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S U M M A R Y
We introduce a new approach to the computation of gravito-elastic free oscillations or normal
modes of spherically symmetric bodies based on a spectral element discretization of the radial
ordinary differential equations. Our method avoids numerical instabilities often encountered
in the classical method of radial integration and root finding of the characteristic function.
To this end, the code is built around a sparse matrix formulation of the eigenvalue problem
taking advantage of state-of-the-art parallel iterative solvers. We apply the method to toroidal,
spheroidal and radial modes and we demonstrate its versatility in the presence of attenuation,
fluid layers and gravity (including the purely elastic case, the Cowling approximation, and
full gravity). We demonstrate higher-order convergence and verify the software by computing
seismograms and comparing these to existing numerical solutions. Finally, to emphasize the
general applicability of our code, we show spectra and eigenfunctions of Earth, Mars and
Jupiter’s icy moon Europa and discuss the different types of modes that emerge.

Key words: Numerical modelling; Surface waves and free oscillations; Theoretical seismol-
ogy.

1 I N T RO D U C T I O N

The analysis of the global seismic displacement wavefield in terms of discrete frequencies termed normal modes or free oscillations is a
classical approach in long-period seismology that dates back to the work of Poisson (1829), Thomson (1863) and Lamb (1881). Mathematically,
the modes are described as eigenfunctions and eigenvalues of a linear operator that incorporates the elastic and gravitational forces as well as
the full coupling between mass displacement and changes of the gravitational potential (Woodhouse & Deuss 2015).

Normal mode seismology has proved versatile by being able to provide information on the radial and lateral seismic structure of the
Earth (e.g. Dziewonski & Anderson 1981; Woodhouse & Dziewonski 1984; Giardini et al. 1987; Lognonné 1991; Resovsky & Ritzwoller
1999; Al-Attar et al. 2012; Irving et al. 2018). While Earth’s seismic velocity structure continues to be imaged at ever increasing resolution
(e.g. French & Romanowicz 2014; Lei et al. 2020; Simmons et al. 2021), normal modes nevertheless remain the most promising means to
constrain Earth’s global-scale density structure (e.g. Ishii & Tromp 1999; Trampert et al. 2004). Yet, despite its importance in governing the
dynamical evolution, Earth’s density structure remains relatively poorly resolved.

The numerical calculation of the free oscillations of Earth originated with the work of Alterman et al. (1959), who determined the
periods of spheroidal oscillations of a spherically symmetric non-rotating Earth. Today, one of the most commonly used, ‘battle-tested’ (Nolet
2008, p. 163), and openly available programs to compute the free oscillations of a planet is MINEOS (Masters et al. 2011).

The main challenge in the numerical computation of normal modes stems from the free surface boundary condition as this takes the form
of a determinant of a matrix that should vanish. As all entries of this matrix are only known to finite accuracy and the determinant is computed
as the difference of large numbers, its computation becomes numerically unstable. This complicates the detection of eigenfrequencies, where
the boundary condition is fulfilled. Moreover, the algorithm has to find the complete spectrum of eigenfrequencies below a certain cut-off
frequency and these can be arbitrarily close to each other, in particular for spheroidal modes, such that bracketing individual modes is difficult.

The reformulation of the underlying operator into minors and the introduction of mode counters by Woodhouse (1988) largely addressed
the aforementioned issues. However, as mode counting is based on detection of the zero crossings of the characteristic function that is
only known to finite accuracy, finding all modes in a reliable way remains a challenge, particularly at high frequencies. Additionally, the
identification of Stoneley and Slichter modes to high accuracy remains problematic, as the eigenfunctions are vanishingly small at the surface,
where the boundary condition needs to be imposed by correct summation of the fundamental solutions.
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Possibly the first work to use spectral elements for the calculation of normal modes (in the time domain) is that of Chaljub & Valette
(2004). Here, we apply the spectral element method to discretize the weak form of the second-order ordinary differential equations (ODEs) of
motion and formulate a generalized matrix eigenvalue problem in the spectral domain. We apply an iterative solver to this problem, whereby
we circumvent all aforementioned issues related to the integration methods. In particular, all boundary conditions at the free surface, internal
discontinuities, and the centre of the planet are readily implicitly fulfilled in the weak form, such that Stoneley (Stoneley 1924) and Slichter
(Slichter 1961) modes pose no particular challenge. Modern Krylov-subspace solvers reliably find all eigenvalues (Hernandez et al. 2005),
including degenerate eigenvalues, such that finding the complete spectrum is straightforward without the need for a mode counter.

