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A B S T R A C T

Phobos is one of the two moons of Mars, the only other terrestrial planet to have companions. In spite of certain
common orbital characteristics between Earth’s Moon and Phobos, such as almost circular, low-inclination,
and synchronous orbits, the origin of the Martian moons remains to be understood. This unsettled state of
affairs reflects a scarcity of data pertinent to its interior structure and bulk composition, both of which hold
the key to solving the question of the provenance of the satellites. Drawing on the importance of interior
structure as a means of providing further constraints on this problem, we construct a series of models of the
interior of Phobos in accordance with current observations and determine their tidal deformation. The models
include a homogeneous body, ice-rock mixtures, models with positive and negative density gradients, and
layered models. To compute the deformation of Phobos precisely, we solve the three-dimensional elastostatic
problem to obtain the full displacement field. For this, we rely on a higher-order spectral-element method
and to account for a correct representation of shape and resulting displacement field, we accurately mesh
the figure of Phobos by employing the digital terrain model of Willner et al. (2014). To enable us to further
distinguish between models, we also rely on currently available geophysical data (e.g., magnitude of libration
in longitude, mean density, gravity field, and moments of inertia). Our results show that the homogeneous, ice-
rock mixture, and negative density gradient models are largely degenerate and therefore difficult to separate,
but that models with a density increase with depth can be differentiated from the former model families.
From a purely deformational point of view, we find that for positive gradient and layered models, the largest
deformation occurs on the rim of the Stickney crater, rather than immediately at the sub-Mars point on Phobos,
as in the case of the other models, where tidal forces are largest. These observations will be of considerable
interest and should provide important anchoring points for the future exploration of Phobos as envisaged with
the Martian Moons Exploration mission.
1. Introduction

Phobos is the innermost satellite of Mars and is in a 1:1 spin–
orbit resonance as a result of which it shows, on average, the same
hemisphere to Mars similarly to our Moon in its orbit about Earth.
Phobos revolves around Mars in 7 h 39 min in an almost circular orbit
that lies in the equatorial plane with an inclination of ∼1◦. The average
distance to Mars’s surface is ∼9375 km, which is well below its co-
rotation radius (the distance at which Phobos’s mean motion equals
Mars’s spin rate). The orbital parameters of Phobos are summarized in
Table 1.

The satellite is highly irregular in shape and, as shown in Fig. 1,
elongated in the direction towards Mars (Willner et al., 2014). The
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main surface features comprise a large number of craters and grooves
spread over the entire surface (Schmedemann et al., 2014), of which
the biggest is the Stickney crater with a diameter of ∼10 km (Fig. 1).
The highly cratered surface is suggestive of a relatively old satel-
lite (Cazenave et al., 1980; Schmedemann et al., 2014; Yoder, 1982),
although arguments in favor of a younger age have also been ad-
vanced (Hesselbrock and Minton, 2017; Ramsley and Head, 2017;
Bagheri et al., 2021). Surface reflectance spectra of both Phobos and
Deimos have been observed to match those of primitive low-albedo
asteroids (Murchie et al., 1991; Rivkin et al., 2002; Fraeman et al.,
2014; Pajola et al., 2013; Witasse et al., 2014), suggesting a possible
origin within the asteroid belt.
vailable online 28 September 2021
019-1035/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.icarus.2021.114714
Received 9 March 2021; Received in revised form 15 September 2021; Accepted 16
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

September 2021

http://www.elsevier.com/locate/icarus
http://www.elsevier.com/locate/icarus
mailto:andrei.dmitrovskii@erdw.ethz.ch
https://doi.org/10.1016/j.icarus.2021.114714
https://doi.org/10.1016/j.icarus.2021.114714
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2021.114714&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Icarus 372 (2022) 114714A.A. Dmitrovskii et al.
Like Earth’s Moon, the origin and provenance of Phobos and Deimos
remains elusive, yet provide fundamental clues on the dynamical evo-
lution of the inner solar system. Chief among the hypotheses for the
origin of the Martian moons figure asteroidal capture (Cazenave et al.,
1980; Burns, 1992; Pajola et al., 2013), disruption of a common parent
body (Bagheri et al., 2021), co-accretion (Safronov et al., 1986), or
post-collisional re-accretion of ejecta material (Craddock, 2011; Citron
et al., 2015; Rosenblatt et al., 2016; Hyodo et al., 2017; Canup and
Salmon, 2018; Hesselbrock and Minton, 2017). Yet, as reviewed by
e.g., Rosenblatt (2011) and Rosenblatt et al. (2019), ambiguities related
to interior structure and composition make it challenging to discrimi-
nate between current hypotheses. To shed further light on this problem,
additional information on the internal structure of Phobos and/or its
composition is required (e.g., Usui et al., 2020).

Currently available information on the interior include satellite
mass (Pätzold et al., 2014a) and shape model (Willner et al., 2014),
which constrains the mean density of Phobos to 1.845 g/cm3. This rela-
tively low value suggests a fractured and porous moon filled with either
water-ice or voids or a combination thereof. Based on the estimated
mean density of Phobos, a number of interior structure models, includ-
ing homogeneous, fractured, or layered models of Phobos, have been
investigated with the purpose of estimating bulk physical properties, in-
cluding density, degree-2 gravity coefficients, libration amplitude, and
moments of inertia (Borderies and Yoder, 1990; Chao and Rubincam,
1989; Pätzold et al., 2014a; Rambaux et al., 2012; Willner et al., 2014;
Witasse et al., 2014; Shi et al., 2012; Tian and Zheng, 2020; Rosenblatt,
2011; Le Maistre et al., 2013, 2019; Yang et al., 2019; Guo et al., 2021).

One of the principal sources of information about the interior of
the satellite, which we shall rely on here, is its response to Martian
tides (see also Le Maistre et al. (2019)). The tidal response of a body
is determined to first order by internal properties (e.g., rigidity and
density). Here, we focus on the tidal bulge height as a possible means
of determining the interior structure of Phobos. The tidal bulge height
is a measure of the radial displacement of a point on the surface
of Phobos, and the less rigid the satellite is, the larger the resulting
bulge height. If the displacement could be measured from orbit within
the framework of the upcoming Martian Moons Exploration (MMX)
mission (Campagnola et al., 2018; Usui et al., 2020), a relatively
straightforward means of assessing interior properties could possibly
be established. With the envisaged Phobos sample return as part of
MMX, knowledge of its interior represents a key piece of information
that is needed for improved understanding of the origin of the Martian
moon(s).

In this study, we compute the gravitational potential and tidal
deformation of Phobos for a series of possible models of its interior
structure with a focus on locating regions of maximum displacement
so as to configure a potential orbiter-satellite system for optimal return.
For this purpose, we solve the full three-dimensional (3D) elastostatic
problem on the deformed body to determine the displacement field
and Poisson’s equation for the gravitational potential. For the case of
3D models, the governing equations can only be solved numerically as
attested to in previous studies (e.g., Shi et al., 2012; Le Maistre et al.,
2019; Tian and Zheng, 2020). Shi et al. (2012) compared different
methods including harmonic expansion, voxelization, and polyhedral
approximations to compute the gravitational potential for a homo-
geneous density distribution. Le Maistre et al. (2019) considered a
voxelized model of Phobos for a range of mass distributions and com-
puted moments of interia, libration amplitude, and surface gravity. Tian
and Zheng (2020) employed the boundary element method (BEM) for
modeling the surface deformation of irregular bodies. BEM solves the
governing equations on the boundaries of the body, for which the
number of unknowns is reduced, but the resulting discrete systems are
usually dense and parallel scalability becomes challenging. Moreover,
BEM does not directly provide the volumetric fields for the gravitational
2

potential or the displacement in the interior of Phobos.
Fig. 1. Digital terrain model of Phobos’s surface based on a spherical harmonic
expansion up to degree and order 45 (Willner et al., 2014). The big crater facing
the reader is the Stickney crater.

