lekić & Fischer, 2014; Rychert
& Shearer, 2009; Stern et al., 2015). The MTZ is also considered as a plausible water reservoir within the
mantle given the experimentally constrained storage capacities (1–3%) of wadsleyite and ringwoodite (Férot
& Bolfan-Casanova, 2012; Kohlstedt et al., 1996; Smyth, 1987). However, mineral physics data suggest the
effect of water on seismic velocities is negligible at MTZ conditions as a result of which seismic data are
insensitive to water content (Schulze et al., 2018; Thio et al., 2015). While evidence for regional low-velocity
layers atop the 410 (e.g., Khan & Shankland, 2012; Kind et al., 2015; Song et al., 2004; Toffelmier & Tyburczy,
2007; Tauzin et al., 2010; Vinnik & Farra, 2007; Xiao et al., 2020), that might be related to partial melt
(Bercovici & Karato, 2003; Freitas et al., 2017; Hirschmann, 2006), has been put forward, we find no clear
signs for this. Future studies will have to consider this in more detail.

4.2. Crustal Structure

The velocity structure of the crust is important for modeling RFs (see sections S5.1 and S5.3.2). Here, we
follow Munch et al. (2018) and model the crust as a stack of three layers of variable thickness and S wave
velocity, which is assumed to increase with depth. The ratios of density and P wave velocity to S wave velocity
are constant in the crust. We invert for all of these parameters by using conversions at the Moho and Ps
crustal reverberations.

4.3. Anelastic Effects

In order to model the effect of anelasticity on seismic amplitudes (K. H. Liu, 2003), we follow the scheme
outlined in Munch et al. (2018), which considers a laboratory-based viscoelastic dissipation model derived
from grain-size-, temperature-, and pressure-sensitive viscoelastic relaxation measurements. The dissipation
model based on the extended Burgers model is described in detail in Jackson and Faul (2010) and relies on
laboratory experiments in the temperature range 800◦C to 1200◦C of torsional forced oscillation data within
1- to 1,000-s period on melt-free poly-crystalline olivine grains between 3- and 165-μm size. Radial profiles of
shear attenuation, Q𝜇 , are determined for the viscoelastic extended Burgers model using the implementation
of Bagheri et al. (2019), for which rheological parameters are listed in Table S2.

The advantage of this particular setup is that it allows us to account for, through the thermodynamic inter-
face, the influence of temperature and pressure on the shear attenuation model in a self-consistent manner
(Bagheri et al., 2019). Alternative viscoelastic models have also been proposed (e.g., Jackson & Faul, 2010;
Karato et al., 2015; Sundberg & Cooper, 2010), but the relatively high-frequency Ps and Sp RFs are not
sensitive enough to allow for proper discrimination (see discussion in section S6.3). In case Q𝜇 exceeds
600, Q𝜇 is set equal to 600 and bulk attenuation, Q𝜅 , is held fixed at 57,823 after PREM (Dziewonski
& Anderson, 1981).
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Table 2
Overview of Model Parameters, Their Quantity, and Prior Model Parameter Ranges and Probability Distributions

Description Parameter Quantity Value/range Distribution
Basalt fraction f 1 0–0.5 Uniform
Lithospheric temperature (◦C) Tlit 1 950–1600 Uniform
Lithospheric thickness (km) Zlit 1 70–300 Uniform
Crustal layer thicknesses (km) 𝛿Z 3 1–20 Uniform
S wave velocity of uppermost V1

S 1 2.0–4.1 Uniform

crustal layer (km/s)
S wave velocity change across 𝛿VS 2 0–0.5 Uniform
Crustal discontinuities (km/s)
Crustal density- and P-to-S wave 𝜌/VS 1 0.768± 0.0213 Normal
velocity ratios VP/VS 1 1.746± 0.0195 Normal

5. Inverse Problem
5.1. Formulation of the Inverse Problem

Within the Bayesian framework, the solution to the inverse problem d = g(m), where d is a data vector
containing observations and g a typically nonlinear operator that maps a model parameter vector m into
data (Mosegaard & Tarantola, 1995).

𝜎(d,m) = k ⋅ h(m)(d,m), (4)

where k is a normalization constant, h(m) is the prior probability distribution on model parameters (see
Table 2) and contains information about model parameters obtained independently of the data under con-
sideration, (d,m) is the likelihood function, which can be interpreted as a measure of misfit between the
observations and the predictions from model, and 𝜎(d, m) is the posterior model parameter distribution con-
taining the solution to the inverse problem. The particular form of(d,m) is determined by the observations,
their uncertainties, and data noise and will be discussed in the following section.