Matrix-based approaches have previously been proposed by Wiggins (1976) and Buland & Gilbert (1984), but both the theory of
(higher-order) finite element methods and available numerical software for solving eigenvalue problems have seen a lot progress since. More
recently, Zábranová et al. (2017) used Chebychev polynomials to discretize the strong form of the equations to derive a matrix formulation
of the eigenvalue problem. In their approach, the matrices are non-sparse and non-symmetric and the boundary conditions need to be
treated explicitly. A direct eigenvalue problem solver that always computes the full spectrum is used, leading to computation times that are
substantially longer than MINEOS. In an effort to improve computational efficiency, we derive sparse and symmetric matrices and only solve
for the eigenpairs of interest through an iterative solver.

In the following, we briefly describe the underlying theory (detailed treatments can be found in Takeuchi & Saito 1972; Dahlen & Tromp
1998; Woodhouse & Deuss 2015), adhering to the notation of Dahlen & Tromp (1998, Section 2). Following this, we detail the methodology
behind the use of spectral elements for the discretization of the weak form of the ODEs and the computation of normal modes in general
(Section 3). Next, we apply our method to the computation of toroidal and spheroidal normal mode spectra for several planetary bodies,
including Earth, Mars and the Galilean moon Europa, and compare results with those obtained using other numerical schemes (Section 4).
Finally, the python-based implementation of the normal mode spectral element method presented herein (spectral element normal mode code;
specnm) is available open source (see data availability section).

2 T H E O RY

2.1 Radial scalar equations

For spherically symmetric, non-rotating, elastic (SNRE) planets, the wave equation can be simplified by a separation of variables in spherical
coordinates, for example by using vector spherical harmonics (Dahlen & Tromp 1998) as an Ansatz for the displacement eigenfunctions.
This leads to a set of ODEs with the radius of the planet as the only coordinate and where the dependence of the solution on latitudinal and
longitudinal coordinates is readily incorporated via spherical harmonics (see Appendix A and Dahlen & Tromp (1998)).

Normal modes are classified in two types as toroidal T (SH or Love wave interference) or spheroidal S (P–SV or Rayleigh wave
interference) modes. Hereinafter, we denote n ∈ [0, ∞) as the radial order or overtone number, l ∈ [0, ∞) as the angular degree and m as the
azimuthal order in the range −l ≤ m ≤ l. The asymptotic angular wavenumber that is associated with each mode is defined as k = √

l(l + 1).
We further denote the toroidal displacement eigenfunctions as W(r) and the spheroidal displacement eigenfunctions as U(r) and V(r).

Since spheroidal oscillations also involve changes in density, and therefore perturbations in the gravitational potential, we define the associated
function P(r) through an additional coupled ODE. The spheroidal modes with angular degree l = 0 are a special case and are called radial
modes, as the horizontal displacement vanishes and the system of ODEs is simplified to a single second-order ODE. Toroidal modes only exist
for angular degrees l ≥ 1. The toroidal mode 0T1 and the spheroidal mode 0S1 correspond to solid body rotation and translation, respectively,
with a zero eigenfrequency and are thus discarded in the computation of synthetic seismograms. It should be noted here, that for spherically
symmetric non-rotating bodies, the azimuthal order m does not appear in the equations and the eigenfrequencies are thus degenerate with
multiplicity 2l + 1. The eigenfrequencies and radial eigenfunctions are then uniquely determined by their angular degree l and overtone
number n so that the modes of both types are identified as nTl and nSl .

To achieve symmetry, the weak form is usually derived from the second-order form of the ODE in wave propagation problems. Here,
we derive the second-order ODEs for all three mode types and for transversely isotropic media (parametrized by the Love parameters A, C,
L, N, F and density ρ) from the more commonly-used first-order form (Appendix A).