Table 1
Properties of Phobos and its orbit.

Property Reference

Dimensions (km) 26.06 × 11.40 × 9.14 Willner et al. (2014)
Semi-major axis (km) 9375 Jacobson and

Lainey (2014)
Eccentricity 0.01511 Jacobson and

Lainey (2014)
Inclination to the equator (◦) 1.067 Jacobson and

Lainey (2014)
Sidereal orbital period (h) 7.656 Rambaux et al.

(2012)

Instead, our approach relies on the higher-order spectral-element
method (Patera, 1984; Chaljub et al., 2007) and a recently developed
extension to the waveform modeling package Salvus (Afanasiev et al.,
2019). The spectral-element method (SEM) is particularly efficient on
unstructured hexahedral meshes and suitable for iterative, matrix-free
linear solvers. To properly mesh the shape of Phobos, we employ the
spherical harmonics expansion of the digital terrain model of Willner
et al. (2014), which results in an accurate representation of shape
and resulting displacement field. Given the advantages of our numer-
ical approach that enable us to achieve a high level of accuracy in
geophysical modeling, we investigate the possibility of distinguishing
between first-order, e.g., homogeneous, ice-rock mixture, and layered
models using currently available observations that include the degree-
2 gravitational coefficients, the libration in longitude, the principal
moments of inertia, and the center-of-mass-center-of-figure offset, in
addition to the aforementioned tidal displacement field.

The manuscript is arranged as follows. The theoretical background
for the elasto-gravitational problem and the geophysical data pertinent
to Phobos are discussed in Section 2. The numerical implementation
of the spectral-element method to solve the governing equations of the
elasto-gravitational problem is delineated in Section 3. In Section 4, we
devise a number of interior structure models of Phobos for analysis,
whose tidal, gravitational, and geophysical response is presented and
discussed in Section 5.

2. Method of analysis

2.1. Theoretical background

The gravitational potential 𝛷 of Phobos can be computed as a
solution to Poisson’s equation

(4𝜋𝐺)−1𝛥𝛷 =
{

𝜌 inside Phobos, (1)

0 else,
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where 𝜌 is the 3D density model of Phobos and 𝐺 is the gravitational
constant. From the gravitational potential, we can determine the grav-
itational acceleration at the surface of Phobos as the magnitude of the
normal derivative of 𝛷. It is important to note that the spatial domain
of Eq. (1) involves the full space R3, which requires special treatment
in the case of numerical approaches (to be outlined in Section 3).

For the displacement field resulting from tidal forces, we consider
Phobos to be a purely elastic body that experiences periodic deforma-
tions. Consequently, the problem can be described by the momentum
equation in the Lagrangian formulation (Dahlen, 1974)

𝜌𝜕2𝑡 𝒖 = ∇ ⋅ 𝝈
⏟⏟⏟

elastic restoring force

−∇(𝜌𝒖 ⋅ ∇𝛷) + ∇ ⋅ (𝜌𝒖)∇𝛷 − 𝜌∇𝜙
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

gravitational restoring force

+ 𝒇
⏟⏟⏟

external force

(2)

where 𝜌 is density, 𝒖 is displacement, 𝝈 is stress, 𝒇 is an external forcing
term, and 𝜙 is the perturbation of the gravitational potential due to the
redistribution of mass, which is determined by

(4𝜋𝐺)−1𝛥𝜙 =
{

−∇ ⋅ (𝜌𝒖) inside Phobos,
0 else. (3)

Hooke’s law relates stress to strain

𝝈 = 𝑪 ∶ 𝜺(𝒖) (4)

where 𝑪 is the fourth-order elasticity tensor, 𝜺(𝒖) = 1
2 (∇𝒖 + ∇𝒖𝑇 ) is

the symmetric strain tensor and ∶ denotes contraction over adjacent in-
dices. The constitutive relation in Eq. (4) is valid for general anisotropic
media. For isotropic elastic media, which we consider in this study, the
elasticity tensor reduces to the following form

𝑪 𝑖𝑗𝑘𝑙 =
(

𝜅 − 2
3
𝜇
)

𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇
(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

, (5)

where 𝜅 and 𝜇 are bulk and shear moduli, respectively. Transforming
Eq. (2) to the frequency domain, we obtain

𝜌𝜔2𝒖(𝝎) = ∇⋅(𝑪 ∶ 𝜺(𝒖(𝜔)))−∇(𝜌𝒖(𝜔)⋅∇𝛷)+∇⋅(𝜌𝒖(𝜔))∇𝛷−𝜌∇𝜙(𝜔)+𝒇 (𝜔)

(6)

where 𝜔 is frequency. Because we only consider the purely elastic case,
𝜺(𝒖) and 𝑪 are real-valued, implying no phase lag and therefore no fre-
quency dependence. Consequently, Eq. (6) simplifies to the elastostatic
problem

−∇ ⋅ (𝑪 ∶ 𝜺(𝒖)) + ∇(𝜌𝒖 ⋅ ∇𝛷) − ∇ ⋅ (𝜌𝒖)∇𝛷 + 𝜌∇𝜙 = 𝒇 (7)

The last term on the left-hand side 𝜌∇𝜙 is found to be at least 4 orders
of magnitude smaller than the tidal force and, consequently, neglected
in our simulations (cf. Fig. A.1).

The force term 𝒇 balances the gravitational attraction of a pointlike
Mars 𝑭♂ with the orbital centrifugal force 𝑭 𝑐 . Here we do not consider
the force arising from Phobos’s rotation around its own axis because
the impact on the resulting deformation is found to be negligibly small
(∼1h). The resultant force field 𝒇 can therefore be written as

𝒇 = 𝑭♂ + 𝑭 𝑐 = 𝑭 tidal, (8)

with

𝑭♂ = 𝐺𝑀♂ ∫𝑉P

𝜌(𝒓)
|𝑹|

3
𝑹 d𝑉 , 𝑹 = 𝒙P − 𝒓 (9)

where 𝑀♂ is Mars’s mass, 𝜌(𝒓) is the density of a volume element d𝑉
within Phobos, 𝒙P is a vector connecting the centers of mass (CoMs)
of Mars and Phobos that are considered to coincide with the center-of-
figures (CoFs) of the corresponding bodies, and 𝒓 is a vector connecting
the volume element d𝑉 within Phobos with the CoM of the satellite.
Since Phobos rotates around the barycenter of the Mars-Phobos system
as a solid body, the centrifugal force is the same for every unit mass
inside the satellite (Chapter 4 in Murray and Dermott (2000)) and can
3

Fig. 2. Resultant tidal vector force field (green arrows) across the interior of Phobos.
Direction to Mars is depicted by the red arrow. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

be obtained from its orbital velocity 𝑣orb for any position of Phobos
along its orbit

|𝑭 𝑐 | =
𝑀P𝑣2orb
𝑑

, (10)

where 𝑑 is the distance between the CoFs of Mars and Phobos. The
orbital velocity 𝑣orb of Phobos can be found from the fact that Mars’s
gravity is always equal to the centrifugal force in the center of mass of
the satellite’s figure

𝑣orb(𝑑)2 = 𝐺
𝑀♂
𝑑

(11)

where the Mars-Phobos distance is determined from the semi-major axis
(𝑎), orbit eccentricity (𝑒), and true anomaly (𝜈) using (e.g., Murray and
Dermott, 2000)

𝑑 =
𝑎(1 − 𝑒2)
1 + 𝑒 cos 𝜈

(12)

In contrast to 𝑭 𝑐 , the gravitational attraction of Mars changes across
the satellite. The tidal force 𝑭 tidal results from the difference between
these two forces. Consequently, the magnitude of 𝑭 tidal increases with
distance from the body’s rotation axis as indicated by the length of the
green arrows in Fig. 2.