5.2. Definition of the Likelihood Function

We only consider the time windows that include Ps and Sp RF signal of interest, i.e., converted energy from
the Moho (and reverberations thereof), the 410, and the 660 for Ps RFs, and the Moho, the lithosphere, and
the 410 for Sp RFs. The windows are determined manually for each stack as illustrated in Figure 5 (gray
areas). For each window i, observed RF, and low-pass period T, we consider a L2-based likelihood function
of the form


RF
T,i (d,m) = exp(−ΦRF

T,i ), (5)

where

ΦRF
T,i =

1
N

N∑
𝑗

||dobs
𝑗

− ds𝑦n
𝑗

||2
2𝜎2

𝑗

, (6)

with dobs
𝑗

, ds𝑦n
𝑗

, and 𝜎j being observed and synthetic Ps or Sp RF amplitudes (for a given period and window)
and data uncertainty of data point j, respectively, with N denoting the total number of points within each
misfit window. Consequently, the total likelihood function for a given station, RF type, and back-azimuth
bin is the conjunction of the likelihood functions associated with each period and misfit window:

(d,m) =
∏
T,i


RF
T,i (d,m). (7)

5.3. Sampling of the Posterior

We sample the posterior distribution by means of the Metropolis-Hastings algorithm (Hastings, 1970;
Metropolis et al., 1953). This algorithm is based on random sampling of the model space, yet only models
that result in a good data fit and are consistent with prior information are frequently sampled (importance
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sampling). At each step n, a model, mn+ 1, is proposed on the basis of the prior distribution and is either
accepted or rejected based on the probability

P = min
[

1, (m
n+1)

(mn)

]
, (8)

where mn represents the last accepted model. In a slight modification, we use the cascaded Metropolis
algorithm (Mosegaard & Tarantola, 1995, 2002), which applies the acceptance criterion (Equation 8) to each
period T and misfit window i (crust, lithosphere, 410, and 660) separately for a given station and individual
RF type (and back-azimuth bin):

Thus, the model is only retained if all of the individual steps are accepted. This acceptance criterion is more
strict when compared to the “standard” acceptance criterion of the Metropolis-Hastings algorithm but acts
to prevent trade-offs between misfit windows when considered separately.

Finally, to improve McMC performance, we reduced the burn-in of the sampling stage by employing a global
optimisation method in order to obtain a good initial model for the subsequent model space search. For this
purpose, we use the Covariance Matrix Adaption Evolution Strategy of N. Hansen and Ostermeier (2001).
We first search for a crustal model by minimizing the misfit in the crustal time window and subsequently
refine both crustal and thermochemical model by minimizing misfit across all windows. In the McMC stage,
we sampled∼40,000 models in total by running eight chains in parallel, of which∼4,000 models are retained
for analysis here. Step lengths are adjusted so that the acceptance rate is between 30% and 50%. Synthetic
test inversions and grid-search examples are described in section S5.

5.4. A Posteriori Migration of Inversion Results

We created a series of maps and cross sections to visualize the spatial variation of model parameters based on
mean models. The use of mean models is justified given that the posterior probability density distributions
(Figure 6) are mostly Gaussian. Maps and cross sections are produced through linear interpolation of the
Ps and Sp RF-derived mean models, which were migrated to their point of sensitivity, which, in the case of
Ps RFs, is approximately the location of the station and for Sp RFs is the conversion point of the Sdp phase
(cf. section 2.2.3), where d is the depth of sensitivity of a particular model parameter. For example, when
migrating Sp RF-derived crustal and lithospheric thickness, d equals either Zc or Zlit, whereas in the case of
temperature, d is equal to 410 km, since thermal information is primarily contained in the S410p phase (see
Figure S15).

For a given station, back-azimuth bin, and model parameter with sensitivity d, we compute the coordinates
of the Sdp conversion points in IASP91 for all events included in that bin and average them to extract the
final point of sensitivity. The so-computed Sp RF points are shown as diamonds in the maps that follow,
while Ps RF points, i.e., station locations, are depicted as circles. All estimates related to discontinuity struc-
ture (Moho, LAB, and MTZ) have been corrected for station elevation. Finally, while the present inversion is
not a tomographic inversion sensu stricto, it is an inversion for a set of (quasi-local) radial profiles of thermo-
chemical and physical structure, which, when pieced together, result in tomographic images that are based
on the a posteriori migration procedure.
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Figure 5. Data misfit between inverted and observed high-quality (a) Ps (5s low-pass period) and (b) Sp receiver
functions (10s low-pass period). Observations and uncertainties are shown as magenta lines, sampled receiver
functions as contours (dark bands), and misfit windows in light gray. Station numbering is shown in Figure 2c,
whereas “SA” and “WP” denote events located in South America and the West Pacific, respectively. For improved
visibility, amplitudes of conversions from the 410 and 660 have been scaled up. Equivalent data fits for Ps and Sp
receiver functions at low-pass periods of 8-, 10-, and 15-s are shown in Figure S19.

6. Results and Discussion
6.1. Datafit

The fits to observed Ps and Sp RFs at 5- and 10-s period, respectively, are shown in Figure 5. Fits to Ps
and Sp RFs at the other periods are summarized in Figure S19. Conversions at the Moho, 410, and 660
discontinuities as well as lithospheric Sp RFs are seen to be captured well by the sampled models.