For toroidal oscillations, we obtain a second-order ODE by taking the radial derivative of the toroidal first-order equation (eq. A1) and
inserting the expression for the radial derivative of the traction (eq. A2):

ρω2W = −∂r TW + (k2 − 2)Nr−2W − 3r−1TW , (1)

where the traction TW(r) is given by (Dahlen & Tromp 1998, eq. 8.193)

TW = L(∂r W − r−1W ). (2)

The boundary conditions are given in Table 1, which together with the jump condition at the internal discontinuities that follows from the
continuity of the eigenfunctions and tractions, define the solution space.

For spheroidal oscillations there are three coupled second-order ODEs corresponding to the eigenfunctions U(r), V(r) and P(r). As for
the toroidal case, the equations for the spheroidal case are obtained by taking the radial derivative of the spheroidal first-order equations
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Table 1. Boundary conditions for the second-order radial equations for the eigenfunctions U, V, W, P and corresponding tractions TU, TV,
TW and TP. Zero radius (centre of planet) boundary conditions are based on Zábranová et al. (2017).

Toroidal W (r )

Free surface and solid–fluid boundary TW = 0

Zero radius W = 0

Radial U (r )

Free surface TU = 0

Zero radius U = 0

Spheroidal U (r ), V (r ), P(r )

Free surface TU = TV = TP = 0

Solid side of solid–fluid boundary TV = 0

Zero radius ∂r U = ∂r V = P = 0, (l = 1)

U = V = P = 0, (l ≥ 2)

(eqs A3–A5) and inserting the tractions (eqs A6–A8):

ρω2U = −∂r TU − [4ρgr−1 − 4
(

A − N − C−1 F2
)

r−2]U + [kρgr−1 − 2k
(

A − N − C−1 F2
)

r−2]V − (l + 1) ρr−1 P

−2
(
1 − C−1 F

)
r−1TU + kr−1TV + ρTP ,

ρω2V = −∂r TV + [kρgr−1 − 2k
(

A − N − C−1 F2
)

r−2]U − [2Nr−2 − k2
(

A − C−1 F2
)

r−2]V + kρr−1 P

−kC−1 Fr−1TU − 3r−1TV ,

0 = −∂r TP − 4πG (l + 1) ρr−1U + 4πGkρr−1V

+ (l − 1) r−1TP . (3)

Here the tractions TU(r), TV(r) and TP(r) are defined as:

TU = C∂r U + Fr−1(2U − kV ),

TV = L(∂r V − r−1V + kr−1U ),

TP = ∂r P + 4πGρU + (l + 1)r−1 P,

where G denotes the gravitational constant and g(r) the gravitational acceleration in the undeformed planet, which is uniquely determined
from the density profile ρ(r). The boundary conditions can be found in Table 1 and continuity of eigenfunctions and tractions holds as in the
toroidal case.

For short-period oscillations, self-gravity plays a negligible role as a restoring force compared to the elastic forces (Dahlen & Tromp
1998) and the change in the gravitational potential due to the mass redistribution caused by the seismic disturbance can be omitted [for a
quantitative error estimate see fig. 1 in van Driel et al. (2021a)]. This approximation is known as the Cowling approximation (Cowling 1941;
Dahlen & Tromp 1998). In the Cowling approximation, the system of governing equations reduces to two coupled second-order ODEs for U(r)
and V(r), since the perturbation in the gravity potential and its related eigenfunction P(r) can be excluded. Consequently, the approximated
system of ODEs is given by:

ρω2U = −∂r TU − [4ρgr−1 − 4
(

A − N − C−1 F2
)

r−2]U + [kρgr−1 − 2k
(

A − N − C−1 F2
)

r−2]V

−2
(
1 − C−1 F

)
r−1TU + kr−1TV ,

ρω2V = −∂r TV + [kρgr−1 − 2k
(

A − N − C−1 F2
)

r−2]U − [2Nr−2 − k2
(

A − C−1 F2
)

r−2]V

−kC−1 Fr−1TU − 3r−1TV . (4)

The tractions TU(r) and TV(r) are the same as in the case with full gravity, and the same boundary conditions apply.
The ODE for spheroidal modes with zero angular degree l = 0 (radial modes) consists of a single second-order equation involving the

radial displacement eigenfunction U(r) only and is given by:

ρω2U = −∂r TU − [
4ρgr−1 − 4

(
A − N − C−1 F2

)
r−2

]
U − 2

(
1 − C−1 F

)
r−1TU . (5)