Finally, while the solution to the elastostatic problem provides the
full displacement field within the satellite, this static tidal deformation
is not of practical interest as it is not measurable by e.g., an orbiter,
because the satellite is always in a deformed state to some degree.
However, the magnitude of the deformation changes over the orbit due
to the changing distance to Mars.

Thus, to remove the static tidal deformation, which is caused by a
static force, we compute the tidal force 𝒇 tidal by subtracting the force
fields at periareion 𝒇peri and apoareion 𝒇 apo from which the resultant
tidal displacement field can be determined (Fig. 3)

𝒖tidal =
1
2
𝒖
(

𝒇 tidal
)

with 𝒇 tidal = 𝒇peri − 𝒇 apo. (13)

2.2. Geophysical properties of Phobos

Geophysical properties of Phobos pertinent to its interior structure
that have been measured include shape, volume, mass, degree-2 gravity
coefficients, and amplitude of longitudal libration (Table 2). In the
following, we briefly describe the observations and how we intend to
compute these.
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Fig. 3. Illustration of the tidal deformation undergone by Phobos in its orbit about Mars. 𝒖𝑎𝑝𝑜 and 𝒖𝑝𝑒𝑟𝑖 are the displacement fields at apoapsis and periapsis points, respectively, 𝑎 is
the semi-major axis of the orbit, and 𝑒 is its eccentricity. Subtraction of one field from another allows to get rid of the static displacement and to pick out only the time-dependent
displacement field. Note that the deformation of Phobos at periareion and apoareion are strongly exaggerated. The light gray Phobos illustrates the concept of longitudal libration
(𝜃). 𝑀 signifies the true anomaly and 𝑓 is the angle between the major orbital axis and the satellite’s long axis. See main text for more details.
Volume and shape model. A body’s volume is determined from its shape.
Currently, there are two ways of representing the shape of a body,
either through the use of continuous spherical harmonics (SPH) or
through a discretized digital terrain model (DTM). The DTM requires
a discretized set of surface points with known coordinates. The DTM
can be obtained by different methods including various image analysis
techniques such as control point analysis (Duxbury, 1991; Oberst et al.,
2014; Willner et al., 2014; Gaskell, 2020), image matching, conjugate
points and observations of limb profiles (Duxbury, 1974; Thomas,
1989; Simonelli et al., 1993). On the basis of the discrete satellite
shape model, an analytic SPH expansion can be constructed, which
describes a body’s shape as an infinite set of continuous functions in
spherical coordinates. In this method, the distance to the center of
figure (CoF) 𝑅(𝜓, 𝜆) of a surface point at longitude 𝜆 and latitude 𝜓
is given by (Willner et al., 2010):

𝑅(𝜓, 𝜆) =
∞
∑

𝑛=0

𝑛
∑

𝑚=0
[𝐴𝑛𝑚 cos𝑚𝜆 + 𝐵𝑛𝑚 sin𝑚𝜆]𝑃𝑛𝑚(sin𝜓) (14)

where 𝑃𝑛𝑚(sin𝜓) are the associated Legendre polynomials of degree 𝑛
and order 𝑚 and 𝐴𝑛𝑚 and 𝐵𝑛𝑚 are expansion coefficients determined
by Willner et al. (2014) up to degree and order 45. The volume based
on the most recent shape model of Phobos (Fig. 1) that derives from
analysis of images from the high resolution stereo camera onboard Mars
Express is 5742 ± 35 km3 (Willner et al., 2014).

Mass. The mass of Phobos 𝑀P can be determined from observation
of the trajectory of an orbiting Mars spacecraft, as the latter feels
the gravitational attraction of the satellite. The strength of the orbit
perturbation can be estimated from the long-term secular drift of the
satellite orbit and short-term velocity changes during close flybys of
the moon, which are detected by Doppler shift (Andert et al., 2010).
Radio experiment data from the MEX (MaRS Express) mission were
employed for the most recent estimations of 𝐺𝑀P, where 𝑀P is the
mass of Phobos that yields the best-fit 𝐺𝑀P = 0.7072 ± 0.0013 × 10−3

km3 s−2 (Pätzold et al., 2014b), corresponding to a 𝑀P = 1.0596 ±
0.00195 × 1016 kg.

Physical librations and moments of inertia. Phobos is in a 1:1 spin–orbit
resonance around Mars, which implies that its mean motion 𝑛 = 2𝜋∕𝑇 ,
where 𝑇 is the orbital period, is equal to its spin rate (Lainey et al.,
2007). As the orbital speed of Phobos varies along the eccentric orbit,
while the rotation rate remains constant, the long axis of the satellite
oscillates around the direction towards Mars’s center of mass. These
oscillations are called the forced longitudal librations and illustrated
in Fig. 3. In addition to this, Mars raises a time-dependent gravita-
tional torque on Phobos due to the difference between the satellite’s
principal moments of inertia, which causes free longitudal librations.
As a result of the libration, 52% of Phobos surface is presented to
Mars (Rambaux et al., 2012). The amplitude of the longitudal libration
4

𝜃 can be estimated as a difference between the true anomaly 𝑀 and
the angle between the satellite’s long axis and its major orbital axis
𝑓 (Fig. 3). Because Phobos’s equatorial plane almost coincides with its
orbital plane, the magnitude of the oscillation in longitude is the biggest
and, therefore, the easiest to detect. Latitudal librations can be ignored
in the case of Phobos (Borderies and Yoder, 1990).

From a geophysical point of view, the longitudal libration is of
particular interest because it is determined by the moments of inertia
(MoIs) of the body. MoIs, in turn, are defined by radial moments of the
density distribution. In general, the MoI is a second-order symmetric
tensor with the following elements

𝐼𝑖𝑗 = ∫𝑉𝑃
𝜌(𝒓)

(

|𝒓|2𝛿𝑖𝑗 − 𝑥𝑖𝑥𝑗
)

d𝑉 (15)

where 𝒓 = (𝑥1, 𝑥2, 𝑥3) is a vector to a point within the body whose
density is 𝜌(𝒓) and 𝐼𝑖𝑗 are components of the symmetric inertia tensor
𝑰 of that same volume element.

To first order, the amplitude of the main forced libration in longi-
tude is (Borderies and Yoder, 1990):

𝜃 =
3𝛾

(1 − 3𝛾)
𝛾 = (𝐼2 − 𝐼1)∕𝐼3 (16)

where 𝐼1 < 𝐼2 < 𝐼3 are the principal MoIs, which are the eigenvalues
of the aforementioned inertia tensor 𝑰 . We should note that Eq. (16)
really only applies to the case of a homogeneous Phobos, i.e., when
the off-diagonal elements of the inertia tensor are zero. However, as
the off-diagonal elements of 𝑰 are generally 4–5 orders of magnitude
smaller than the principle elements, we can neglect the former in line
with usual practice (Le Maistre et al., 2019).