6.2. Crustal Thickness

The inverted mean crustal thickness model is shown in Figure 7a. Results for 𝜌/V S and V P/V S can be found
in Figure S20. The abbreviations and extent of physiographic and tectonic provinces referred to hereafter
are depicted in Figures 2a and 2b. As expected, crustal thickness estimates are better constrained from Ps
than from Sp RFs (Figures 6a and 6b) given the higher frequency content of Ps RFs and the additional
information contained in crustal reverberations. Mean Ps and Sp RF-derived standard deviations are 1.6-
and 3.5-km, respectively. For comparison, we are also showing the crustal thickness map based on Crust1.0
(Laske et al., 2013) in Figure 7b. Our model is in good agreement with Crust1.0, including other models
(not shown; e.g., Buehler & Shearer, 2017; Lowry & Peréz-Gussinyé, 2011; Levander & Miller, 2012; Ma
& Lowry, 2017; Schmandt et al., 2015; W. Shen & Ritzwoller, 2016) that indicate that regions with rela-
tively thin crust (25–35 km) are found in the western part of the United States, i.e., beneath the Columbia
plateau (physiographic province P2) and the Basin and Range province (P3), as well as the passive margins
of the continent in the southern and eastern parts (P10). Regions with thicker crust (45–55 km) are observed
underneath the Wyoming craton (tectonic province T2) and Trans-Hudson orogen (T3) as well as within the

BISSIG ET AL. 13 of 30



Journal of Geophysical Research: Solid Earth 10.1029/2020JB020350

Figure 6. Sampled marginal posterior probability distributions (black lines) of (a and b) crustal thickness, Zc, (c and d)
potential temperature, Tpot , (e and f) lithosphere thickness, Zlit), and (g and h) basalt fraction, f, from inversion of Ps
and Sp receiver functions, respectively. Mean values and standard deviations of the distributions are
shown as thick and thin lines, respectively, where choice of color is based on the colormaps used in Figures 7 and 9.
Station numbering refers to Figure 2c, whereas “SA” and “WP” refer to events from South America and
the West Pacific, respectively.
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Figure 7. (a) Mean crustal thickness, Zc, across the contiguous United States interpolated from migrated Ps (circles)
and Sp (diamonds) receiver functions. (b) Crustal thickness map from model Crust1.0 (Laske et al., 2013).
Physiographic provinces are outlined in magenta (Fenneman, 1928, cf. Figure 2a).

precambrian building blocks towards the east (P6–P8; T4–T8) and south-west that extend into the Colorado
plateau (P4).

6.3. Tectonic Regionalization

In order to embed the results in a geologic context, we first extracted radial profiles of temperature, S wave
velocity, and shear attenuation on a 2.5◦ × 2.5◦-grid and grouped them individually via k-means clustering
according to their similarity, i.e., by minimizing the L2 distance to the mean profile of the respective cluster
(MacQueen, 1967). This approach allows for identification of tectonic regions without any a priori con-
straints (e.g., Calò et al., 2016; Houser et al., 2008; Lekić & Romanowicz, 2011; Lekić et al., 2012). Consistent
results were found for three clusters that are shown in Figure 8. The radial profiles for each parameter show
specific characteristics that determine the clustering: (1) temperature and depth of the intersection point
of conductive geotherm and mantle adiabat; (2) amplitude and depth extent of upper mantle low-velocity
zone; and (3) thickness of the high-Q𝜇 lid.

When the mean profile for each location is projected onto a map (see insets in Figure 8), a well-known trend
that follows the tectonic division of the North American continent appears. In particular, we are able to dis-
tinguish the tectonically active west (encompassing physiographic provinces P1–P5), which is characterized
by being relatively hot, of slow shear-wave velocity, and highly dissipative (red dots), from the colder, faster,

Figure 8. Profiles of (a) temperature (T), (b) S wave velocity (VS), and (c) shear attenuation (Qμ) obtained from
inversion of Ps and Sp receiver functions and clustering analysis. Profiles are grouped into three clusters according to
similarity (color coded) and displayed in light color, whereas the mean profile of each cluster is shown as a thick line.
The tectonic regions identified in panel (a) will be referred to as tectonically active West (red; TAW), central transition
region (green; CTR), and cratonic-orogenic East (blue; COE) in the following. The maps shown in the insets are
interpolated from the inversion results on a 2.5◦ × 2.5◦-grid. PREM profiles are shown in black in panels (b) and (c).

BISSIG ET AL. 15 of 30



Journal of Geophysical Research: Solid Earth 10.1029/2020JB020350

Table 3
Summary of Thermochemical Characteristics and Discontinuity Structure of the Main Tectonic Regions Identified
Through Cluster Analysis in Figure 8a

Tectonic region
TAW CTR COE

Parameter (tectonically active West) (central transition region) (cratonic-orogenic East)
Zc 40± 5 km 44± 5 km 44± 4 km

Tpot 1490± 27◦C 1429± 37◦C 1413± 27◦C

Zlit 100± 23 km 146± 31 km 208± 33 km

f 13± 4.5% 11± 3.0% 10± 3.6%

Mg# 0.904± 0.003 0.906± 0.002 0.907± 0.003

Z410 424± 7 km 417± 6 km 416± 6 km

Z660 660± 2 km 659± 2 km 658± 2 km

Note. Parameters are crustal thickness (Zc), potential temperature (Tpot), lithosphere thickness (Zlit), basalt fraction
(f ), Mg# (molar Mg/(Mg+Fe)), and depth to 410 (Z410) and 660 (Z660). Values represent the mean and standard
deviation based on the distributions shown in Figures 9c, 9e, 12b, and 12d.

and less dissipative older eastern parts (blue dots) that include the cratonic core and the Appalachian moun-
tains, i.e., parts of provinces P6–P9 and T2–T8. The third cluster (green dots) represents an intermediate
group of profiles distributed over the central and eastern parts that are sandwiched between red and blue
regions. While these features suggest that tectonic regions are mainly controlled by the thermal structure of
the continental lithosphere, a compositional signal is also present (section 6.6). For the remainder of the dis-
cussion, we will refer to the tectonic regions identified in Figure 8a as the tectonically active West (TAW; red),
the central transition region (CTR; green), and the cratonic-orogenic East (COE; blue). Smoothed outlines
of these regions are indicated in the maps and an overview of the values observed for the thermochemical
parameters is given in Table 3.