The forced libration amplitude of Phobos has been estimated us-
ing e.g., imagery analysis with cross-point networks (Duxbury, 1974;
Duxbury and Callahan, 1989; Burmeister et al., 2018), analytical theo-
ries (Chapront-Touze, 1990; Borderies and Yoder, 1990), and numerical
integration of the equations of motion (Jacobson, 2010; Rambaux et al.,
2012; Yang et al., 2019). The most recent estimation based on Viking 1
Orbiter and Mars Express images (Burmeister et al., 2018) have resulted
in an amplitude of 1.143 ± 0.025◦.

For comparison, Jacobson (2010) and Rambaux et al. (2012) numer-
ically integrated Phobos’s orbit, while varying the libration amplitude
so as to fit the observed orbital motion. This resulted in a longitudal
libration amplitude of 1.03 ± 0.22◦.

The 2-degree gravity coefficients (𝐶20 and 𝐶22), which also contain
information on the interior density distribution, have been estimated
by Jacobson and Lainey (2014) by numerically integrating the satel-
lite orbit with the aim of obtaining an improved estimation of the
ephemerides. A limitation of the method of Jacobson and Lainey (2014)
is that 𝐶20, 𝐶22, and 𝜃 cannot be determined independently. Instead (Ja-
cobson and Lainey, 2014) employ 𝜃 = 1.2◦ from Willner et al. (2010)
and are thus able to constrain 𝐶 and 𝐶 (see Table 2).
20 22
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Table 2
Observed geophysical properties of Phobos.

Volume 𝑉P 5742 ± 35 km3 (Willner et al., 2014)

Mass 𝑀P 1.0596 ± 0.00195 × 1016 kg (Pätzold et al., 2014b).

Forced libration amplitude Reference

1.2𝑜 ± 0.15𝑜 Observed (Willner et al., 2010)
1.09𝑜 ± 0.10𝑜 Observed (Oberst et al., 2014)
1.143𝑜 ± 0.025𝑜 Observed (Burmeister et al., 2018)
1.03𝑜 ± 0.025𝑜 Phobos ephemeris (Jacobson, 2010)
1.09𝑜 ± 0.01𝑜 Phobos ephemeris (Lainey et al., 2021)

Gravity coefficients

𝐶20: 0.1057 ± 0.0067 Phobos ephemeris (Jacobson and
Lainey, 2014)𝐶22: 0.0148 ± 0.0004

𝐶20: 0.1378 ± 0.0348 Mars express trajectory
observations (Yang et al., 2019)𝐶22: 0.0166 ± 0.0153

From the principal MoIs, the unnormalized degree-2 gravity (𝐶20
nd 𝐶22) coefficients of the body can also be determined

20 =
𝐴2 + 𝐴1

2
− 𝐴3, (17)

𝐶22 =
𝐴2 − 𝐴1

4
, (18)

where 𝐴𝑖 are the normalized principal moments of inertia

𝑖 =
𝐼𝑖

𝑀P𝑅2
P
, (19)

nd 𝑅P is the radius of the sphere whose volume is identical to that of
hobos.

oF-CoM offset. Of further interest in connection with interior struc-
ure models is the position of the CoM with respect to the CoF of
he satellite. The CoF coordinates 𝑥CoF

𝑖 are determined from the shape
odel, whereas CoM coordinates are determined by the density dis-

ribution within Phobos and are found by numerical integration over
hobos’s volume 𝑉P

CoM
𝑖 = ∫𝑉P

𝑥𝑖 𝜌d𝑉 (20)

here 𝑥𝑖 (𝑖 = 1, 2, 3), 𝜌, and d𝑉 are Cartesian coordinates, density, and
olume of an interior element, respectively.

Alternatively, the displacement of the CoM can be determined
rom the degree-1 gravity coefficients using the following relations (Le
aistre et al., 2019)

CoM
1 = 𝑅′𝐶11

CoM
2 = 𝑅′𝑆11 (21)
CoM
3 = 𝑅′𝐶10

here 𝑅′ is the reference radius used for the computation of the gravity
oefficients 𝐶11, 𝐶10, and 𝑆11. More generally, 𝐶𝑛𝑚 and 𝑆𝑛𝑚 are the
osine and sine coefficients of the spherical harmonics expansion of
he gravity field of degree 𝑛 and order 𝑚, similarly to 𝐴𝑛𝑚 and 𝐵𝑛𝑚 in
q. (14). For reference, the CoM of the uniform density model (to be
resented in Section 4) has the predicted coordinates in the Cartesian
ystem (−66.43 m, 63.0 m, −84.31 m), while the CoF is located at (0 m,
m, 0 m).

. Numerical approach

We apply the spectral-element method (SEM) to solve the governing
quations. SEM is a high-order finite-element method, and as such
perates on the weak form of the governing equations.

Poisson’s equation, Eq. (1), is defined on the full space R3. In order
o solve it numerically with SEM, however, we need to consider a
5

ounded domain together with a suitable boundary condition. Because
he gravitational potential decays rapidly with distance away from
hobos, using a large domain 𝑉𝛺 surrounding Phobos and applying

homogeneous Dirichlet conditions for 𝜙 at its boundary 𝜕𝑉𝛺 yield
sufficiently accurate approximations. Using integration by parts, we
obtain the weak form of Eq. (1) on the extended domain as

− (4𝜋𝐺)−1 ∫𝑉𝛺
∇𝛷 ⋅ ∇𝜑d𝑉 = ∫𝑉P

𝜌 ⋅ 𝜑d𝑉 , (22)

here 𝜑 is a scalar test function satisfying 𝜑 = 0 on 𝜕𝑉𝛺.
The weak form of Eq. (7) is derived in a similar manner. Here, the

omputational domain is restricted to the volume of Phobos, and we
mpose a boundary condition at its surface, such that the stress in the
irection normal to the body vanishes. By applying a test function 𝝋,

integrating by parts, and employing the Gauss–Green theorem to the
left-hand side of Eq. (7), we obtain the weak form

∫𝑉P

(𝑪 ∶ 𝜺(𝒖)) ⋅ 𝜺(𝝋)d𝑉 + ∫𝑉P

∇ (𝜌𝒖 ⋅ ∇𝛷) ⋅ 𝝋d𝑉

− ∫𝑉P

(∇ ⋅ (𝜌𝒖)∇𝛷) ⋅ 𝝋d𝑉 = ∫𝑉P

𝑓 ⋅ 𝝋d𝑉 , (23)

here the surface integral vanishes because of the free-surface bound-
ry condition.

Note that Eq. (22) involves scalar fields 𝛷 and 𝜑 for the gravitational
otential and the test function, respectively, while Eq. (23) requires
ector fields 𝒖 and 𝝋. Despite this difference, however, both weak forms
bey a similar structure involving a bi-linear form including first-order
patial derivatives on the left-hand-side and a volume integral over 𝑉P
n the right-hand-side. Hence, both equations can be treated similarly
n our numerical approach, and we focus on Eq. (23) in the following.

The spectral-element method (Patera, 1984; Chaljub et al., 2007;
fanasiev et al., 2019) discretizes the weak form using an unstructured
esh that subdivides the domain into hexahedral elements. The local

olution field on each element is approximated using a high-order
agrange polynomial interpolating the Gauss–Lobatto–Legendre (GLL)
ollocation points. With the Galerkin projection of the weak form onto
he spectral-element basis (𝝋𝑖)𝑖=1,…,𝑁 , the bi-linear form in Eq. (23)
esults in a linear equation for each 𝝋, as a result of which the
iscretized weak form can be written as a linear system

𝐮 = 𝐅, (24)

here 𝐮 is the discretized displacement field and 𝐅 is the projection
f the force field onto the spectral-element basis. Note that the spatial
erivatives can be evaluated efficiently due to the tensorized structure
f the spectral-element basis, and these integrals are computed exactly
sing the Gauss–Lobatto quadrature rule. The stiffness matrix 𝐊 in
q. (24) depends on the elastic bulk and shear moduli. Variations in
ensity enter on the right-hand-side in 𝐅, which also holds for the
iscretized Poisson equation. The stiffness matrix is sparse and will not
e assembled in practice. Instead, we apply an iterative preconditioned
onjugate gradient solver to determine the three-dimensional displace-
ent field. Using a diagonal Jacobi preconditioner, all computations

an be carried out matrix-free, and with a very small memory footprint.
The key ingredient is to accurately mesh the shape of Phobos using

he shape model from Willner et al. (2014). Starting from a cubed
phere (Ronchi et al., 1996), we utilize the spherical harmonics expan-
ion of the digital terrain model to apply the shape deformation. Both
he finite-element basis and the shape transformation of the hexahedral
lements use Lagrange polynomials of order 4 defined on the GLL
oints. This provides a very accurate representation of the shape model
nd the resulting displacement field with a decent number of elements.
s explained above, Poisson’s equation additionally requires an ex-

ended domain 𝑉𝛺. Using mesh coarsening techniques it is possible to
iscretize the outer domain with a relatively small number of elements,
nd without the need of changing the finite-element basis or quadrature
ule. Examples of the resulting meshes are shown in Fig. 4.
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Fig. 4. Illustration of the Phobos mesh employed in the numerical calculations. (A) Slice through the mesh and zoom-in on the discretized digital terrain model and its accurate
representation by higher-order shape transformations of the hexahedral mesh. (B) View of the external mesh needed for solving the gravitational potential.
Fig. 5. Three-dimensional modeling results for a homogeneous Phobos (A). (B) Surface gravity; (C) normal component of surface tidal displacement field; (D) magnitude of interior
tidal displacement field. The colored dot indicates the location of the sub-Mars point. For the case studied here, shear modulus is 0.01 GPa (see Table 3). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
All computations were carried out with Salvus (Afanasiev et al.,
2019) on a mesh that comprises 65 856 elements with 125 nodes per el-
ement representing fourth-order polynomials. The pure simulation time
required to solve the elastostatic problem on this mesh and employing
12 cores is ∼9.65 min (in 1445 iterations) and therefore accomplishable
on a regular laptop.

4. Models of Phobos’s interior structure

Imaging of the surface properties of Phobos has revealed its irreg-
ular shape, cratered surface, and low albedo that suggest a certain
kinship with primitive outer-belt asteroids (Thomas et al., 2011; Pieters
et al., 2014; Fraeman et al., 2014; Pajola et al., 2013); yet, we lack
constraints on its composition and internal structure. The low density of
6

Phobos is generally less than that of meteoritic material (the density of
carbonaceous chondritic material of type CI is 2.42 ± 0.06 g/cm3 Macke
et al., 2011), indicative of a porous body that, in addition to voids,
could also contain water ice in its interior (Fanale and Salvail, 1989;
Rosenblatt, 2011; Rosenblatt et al., 2019; Murchie et al., 2013). Phobos
is likely to be either a moderately porous aggregate or a rubble pile.
The surface of Phobos is heavily cratered, the most pronounced of
which is the Stickney crater (see Fig. 1). The Stickney cratering event
would most likely have shattered Phobos completely had it been a
monolith or a complete rubble pile, but leave a weakly-connected
Phobos intact (Asphaug et al., 1998). The extent of the porous nature of
Phobos, however, remains ambiguous, although there is evidence that
points to Phobos being a rubble aggregate with some type of internal
strength (Pätzold et al., 2014a), similar to estimations for asteroids
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Fig. 6. Three-dimensional modeling results for an ice-rock mixture (ice fraction of 57%) (A). (B) Surface gravity; (C) normal component of surface tidal displacement field; (D)
magnitude of interior tidal displacement field. The colored dot indicates the location of the sub-Mars point. For the case studied here, shear modulus is 0.0409 GPa (see Table 3).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Three-dimensional modeling results for a model of Phobos with linearly increasing density toward the center of the body (A). (B) Surface gravity; (C) normal component
of surface tidal displacement field; (D) magnitude of interior tidal displacement field. The colored dot indicates the location of the sub-Mars point. For the case studied here, shear
modulus is 0.179 GPa and surface density is 1.5 g/cm3 (see Table 3). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Eros, Ryugu, Bennu, and 1950 DA (Watanabe et al., 2019; Sugita
et al., 2019; Barnouin et al., 2019; Rozitis et al., 2014; Miller et al.,
2002; Scheeres et al., 2020). Eros, which is similar in size to Phobos
(volume∼2503 ± 25 km3), has a bulk density of 2.67 ± 0.03 g/cm3,
corresponding to 10%–30% porosity, and is considered to be internally
fractured akin to a rubble aggregate or broken-up monolith (Zuber
et al., 2000; Miller et al., 2002). The sub-kilometer-sized asteroids
7

Ryugu and Itokawa are, on account of their low densities and distances
from the Sun, considered to be highly porous bodies with up to 50%
porosity in their interiors (Lauretta et al., 2019; Watanabe et al., 2019).
The bulk density of Ryugu is estimated to be 1.19 ± 0.02 g/cm3 (Watan-
abe et al., 2019). This is below the range measured for hydrated
carbonaceous asteroids of type Ch and Cgh (1.6–2.4 g/cm3), but the
range within which Phobos falls (Vernazza et al., 2015).
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Fig. 8. Relationship between rigidity of various one-and three-dimensional Phobos models and surface tidal deformation. For the one-dimensional and homogeneous Phobos models,
𝜇eff equals bulk 𝜇. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
.

Table 3
Compilation of interior models and physical properties. Bold-faced numbers refer to the values employed in Section 5. Bulk modulus is calculated from shear modulus using Eq. (25)

Density (g/cm3) Shear modulus (GPa) Bulk modulus (GPa) Poisson’s ratio Ref. figure

Rock Ice Rock Ice

Homogeneous 1.845 10−3–10 – 1.94⋅10−3–19.4

0.28 0.31

Fig. 5
(10−2) (1.94⋅10−2)

Ice-rock I 1.0–2.0 5⋅10−2–2.0

3.7

9.7⋅10−2–3.88
Ice-rock II 1.0–2.4 5⋅10−2–2.0 9.7⋅10−2–3.88
Ice-rock III 1.0–3.0 5⋅10−2–2.0 9.7⋅10−2–3.88 Fig. 6

(0.37) (9.7⋅10−2)
Ice-rock IV 1.0–3.4 5⋅10−2–1.0 9.7⋅10−2–1.94

Layer I 1.6–2.4 10−3–20

–

1.94⋅10−3–38.8
Layer II 1.6–3.0 10−3–20 1.94⋅10−3–38.8 Fig. A.2(E–H)

Positive gradient 1.4–3.182 10−2–1.0 1.94⋅10−2–1.94 Fig. 7
(1.5–2.882)