6.4. Mantle Temperature

For ease of comparison with literature estimates, we rely on the concept of potential temperature, Tpot, which
is the temperature of the adiabatic mantle when extended to the Earth's surface (McKenzie & Bickle, 1988).
We compute Tpot by linear extrapolation of the adiabatic mantle geotherm: Tpot = Tlit − ∇T ⋅ Zlit, where
we have employed an adiabatic gradient ∇T = (T410 − Tlit)∕(Z410 − Zlit) with T410 and Z410 representing
temperature at and depth of the 410, respectively. Uncertainties on Tpot average 35◦C and 43◦C for Ps and Sp
RFs, respectively (Figures 6c and 6d). Figure 9a displays interpolated mean values of Tpot. As in Figure 8a,
we observe a clear east-west trend from low to high potential temperatures, reaching values of 1430◦C to
1520◦C in region TAW, 1360◦C to 1470◦C in CTR, and 1350◦C to 1450◦C in COE, respectively. We find large
positive thermal anomalies underneath the Cascade range (P1), the Basin and Range province (P3), and
Yellowstone Hotspot. The same general east-west pattern was also observed in the thermal anomaly maps
obtained by Khan et al. (2011) from inversion of surface wave phase velocities, although of lower resolution,
by Maguire et al. (2018) from stacking of Ps RFs, and S. M. Hansen et al. (2015) from analysis of surface wave
tomographic models. We should note that thermal anomalies constrained by Sp RFs could be biased by the
basalt-rich nature of the inverted compositions (see Figure 6h). We estimate that in these regions, “normal”
basalt fractions would cool the mantle locally by up to ∼30◦C to 50◦C (cf. Figure S16).

6.5. Lithospheric Thickness and Structure

A map of the thickness of the thermal lithosphere is shown in Figure 9b. We emphasize that lithospheric
thickness refers to the depth (defined by Zlit) at which the conductive geotherm intercepts the mantle
adiabat. There is no apparent discontinuity associated herewith and hence no converted phase; yet the
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Figure 9. Models of the North American thermochemical mantle structure: (a) potential temperature, Tpot , (b)
lithosphere thickness, Zlit , and (d) basalt fraction, f . Tectonic regions identified earlier (cf. Figure 8a) are outlined in
magenta. The distribution and correlation of Tpot with Zlit and f for each of these tectonic regions (color coded) are
shown in panels (c) and (e), respectively. Maps derive from Ps (circles) and Sp (diamonds) receiver functions,
respectively, except the compositional map showing basalt fraction (d), where Sp receiver function estimates are
excluded because of the large uncertainties (see section 6.6). Differences in lateral extent of these maps arise from the
migration of Sp receiver function results along the converted raypath to different depths (see section 5.4).
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long-period part of the Sp RFs (cf. Figure S15) is affected. Note that uncertainties on thermal lithospheric
thickness are generally much smaller for Sp (17 km) than for Ps RFs (32 km) (Figures 6e and 6f). This
arises because lithospheric Sp RFs are not obscured by crustal reverberations, as is the case for Ps RFs.
Consequently, Ps RFs only provide indirect insight into lithospheric structure via the sensitivity of the P410s
and P660s to mantle temperature, which is controlled by both Zlit and Tlit. However, as Sp measurements
are sparse, we include the results from Ps RFs for interpolating Zlit.

The thinnest lithosphere (79–141 km) is found in region TAW, as also observed in previous studies that con-
sidered Ps and/or Sp RFs (e.g., Abt et al., 2010; S. M. Hansen et al., 2015; Hopper et al., 2014; Li et al., 2007;
Lekić et al., 2011; Levander & Miller, 2012). The exact shape of the thin-lithosphere branches that extend
across the Rocky Mountains (P5) towards the Central plains (P6) are only constrained by few data points
and hence are not interpreted further here. Region CTR shows an intermediate range in lithospheric thick-
ness of 85–187 km and coincides mostly with the western Great plains (P6), the New Madrid Seismic Zone
(e.g., C. Chen et al., 2014; Zhang et al., 2009), and the mid-continental rift system (e.g., Stein et al., 2015).
Finally, region COE is, as expected on account of its cratonic and orogenic nature, composed of relatively
thick lithosphere (125–247 km). This negative correlation between potential temperature and lithospheric
thickness observed in the maps is clearly visible in Figure 9c and is further illustrated in the tomographic
cross sections shown in Figure 11, where lateral variations in thickness go hand-in-hand with variations in
S wave anomalies (see section 6.7) such that thick lithosphere is predominant in “cold” regions, whereas
thin lithosphere is found in “hotter” regions.