Negative gradient 1.082–2.1 10−2–1.0 1.94⋅10−2–1.94 Fig. A.2(A–D)
(1.382–2.0)
w
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Several different interior structure models for Phobos have been
onsidered in the literature, including a homogeneous satellite, a heav-
ly fractured body (resulting from the Stickney impact), a locally com-
ressed body, and a rubble pile moon consisting of voids and/or water
ce, among others (Murchie et al., 1991; Britt et al., 2002; Rosenblatt,
011; Rambaux et al., 2012; Le Maistre et al., 2013, 2019; Scheeres
t al., 2020). A loosely-connected body could be a consequence if
hobos was the product of a tidally disruptive or collisional event
round Mars as indicated in a recent study (Bagheri et al., 2021) and/or
he result of (re-)accretion from debris (e.g., Singer, 2007; Simioni
t al., 2015; Craddock, 2011; Canup and Salmon, 2018; Hesselbrock
nd Minton, 2017; Citron et al., 2015; Rosenblatt et al., 2016). Here,
e focus on four categories of models that encompass a large part of the
forementioned range of models and that satisfy the basic constraints
f mass and volume. Models include:

• a homogeneous model
• ice-rock mixtures
• models with density gradients
• layered models

In the following, we briefly describe the four model families. Model
arameters and parameter ranges for all models are summarized in
able 3. All constructed models preserve total mass.

omogeneous model. In this model (Fig. 5A), Phobos is assumed to be a
omogeneous body with density 𝜌 = 1.845 g/cm3. We model a loosely-
onnected body as an effective medium using the lowest reported shear
8

oduli (𝜇) for very loose sands and clays on Earth, which are of the
order 10−3 GPa (Bowles, 1997). The shear modulus for solid rocks is
considered to be 10 GPa, which we employ as the maximum possible
value. Bulk modulus 𝜅 is calculated from 𝜇 using Eq. (25)

𝜅 =
2𝜇(1 + 𝜈)
3(1 − 2𝜈)

, (25)

here 𝜈 is Poisson’s ratio, which we assume to be 0.28 based on
errestrial experience (Ji et al., 2018).

ce-rock mixtures. In this type of model (Fig. 6A), Phobos is assumed
o be a conglomerate of ice and rocky material. If Phobos originates
rom the outer asteroid belt, which is beyond the solar system’s ‘‘snow
ine’’, ice is expected to make up part of the body. For example,
ignificant amounts of ice have been observed on several asteroids from
he main belt, such as 1 Ceres and 433 Eros (Snodgrass et al., 2017).
lthough the presence of water on Phobos is yet to be fully confirmed,
weak OH− absorption peak has been observed in spectra from Mars
econnaissance Orbiter (Fraeman et al., 2014).

The density of ice is taken to be 1.0 g/cm3 which lies within the
ange indicated in Zuber et al. (2007), while the density of the rocky
aterial (𝜌rocky) is computed so as to satisfy Phobos’s mass. We further

ssume that the icy material is in the form of spheres with a radius
anging between 200 m and 1000 m that are randomly distributed
n the interior and do not intersect. Since the ice-rock fraction is
nknown, we considered four sub-classes of the model with differing
ass proportions of ice and rock:

Ice-rock I: ice fraction = 15%, 𝜌rocky = 2.0 g/cm3.
Ice-rock II: ice fraction = 38%, 𝜌 = 2.4 g/cm3.
rocky
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Fig. 9. Comparison of estimated and observed longitudal libration amplitude (A) and gravity response (B) for the various Phobos models considered in this study. Shaded blue
egions indicate the range of recent observations of libration amplitude. Error bars depict the range of computed libration amplitudes for a range of randomly configured ice-rock
ixtures and layered and density gradient models. (B) Unnormalized 𝐶20 and 𝐶22 gravity coefficients computed for the same models in (A). Gravity coefficients for a range of

andomly configured ice-rock mixtures and layered and density gradient models are show as stars. See main text for details. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
Ice-rock III: ice fraction = 57%, 𝜌rocky = 3.0 g/cm3.
Ice-rock IV: ice fraction = 65%, 𝜌rocky = 3.4 g/cm3.

The densities of rocky material of the first two models correspond
to densities of CI- and CM-type carbonaceous chondritic material (Britt
et al., 2002), respectively. CI and CM have reflectance spectra that are
similar to certain units on Phobos (labeled the ‘‘blue’’ units) (Rivkin
et al., 2002), respectively. The densities of the third and fourth models
are bracket those of mafic and ultramafic rocks. For the purpose of
considering a larger range of models, we constructed an additional 10
ice-rock mixtures for each subclass by randomly varying the distribu-
tion of ice and rock. These models will serve for improving statistics
when discussing geophysical properties.
9

Models with density gradients. This model category represents a variant
of the layered models, in that density increases continuously with depth
(Fig. 7A) or, as an alternative hereof, decreases in density from the
surface to the center of the body (Fig. A.2A). The latter model has been
suggested as a possibility for the sub-kilometer-sized asteroid Bennu
based on an analysis of the difference of the measured zonal gravity
coefficients 𝐽1 through 𝐽4 with those predicted from a constant-density
model (Scheeres et al., 2020) that pointed to surface and interior den-
sity heterogeneities. The physical mechanism responsible for creating a
density inversion with depth could be related to a past period of rapid
rotation while Bennu sojourned in the main asteroid belt that was either
YORP-induced or resulted from its accretion following the disruption
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Fig. 10. Normalized diagonal elements of the moment of inertia tensor (A–C) and center of figure-center-of-mass-offset (CoF-CoM) (D–F) for all considered model types. Error bars
epict the range of computed MoIs and CoF-CoM offsets for a range of randomly configured ice-rock mixtures and layered and density gradient models. See main text for details.
f a progenitor body (Scheeres et al., 2016, 2020; Hergenrother et al.,
019). Since surface and center density are unknown, we considered
wo sub-classes of density gradient models with density varying linearly
etween the surface (𝜌s) and the center (𝜌c):

Positive gradient model: 𝜌s = 1.5 g/cm3 and 𝜌c = 2.882 g/cm3.
Negative gradient model: 𝜌s = 2.0 g/cm3 and 𝜌c = 1.382 g/cm3.

Again, to consider a larger model range, we constructed 2 additional
models with higher and lower gradients by changing the surface density
(±0.1 g/cm3).

Layered models. While Phobos, unlike the much larger asteroids Vesta
and Ceres, has probably not undergone differentiation, we nevertheless
consider a layered model of Phobos to enlarge the model range. The
layered models represent intermediate cases between homogeneous
and positive gradient models in terms of density. To simulate this case,
we divided the body into a number of separate layers with constant
density and shear modulus (Fig. A.2E). To achieve a semi-continuous
change in properties from the surface to the center, we found that six
10
layers provide a satisfactory balance between a simple ‘‘core-mantle’’
model and a continuous density increase. We considered two types of
density variations:

Layer I: from 𝜌s = 1.6 g/cm3 to 𝜌c = 2.4 g/cm3.
Layer II: from 𝜌s = 1.6 g/cm3 to 𝜌c = 3.0 g/cm3.

All layer boundaries in this model type are the downsized DTM sur-
faces centered in the CoF forming a Matryoshka-like, or ‘‘object-within-
similar-object’’, structure of the interior. The layers are characterized
by variable thickness, since the ratio between the equatorial and polar
thicknesses of any layer in Fig. A.2E is the same as the ratio between the
largest and smallest dimensions of the satellite’s figure. As in the case
of the ice-rock mixtures, we constructed an additional set of perturbed
cases of both Layer I and II models by varying the density of each layer
by up to 0.1 g/cm3. In all, we considered 100 models for each of the
layered family models.



Icarus 372 (2022) 114714A.A. Dmitrovskii et al.
Fig. A.1. Comparison of the tidal force field (top) and perturbation in the tidal gravity
field due to redistribution of mass (bottom) for the case of a homogeneous model of
Phobos with shear modulus 𝜇 = 0.01 GPa. Since the contribution from the distortion
in the gravity field is ∼4 orders of magnitude smaller than the unperturbed tidal force
field, we neglect the former effect in our simulations.