We should note that some Sp RFs (e.g., 17-JCT, 32-SUSD, and 39-COWI) show complexities in the litho-
spheric part that are difficult to fit, which could potentially lead to a bias in thermal thickness estimates.
These complexities have been attributed to mid-lithospheric discontinuities (MLDs) that were observed
in Sp RFs from North America (e.g., Abt et al., 2010; Calò et al., 2016; Miller & Eaton, 2010; Kind
et al., 2015; Lekić & Fischer, 2014; H. Yuan and Romanovicz, 2010) and elsewhere (e.g., L. Chen, 2009; Ford
et al., 2010; Heit et al., 2007; Sodoudi et al., 2013; Savage & Silver, 2008; Wölbern et al., 2012). Processes
capable of creating MLDs have been discussed extensively by Selway et al. (2015). In a recent study, Kind
et al. (2020) has pointed out that MLDs could result from the use of “inexact” filtering and deconvolution.
Instead of deconvolution, Kind et al. (2020) directly summed waveforms to obtain RF stacks. The resultant
MLDs were less apparent and point to the importance of careful data processing. The exact nature of data
processing is of less importance in our study, inasmuch as the problems that beset imaging and interpretation
are avoided in an inversion, where the same processing steps are applied to synthetic and observed data.

6.6. Mantle Composition

Mantle composition (basalt fraction) primarily affects the sharpness of the 410 and 660 seismic discontinu-
ities through its influence on RF amplitudes rather than the timing of converted waves (see Figure S15).
This is opposite to the effect of temperature, which primarily affects the depth of the 410 and 660 and,
through that, travel time of the converted phases. This separation of sensitivity allows us to decouple the
parameters. Basalt fractions estimated from Ps RFs vary on average from 0% to 25%, i.e., within the harzbur-
gite to pyrolite range with uncertainties around 5% (cf. Figure 6g). In comparison, Sp RF-estimated basalt
fractions show larger uncertainties (9.5%; cf. Figure 6h) and appear to cluster toward the upper end of the
prior (𝑓 = 50%), in disagreement with the Ps RF-derived results and other studies (e.g., Khan et al., 2011;
Maguire et al., 2018). The inferred basalt enrichment is likely related to the reduced sensitivity of the S410p
to composition, because of the generally small amplitudes of S410p relative to P410s. However, as noted ear-
lier, this only has a small effect on thermal estimates due to the first-order decoupling of temperature and
composition. Consequently, we exclude Sp RF-derived information from the compositional map (Figure 9d).

For present purposes, we express composition by means of the Mg#, which is computed as Mg/(Mg+Fe)
(molar), where high/low Mg# is indicative of depleted/fertile mantle, i.e., low/high basalt fraction, respec-
tively (cf. Table 1). While most of the mantle across the continent appears to be made up of relatively depleted
compositions (Figure 9d), region TAW is found to be slightly more fertile (𝑓 = 13 ± 4.5%, Mg# ∼ 0.90) in
comparison to regions CTR and COE (COE: 𝑓 = 10 ± 3.6%, Mg# ∼ 0.91), similar to the results of Khan
et al. (2011). Local enrichment of basalt underneath the continent could correspond to traces of active
(Cascadia) and ancient subduction zones (Farallon). The location of these anomalies are in agreement with
the results by Maguire et al. (2018).
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Figure 10. Interpolated S wave velocity perturbations, dVS, along horizontal slices between 100- and 650-km depth.
All maps share the same colormap but differ in absolute mean velocity and standard deviation (indicated on the top
right of each panel). Earlier identified tectonic regions (cf. Figure 8a) are outlined in magenta. Differences in lateral
extent of these maps arise from the migration of Sp receiver function results along the converted raypath to different
depths (see section 5.4).

6.7. Shear-wave Velocity Structure

In the following, we focus on models of isotropic elastic S wave velocity. Figure 10 shows S wave veloc-
ity images of the upper mantle and MTZ. For comparison, analogous plots for two tomographic models,
US-SL-2014 (Schmandt & Lin, 2014) and SL2013NA (Schaeffer & Lebedev, 2014), are shown in Figures
S22–S25). To illustrate lateral variations in structure further, we also present cross sections (Figure 11) along
three east-west and north-south profiles (magenta lines in Figure 2c). From these tomographic images, the
following observations can be made:

1. S wave velocity anomalies in the upper mantle (100–300 km) closely follow the tectonic regional-
ization and appear to be dominated by the lithospheric signature in that velocities are high/low in
regions with a deep/shallow lithosphere, respectively. These observations are particularly apparent
in the east-west trending cross sections, where the lithosphere slowly thickens and S wave veloci-
ties decrease when passing from region TAW to CTR underneath the eastern Rocky Mountains flank
(P5 to P6). The large variations in lithosphere thickness (70–250 km) affect the extent and ampli-
tude of the upper mantle low-velocity zone (Figure 8b), including large lateral velocity variations
of ±5.1% at 100-km depth. Amplitudes aside, similar observations were made in models SL2013NA
and US-SL-2014 (Figures S22–S25) and other regional tomographic models (e.g., Bensen et al., 2009;
Grand & Helmberger, 1984; Khan et al., 2011; Krischer et al., 2018; W. Nettles & Dziewonski, 2008;
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Shen & Ritzwoller, 2016; van der Lee & Frederiksen, 2005; Yuan & Romanovicz, 2010; Yuan et al.,
2011, 2014).

2. We are able to image mantle features underneath the western margin of the continent (region TAW),
where volcanism, accretion, and extensive tectonics are the likely surface expression of ancient and
active subduction (e.g., Dickinson, 2004; Humphreys, 2009; Sonder & Jones, 1999). We observe local-
ized high-velocity anomalies in the north that move further inland and southward at greater depths
(Figure 11b) and probably represent fragmented pieces of the Juan de Fuca, Gorda, and Farallon slabs
(e.g., Portner & Hayes, 2018; Sigloch, 2011). We further see a dominant low-velocity band parallel to the
Pacific coast, which, at shallow depths, forms a circular structure around the Colorado plateau (P4) that
extends towards Yellowstone. Similar features were identified by Becker (2012) in a comparison of tomo-
graphic models of the region (Burdick et al., 2008, 2010; James et al., 2011; Obrebski et al., 2010, 2011;
Roth et al., 2008; Schmandt & Humphreys, 2010, 2011; Sigloch, 2011). However, it has to be pointed
out that (1) resolution of our model is low because of reduced data coverage at shallow depth at the
flank of the eastern Rocky Mountains (P5) and (2) high basalt fractions, as inferred from Sp RFs, tend
to decrease velocity within the MTZ, which exaggerates low-velocity anomalies in regions where Ps RF
data points are limited.

3. Considering the central and eastern part (regions CTR and COE), we find multiple high-velocity anoma-
lies that extend to the MTZ, where a roughly north-south aligned band underneath the Great plains (P6)
is the most pronounced feature (see east-west cross section). These anomalies could be interpreted as
remnant pieces of the Farallon or Laramide slabs, although differences in shape relative to other studies
are apparent (e.g., Porritt et al., 2014; Sigloch, 2011; Schmandt & Lin, 2014).

4. Toward the bottom of the upper mantle, amplitudes of shear-wave anomalies generally decrease but
again increase significantly at and around 400-km depth as olivine transforms to wadsleyite. Lateral
velocity variations are larger than those above and below the transition and emphasizes the impor-
tance of considering phase-induced variations in addition to variations arising purely from volumetric
velocity perturbations. Structure in and around the MTZ is complex and shows significant topogra-
phy, particularly on the 410 (Figure 12a). As shown in Figure 12b, we find that the 410 occurs deeper
(409–432 km) in “hot” regions (TAW) than in “colder” parts (404–423 km in CTR; 401–422 km in COE).
To compositionally achieve an equivalent 410-depth variation (>30 km), basalt fraction would have to
change by >50% (see Figure S16), which corresponds to more than the total compositional variation
observed across the whole study area (Figure 9d). This suggests that composition is of secondary nature
in determining topography on the 410.

5. In contrast to the large peak-to-peak amplitudes of >30 km for the 410, lateral variations of the 660
are only ±5 km (Figure 12c) and there appears to be little correlation with temperature (Figures 12d).
Instead, the dependence of the 660 on temperature and composition is highly nonlinear (Figure S14)
and also affected by the transformation of garnet, whose relative importance increases as temperature
and basalt fraction increases (e.g., Hirose, 2002; Khan et al., 2009; Weidner & Wang, 1998; Xu et al., 2008)
(see also Figures S3 and S4 of Munch et al., 2018). Since the Clapeyron slopes for the transformations of
garnet and ringwoodite are opposite in sign (Hirose, 2002; H. Liu et al., 2018), the garnet phase transition
would follow the behavior of the 410 and move deeper in regions of elevated temperature.

6. MTZ thickness (Figure 12e) is largely controlled by the topography on the 410 and is thinner in region
TAW (∼220–250 km) than in CTR and COE (∼230–260 km). The 410 beneath the western United States
(TAW), where two strong depressions separated by a high-elevation band across northern Nevada (see
Figure 11b) are observable, agrees well with other Ps and Sp RF studies of the region (Cao & Lavender,
2010; Gao & Liu, 2014; Tauzin et al., 2013) and possibly relates to subduction. In contrast, the 660 and
hence MTZ thickness varies more across the aforementioned studies. This first and foremost reflects
the use of different imaging methods and different reference models to convert RFs from time to depth.
Furthermore, to the east of the Rocky Mountain front (CTR and COE), our inferred 410 and hence MTZ
thickness tends to “normal” values, in overall agreement with the continental-scale MTZ model of Gao
and Liu (2014). Further to this, Gao and Liu (2014) found, in agreement with Maguire et al. (2018), the
MTZ to be locally thicker underneath the Great Plains (P6), which they attributed to remnants of the
Farallon or Laramide slabs. Although less prominent, similar MTZ anomalies are also observed here.
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Figure 11. (a, c, and e) Longitudinal cross sections of S wave velocity perturbations at 45◦N, 40◦N, and 35◦N latitude, respectively, and (b, d, and f) latitudinal
cross sections at 115◦W, 100◦W, and 85◦W longitude, respectively. Lines indicating location of cross sections are shown in Figure 2c. The perturbation is
computed relative to the mean velocity with depth (not shown). Surface topography (Laske et al., 2013) is exaggerated 50× and black lines represent topography
on lithosphere and 410- and 660-km seismic discontinuities. Differences in lateral extent with depth arise from the migration of Sp receiver functions along the
converted raypath to different depths (see section 5.4). Above each panel, the extent of the tectonic regions identified in Figure 8a are indicated by different
colors: TAW (red), CTR (green), and COE (blue). Physiographic provinces (Fenneman, 1928, cf. Figure 2a) are outlined with dashed vertical lines.