5. Results

In the following, we discuss the model classes indicated by bold-
faced values in Table 3. Because of the differences in material pa-
rameters between models, particularly rigidity, which is less well con-
strained, we focus on the form of the surface displacement distribution
rather than amplitude.

Surface gravity. Computed surface gravity across the body for each
of the main Phobos models is shown in Figs. 5–7 panels B (and
Fig. A.2B,F) and is seen to be relatively consistent across models, with
the exception of the ice-rock mixture which shows ‘‘spotty’’ features.
Yet, the geographical locations of maximum and minimum gravita-
tional acceleration (𝑔) are similar across models. The largest 𝑔 occur
at the North and South poles, since the latter are closest to the center
of the satellite, whereas the smallest 𝑔 is located on the Eastern rim of
Stickney crater (furthest from the center). From a geophysical perspec-
tive, surface gravity could potentially be measured by a gravimeter,
which would provide information on localized density anomalies re-
lated to subsurface porosity as discussed in more detail by Le Maistre
et al. (2019).

Tidal deformation. The tidally-induced full 3D surface and interior
displacements for each of the Phobos models are shown in Figs. 5–7
panels C and D (and Fig. A.2C–D,G–H) in the form of the amplitude
of the displacement projected normal to the surface (panels C), which
for irregular bodies generally differs from the radial component of
displacement, and displacement magnitude (panels D). The importance
of the former projection is apparent for the displacement in the region
of the Stickney crater, where the relatively large deformation occurs
almost in the plane of the surface, resulting in almost lateral rather
than radial mass movement. This is illustrated in Fig. A.3.
11
From the results, the following general features can be extracted:
the hemispheres opposite to and facing Mars experience, as expected,
the largest deformation. We also notice that the location of maximum
deformation shifts from the center of the Mars-facing hemisphere (ho-
mogeneous, ice-rock, and negative gradient) toward the rim of the
Stickney crater closest to the sub-Mars point on Phobos (indicated
by the colored dot) for the positive gradient and layered models.
This can be understood as follows. As illustrated in Figs. 5D and
6D (and Fig. A.2D), the deformation amplitude in the interior of the
homogeneous, ice-rock, and negative gradient body is predominantly
determined by the tidal force field, which is strongest toward the
surface (cf. Fig. 2). Consequently, the outer layers in these three models
experience the largest deformation. In contrast, in the positive gradient
and layered models (Figs. 7D and A.2H), the core is endowed with
strength relative to the other three models and resists being deformed.
Accordingly, the total displacement immediately below the sub-Mars
point suffers less deformation. In comparison, there is more outer-layer
material underneath the Stickney crater that undergoes deformation
and which turns out to be the largest in the positive gradient and
layered models. The deformation pattern along the equator to the East
of the sub-Mars point clearly contains the signature of the Stickney
crater in all models (Figs. 5–7 panels C and Figs. A.2C,G). The smallest
surface deformations are, in line with expectations, concentrated in an
annulus around the center of the moon that lies perpendicular to its
long axis.

In the 3D tidal deformation calculations performed so far, we con-
sidered a range of models each with fixed 𝜇 and 𝜌 (cf. Table 3). To
understand the deformation behavior more generally for a wider range
of 𝜇 (𝜌 has a smaller impact on the deformation and is ignored in
the following), we varied 𝜇 for all nine models continuously within
the ranges specified in Table 3 and recomputed the tidal deforma-
tion for each of the ‘‘new’’ models. The results of this experiment
are summarized in Fig. 8, which shows the maximum deformation
experienced by the body as a function of effective 𝜇 (hereinafter 𝜇eff).
The latter replaces 𝜇 since we compare homogeneous models (single 𝜇)
with models consisting of different 𝜇’s (as in the ice-rock mixtures and
gradient and layered models) and represents an appropriately-averaged
𝜇 for the more complex models.1 In addition to these models, we also
consider the responses of a spherically symmetric model of Phobos
(with a radius as defined in Eq. (19)) and the 1D-equivalent of that,
the radially symmetric model of Le Maistre et al. (2013), which relies
on the analytical solution for the surface deformation 𝑢

𝑢 = 5
2

(

1 + 19
2

𝜇𝑅P
𝜌𝐺𝑀P

)−1 𝑉𝑡
𝑔
, (26)

where 𝑉𝑡 is tidal potential, 𝑔 is surface gravitational acceleration, 𝐺 is
Newton’s gravitational constant, and 𝜌, 𝑅P, and 𝑀P are density, radius,
and mass of a spherically symmetric Phobos, respectively.

From Fig. 8 we can make a number of observations. Firstly, the
maximum tidal deformation for all models increases in an exponential
fashion with decreasing rigidity. Secondly, the spherically symmetric
3D solution (bold orange line) is equivalent to the response of the 1D
radial model (dashed green line). Thirdly, the response of homogeneous
Phobos (blue line), but including proper shape, is slightly larger than
the two aforementioned cases. This is reasonable since the maximum
deformation occurs along the long axis of Phobos, which is pointing
in the direction of Mars. The other 3D models (stars and inverted
triangles) are located around the response line of homogeneous Phobos
and vary slightly with 𝜇eff because of the averaging scheme applied.
In summary, this plot provides a first-order means of determining the
effective shear modulus from observations of displacement.

1 The most commonly used schemes for averaging material properties are
the Voigt (arithmetic mean), the Reuss (harmonic mean), and the geometric
mean (Berryman, 2013). With the exception of the homogeneous model, we
rely on the geometric mean 𝜇geom =

∏

𝑁 𝜇
𝑥𝑖
𝑖 with ∑

𝑁 𝑥𝑖 = 1, where 𝑁 is the
number of nodes in the mesh, 𝜇𝑖 rigidity of node 𝑖, and 𝑥𝑖 the relative weight
of the node.
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Fig. A.2. Three-dimensional modeling results for negative gradient (A–D) and layered (E–H) models of Phobos. (A) Density model of Phobos with linearly decreasing density from
surface to center of the body. (B) Surface gravity. (C) Normal component of surface tidal displacement field. (D) Magnitude of interior tidal displacement field. For the model
shown in (A), shear modulus is 0.72 GPa and surface density is 2.0 g/cm3 (see Table 3). (E) Layered density model of Phobos. (F–H) as (B–D). For the model shown in (E), shear
modulus is 0.3558 GPa and core density is 3.0 g/cm3 (see Table 3). The green dots indicates the location of the sub-Mars point. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Geophysical predictions: comparison with observations. Following
Le Maistre et al. (2019), here we compare the observed geophysical
properties (libration, gravity, and MoI) with those computed based
on all of the nine Phobos models. Computed and observed libration
amplitude and degree-2 gravity coefficients are shown in Fig. 9. The
computed libration magnitude (Fig. 9A), which ultimately depends on
the principal MoIs (discussed below) and therefore density distribution,
is similar for most models (around 1.14◦), with maybe the exception
of some of the ice-rock mixtures (I and IV), and in overall agreement
with the observed values of Willner et al. (2010), Oberst et al. (2014),
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Burmeister et al. (2018) and Lainey et al. (2021). This implies that
from libration magnitude only, it is currently not possible to distinguish
between the various interior structure models; yet, as shown by Le
Maistre et al. (2019), if local density anomalies are present underneath
Stickney crater, for example, these can result in changes in libration
magnitude that are sufficiently distinct from the observations that such
models can be singled out.