7. Comparison of Seismic and Thermobarometric Constraints
Assessment of the chemical and petrological characteristics of erupted lavas can provide complementary
information to seismic inversions to understand the thermochemical structure of the underlying mantle. In
order to facilitate this comparison, we compiled whole rock chemical analyses of ∼500 primitive basaltic
rocks from the western United States, filtered for basalts with eruption ages younger than 5 Ma and with
MgO contents ≥8 wt% (see section S7 for details). The composition of each sample was inverted in order to
solve for the mean pressure and temperature of melt segregation according to the thermobarometer of Lee
et al. (2009) to create an internally consistent database. The resultant estimates on (minimum) lithosphere
thickness and mantle potential temperature for each sample have uncertainties of about 17 km and 50 ◦C,
respectively. Our results are consistent with those of Plank and Forsyth (2016) to within ±20◦C and ±15 km
for overlapping localities.

Comparison between petrological and seismological T-P estimates is subject to caveats associated with (i)
the differing spatial coverage and (ii) the degree to which phase and/or compositional changes influence the
seismic inversion (section 4.1). To account for the locally confined spatial sensitivity of thermobarometry rel-
ative to seismic wavelengths (cf. section 2.2.3), we masked cells beyond a radius of 1.5◦ to a sample location.
Lithospheric thickness is more difficult to compare given the reduced data coverage in the western-most
United States and the imposed seismic lower bound of 70 km.

With these considerations in mind, the interpolated results from thermobarometry are shown in Figures 13a
and 13b, while the difference to seismically derived potential temperature estimates are presented in
Figures 13c and 13d. The major magmatic provinces are demarcated on the basis of both seismic and petro-
logical inversions (Figures 9 and 13). Thermally anomalous mantle is observed underneath the Cascade
range (northern P1) and the Snake River Plain (eastern P2) towards Yellowstone Hotspot, and particularly
under the Basin and Range province (P3) in southern Nevada, extending towards the southeast in the Rio
Grande rift. Both methods agree on the relative amplitude of thermal anomalies, but differ in absolute values.

The largest temperature discrepancies, in which seismological estimates are 100◦C to 250◦C higher with
respect to thermobarometric inversions (cf. Figures 13c and 13d), are primarily observed along the Cascade
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Figure 12. Interpolated maps of mean depth to the major mantle seismic discontinuities at 410- and 660-km depth,
(a) Z410, (c) Z660, and (e) mantle transition zone thickness, ΔZMTZ . Tectonic regions identified in Figure 8a are
outlined in magenta. The distribution and correlation of mantle potential temperature Tpot with Z410 and Z660 for each
of these regions (color coded) is shown in panels (b) and (d), respectively.

arc parallel to the Pacific coast (P1). The petrologically derived potential temperatures, 1300◦C to 1350◦C,
are in agreement with other thermobarometric estimates (Grove et al., 2002; Leeman et al., 2005), whereas
temperatures derived from the seismic model may reflect the cumulative effects of increased H2O, f O2, and
melt fraction underneath this region, none of which are considered. Influx of water and oxidizing melts from
the downgoing slab into the mantle wedge are characteristics of subduction zones, with the net effect being
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Figure 13. Thermochemical structure of the lithosphere underneath the western United States as estimated from
thermobarometry: (a) interpolated potential temperature (Tpot) and (b) lithosphere thickness (Zlit). The deviation to
seismically derived temperature estimates (cf. Figure 9a) is shown in panel (c). Cells of the interpolation grid farther
away than 1.5◦ from the nearest sample location (stars) are masked. Physiographic provinces are outlined in magenta
(Fenneman, 1928, cf. Figure 2a). Panel (d) compares the petrologically and seismically derived temperature
estimates (markers colored by physiographic province). Isotherms represent absolute temperature differences, i.e.,
Tpot(seismology)−Tpot(petrology) (color coded and labeled).

that increasing Fe3+ in olivine results in increased dissipation of the shear modulus (Cline II et al., 2018),
such that more oxidized/water-rich mantle appears seismically slower (and therefore hotter). Other regions
show smaller differences (0◦C to 100◦C) and pertain to largely anhydrous tholeiitic provinces (Snake River
Plain, Southern Nevada, and New Mexico) formed by decompression melting of upwelling asthenosphere
(Fitton et al., 1991; Feuerbach et al., 1993; Leeman et al., 2009). This agreement therefore empirically verifies
the accuracy of the seismic inversion in quantifying the thermochemical characteristics of more typical
upper mantle.
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The strength of this comparison lies in that surficial expressions of thermal anomalies may be linked
to deep mantle structures. It also highlights the sensitivity of seismologically derived temperature-depth
estimates to the specific petrological characteristics of the mantle, which changes with tectonic setting.
Correctly accounting for these variations could help solve ambiguity in the chemical and isotopic signatures
of eruptive provinces by imaging the thermal state of the underlying mantle in more detailed seismic and
petrological surveys in the future.

8. Summary and Conclusions
In this paper, we proposed a methodology for processing, modeling, and inversion of multifrequency Ps and
Sp converted body waves (RFs) and applied it to data recorded by USArray to perform a tomographic study
of crust and mantle beneath the North American continent.

Careful data selection and processing has been found to be a central step in the construction of Sp RFs, since
these are typically prone to be noisy and sense distinct mantle regions depending on source-receiver con-
figuration. To properly account for this, we binned data into different back-azimuth bins and considered
these separately. To further increase the robustness of our Sp RF stacks, we augmented the latter by com-
bining data from USArray reference and transportable stations. Ultimately, only high-quality Ps and Sp RFs
with clear conversions at the Moho, lithosphere, 410, and 660 were retained for inversion. Finally, to ensure
consistency between observed and synthetic RF waveform amplitudes, processing of modeled waveforms
mimicked that applied to real data in detail. As part of waveform verification, we also conducted a valida-
tion of our approach to computing synthetic waveforms in 1-D models by comparing these to full waveform
synthetics computed in a 3-D velocity model.

Relying on a thermodynamic formulation, the forward model consisted of first computing seismic velocity
and density models via Gibbs free energy minimization, followed by seismic waveform modeling to construct
maps of the crust and thermochemical mantle structure underneath the contiguous United States. We were
able to identify three major tectonic regions based on similarities in radial temperature and S wave velocity
structure:

1. The TAW, comprising regions west of the Rocky Mountains, is characterized compositionally as more
fertile (Mg# ∼ 0.90), physically by a thinner lithosphere (100± 23 km), and thermally by higher mantle
potential temperatures (1490± 27◦C). Consequently, shallow upper mantle S wave velocity is strongly
diminished (by up to −5%), shear attenuation is increased, and the 410-km seismic discontinuity is
shifted to greater depths (424± 7 km).

2. The COE, including most of the continent to the east of the Great Plains, is compositionally
more depleted (Mg# ∼ 0.91) and colder (1413± 27◦C), underlain by an overall thicker lithosphere
(208± 33 km). Accordingly, S wave velocity is higher (by up to +5%), shear attenuation is decreased, and
the 410 appears at shallower depths (416± 6 km).

3. The CTR represents the tectonic region with intermediate properties in-between those of TAW and COE.

Despite being able to image well-known mantle features such as traces of active and ancient subduction or
the Yellowstone plume, we note that resolving the exact shape and extent of such 3-D volumetric features
by our method is limited by two factors: (1) we do not solve the inverse problem in a fully 3-D frame-
work, but rather use a 1-D formulation to build a 3-D model a posteriori, and (2) converted waves are not
directly sensitive to volumetric velocity changes, but rather to velocity contrasts across discontinuities. Fur-
ther limitations of our method arise from the use of isentropes in modeling mantle thermal structure, the
basalt-harzburgite compositional model, and the assumption of an equilibrium assemblage configuration.
Further, the absence of thermodynamic data, for now, involving melt- and water-bearing systems might bias
our results in certain regions, such as underneath the Cascades arc, as evidenced in the apparent mismatch
with petrological estimates. Yet in spite of these limitations, a fully equilibrated, compositionally uniform,
adiabatic, and dry mantle nevertheless provides an excellent fit to the observed seismic data. Our combina-
tion of geophysically derived potential temperature and lithospheric thickness estimates to those obtained
from thermobarometric inversions of volcanic rock chemistry in the western United States show first-order
agreement, permitting the assessment of broad-scale mantle melting conditions and their magmatic expres-
sion. This integrated approach represents a promising avenue for providing multidimensional insight into
crustal tectonic structures and regimes and their link with deep mantle processes.
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Data Availability Statement
The facilities of Incorporated Research Institutions for Seismology (IRIS) Data Services, and specifically
the IRIS Data Management Center, were used for access to waveforms and related metadata. IRIS Data
Services are funded through the Seismological Facilities for the Advancement of Geoscience (SAGE)
Award of the National Science Foundation under Cooperative Support Agreement EAR-1851048. Data
from the transportable array network were made freely available as part of the EarthScope USArray facil-
ity, operated by IRIS and supported by the National Science Foundation, under Cooperative Agreements
EAR-1261681. Seismic data were downloaded via ObspyDMT (Hosseini & Sigloch, 2017) and processed
using Obspy (Krischer et al., 2015) and the Python-package “rf” (Eulenfeld, 2020). Perple_X is available on
www.perplex.ethz.ch, and we use the CMAES-implementation by N. Hansen et al. (2019). Maps were cre-
ated by means of the Basemap Matplotlib Toolkit (matplotlib.org/basemap/). Tomographic mantle models
SL2013NA, US-SL-2014, and GyPSuM were downloaded from IRIS-EMC (ds.iris.edu/ds/products/emc/),
while model S362ANI and related codes are available on www.ldeo.columbia.edu/ekstrom/Projects/3D/BK/
models.html.
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