The 2-degree gravity coefficients reflect the radial distribution of
mass in the interior of the satellite. Predicted and observed 𝐶20 and
𝐶 values are shown in Fig. 9B. Most models are located outside of
22
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the error bounds of the current observations of Jacobson and Lainey
(2014) and Yang et al. (2019) (shown in the inset). While this is also
the case for the gradient and layered models, the latter nevertheless
result in larger 𝐶20 values relative to Jacobson and Lainey (2014),
reflecting the increasing density towards the center of the satellite.
The distribution of the gravity coefficients for the gradient and layered
models shows a linear trend that intersects the homogeneous model,
while the other models are distributed around the line. The gradient
models are found to be located on either side of the layered models
with the positive gradient models fitting the 𝐶22 of Jacobson and
Lainey (2014), but only slightly out of range with regard to 𝐶20,
whereas the negative gradient models are unable to explain the 𝐶22
observation of Jacobson and Lainey (2014). An explanation for the
discrepancy between predictions and observations could possibly reside
in the estimation of the observed gravity coefficients. The latter were
obtained by Jacobson and Lainey (2014) based on observations of the
satellite orbit. As mentioned earlier Jacobson and Lainey (2014) relied
on the libration result from Willner et al. (2010) and fixed 𝜃 to 1.2◦

to solve for 𝐶20 and 𝐶22. This could potentially be the cause of the
inconsistency between our predictions and the observations of Jacobson
and Lainey (2014). Le Maistre et al. (2019) found a similar discrepancy.
Although the gravity coefficients of Yang et al. (2019) appear to support
the negative gradient model as indicated in Guo et al. (2021), they
are, because of the large error bounds, nevertheless unable to provide
additional information for distinguishing the model families considered
here.

We also compute the principal moments of inertia for all models,
which are shown in Fig. 10A–C. There are currently no observations
with which to compare the computed MoIs. Nevertheless, relative to the
principal MoIs of the homogeneous body, we find, not unsurprisingly,
little variation for the ice-rock mixtures, since their bulk density distri-
butions are almost homogeneous. For the layered models, however, a
difference in principal MoIs of up to 20%–30% is observed; the more
the mass is concentrated toward the center, the lower the MoI and
the larger the difference relative to the homogeneous model. This indi-
cates that ‘‘random’’ ice-rock mixtures are generally indistinguishable
from a homogeneous model, but that a layered model is potentially
distinguishable. The uncertainties associated with the ice-rock mixtures
and layered models (error bars in Fig. 10A–C) reflect the range in
MoI for the randomly constructed models of each of these families.
The range in ice-rock mixtures induces relatively small variations in
MoIs, which is to be expected given that these mixtures ‘‘behave’’ as
homogeneous bodies. The gradient models, in contrast, are distinct to
the homogeneous case, particularly the positive gradient model, which
shows a decrease of up to ∼8%, whereas the negative gradient model
is characterized by increased MoIs relative to the homogeneous model.

Another means of deriving information on density variations in the
interior of the body is through the displacement of the CoM relative to
the CoF. The CoM can in principle be determined from orbit through
the degree-1 gravity coefficients (Eq. (21)). However, as illustrated
in Fig. 10D–F, all presently considered models result, within model
uncertainties, in effectively the same CoF-CoM offsets. This results from
the fact that all these models consist of concentric layers centered in the
CoF with constant density within a given layer of a given model. There
is thus little to be deduced from the latter, although more complicated
models with local density variations underneath the Stickney crater
appear to provide a stronger signal (Le Maistre et al., 2019). However,
given the few constraints currently available, there is little point in
constructing more complicated models that encompass e.g., lateral
density variations.

6. Discussion and conclusion

Comparison of geophysical predictions with current observations
have shown that it is generally difficult to discriminate between ho-
mogeneous models and ice-rock mixtures given current uncertainties.
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Fig. A.3. Schematic diagram of the different forms of surface displacement experienced
by Phobos. See main text for details.

Degree-2 gravity coefficients and MoIs, on the other hand, appear to
provide a means of differentiating gradient and layered models from
the other two families. The main reason for this is that the models
considered here do not impart strong enough changes to the principal
MoIs that these are measurably different. Le Maistre et al. (2019), for
example, considered the case where the structure immediately beneath
the Stickney crater was more fractured than material elsewhere in the
body. Such models involve changes to the principal MoIs and therefore
impart perturbations in the libration amplitude that in principle are
detectable. Here, we abstained from considering such models given the
current dearth in observations that would allow us to move beyond
first-order differences.

To infer interior structure, in particular a density increase with
depth (i.e., positive gradient and layered models), would be through
measurements of the surface deformation, preferably along the equa-
tor as shown in this study. For these two configurations, the largest
deformation occurs toward the rim of the Stickney crater (Fig. 7C and
Fig. A.2G). These signals are relatively robust and in combination with
the determination of the degree-2 gravity coefficients could potentially
provide a detection of a density increase with depth. According to our
modeling results, failure to detect this Stickney crater-related signal
could indicate either of the following possibilities: (1) a more rigid
satellite; (2) a porous or rubble aggregate moon; (3) a density decrease
with depth; (4) any combination thereof; or (5) presence of lateral
heterogeneities. If rigid enough, detection of surface deformation would
be suppressed to the extent that it may be undetectable, even at the
sub-Mars point (in case of a rubble aggregate). Yet, as argued earlier, an
entirely solid satellite is very difficult to reconcile with the dynamical
evidence (cf. Bagheri et al., 2021), leaving a rubble aggregate as the
most likely alternative with maximum deformation at the sub-Mars
point. The latter is also detectable from a polar orbit (cf. Fig. 6C).

Based on our modeling, we have seen that tidal surface deformation
measurements on Phobos is an important source of information to con-
strain the effective shear modulus of the body. If we consider rigidities
similar to those of Martian regolith simulants (0.01–0.1 GPa) (Delage
et al., 2017), then the tidal deformation amplitude can achieve tens of
centimeters or even up to a 1 m if 𝜇 is an order of magnitude smaller (cf.
Fig. 8). In Fig. A.4 several locations (yellow dashed lines), where the
maximum tidal surface deformation is expected to occur on the surface
of Phobos, are shown as possible areas of special focus to be considered
in future missions.
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Fig. A.4. Surface tidal deformation (normal component) for the five major model families considered in this study. The yellow dashed lines indicate locations on Phobos where
the strongest deformation is observed. The colored dot indicates the location of the sub-Mars point. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
The results presented here are, as noted, based on a purely elastic
tidal response. Planetary bodies, however, consist of anelastic materials
that dissipate energy, as a result of which, the tidal response, i.e., the
tidal bulge raised on Phobos by Mars, will not be in line with the acting
force but will lag by a phase that is proportional to the amount of tidal
dissipation inside Phobos (Efroimsky, 2012). For rubble aggregate or
complete rubble pile bodies, the tidal response is likely to be influenced
by its rheological behavior. While the rheological behavior of rubble
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pile-like bodies is not yet well understood, studies have shown that
considerable tidal dissipation could occur within such objects (Nimmo
and Matsuyama, 2019; Goldreich et al., 2009; Brasser, 2020). Con-
sequently, our tidal deformation model needs to be augmented with
an appropriate viscoelastic model as implemented in e.g., Renaud and
Henning (2018), Khan et al. (2018), Bagheri et al. (2019), Lau and
Faul (2019). Generally, the tidal deformation of such bodies increases
as these become less viscous, i.e., as viscosity decreases, to the extent
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that the resultant bulge height on Phobos could reach values in excess
of 1 m for the configurations considered here (Dmitrovskii, 2020).
The bulge heights shown here therefore represent lower bounds. The
implementation of anelastic effects in our physical modeling scheme is
currently under consideration.
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