The traction TU(r) is identical to the one for spheroidal modes with V(r) set to zero. The boundary conditions are again given in table 1.
To ignore gravity completely, it is sufficient to set all terms related to gravity to zero in the Cowling approximation. This includes terms

involving either the gravity constant G or the gravitational acceleration g(r). This is particularly useful as a means of benchmarking with time
domain methods that do not incorporate the effects of gravity such as AxiSem (e.g. Nissen-Meyer et al. 2014).
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2.2 Weak form

To enable a spectral element formulation, the set of ODEs together with their respective boundary conditions can be transformed from the
strong to the weak form. Alternatively, it is also possible to start from the variational principle and vary the action of the respective mode
type as shown in Dahlen & Tromp (1998, section 8.6.4). Interpreting the variation of the eigenfunctions as the test function leads to the weak
form. Another possibility is to start from the general three-dimensional (3-D) weak form and use spherical harmonics as Ansatz to derive the
radial ODEs as shown by Al-Attar & Tromp (2013). Here, we start from the strong form and illustrate the derivation for the toroidal modes
(the weak forms for spheroidal and radial modes can be found in appendix B).

To derive the weak form, we multiply the strong form with a test function W̃ and integrate over the radial domain, �, of the planet. An
additional geometric integral kernel r2 that stems from the volume element is introduced for consistency with the physical normalization and
partial integration is applied to achieve a symmetric form. Note that the weak form is equivalent to the strong form if the equation for the
weak form is fulfilled for all test functions from an appropriately chosen set.

Writing this step explicitly for the toroidal eq. (1) gives us:

ω2

∫
�

ρW W̃r 2 dr = −
∫

�

∂r TW W̃r 2 dr +
∫

�

N (k2 − 2)W W̃ dr −
∫

�

3rTW W̃ dr

= − [
TW W̃r 2

]rsurf

r0
+

∑
r∈d

[
TW W̃r 2

]+
− +

∫
�

TW (r 2∂r W̃ + 2r W̃ ) dr +
∫

�

N (k2 − 2)W W̃ dr −
∫

�

3rTW W̃ dr. (6)

Boundary terms from integration by parts need to be considered for all internal discontinuities d, at the free surface rsurf and at the core-
mantle-boundary or at the centre of planets without a liquid core r0. However, these terms vanish at the centre because both W̃ and r are zero
here (the same boundary conditions apply to the test function as for the eigenfunctions) and at the free surface or solid fluid boundary, where
TW is zero. At internal discontinuities, the continuity of the eigenfunction W and its related traction TW ensures that each term appears twice
with opposite sign. As a consequence, all boundary conditions are readily implicitly fulfilled. Finally, from the definition of the traction TW

(eq. 2), we arrive at the symmetric weak form:

ω2

∫
�

ρW W̃r 2 dr =
∫

�

L(r∂r W − W )(r∂r W̃ − W̃ ) dr +
∫

�

N (k2 − 2)W W̃ dr. (7)

2.3 Discretization

Using the Galerkin method, we approximate the solution for the eigenfunction W(r) by a finite set of basis functions ψ(r):

W (r ) ≈
∑

i

wiψi (r ), (8)

where wi are the toroidal expansion coefficients (degrees of freedom). The same basis functions ψ i are used as test functions in the weak
form. Consequently, we end up with the following discrete approximation for the toroidal modes (eq. 7):

ω2w j

∫
�

ρψiψ j dr = w j

∫
�

[
L(r∂rψi − ψi )(r∂rψ j − ψ j ) + N (k2 − 2)ψiψ j

]
dr, (9)

where wj are again the basis coefficients from the expansion of W as in (eq. 8) and summation over repeated indices is implied. Given the
basis function, the integrals can be evaluated and the equation can equivalently be written in matrix form. Identifying the terms for the mass
matrix M and stiffness matrix K for toroidal modes and denoting w as a vector containing the coefficients wi, this reads

ω2Mw = K(l)w. (10)

For the spheroidal case, there is the additional complexity that multiple eigenfunctions need to be included in the eigenvector with
a well-defined order. We group the three degrees of freedom for each basis function together, such that in the case of full gravity with
eigenfunctions U(r), V(r) and P(r), the vector reads (u0, v0, p0, u1, v1, p1, . . . ), where ui, vi and pi are the spheroidal basis coefficients from
the expansion of U, V and P, respectively.

2.4 Spectral elements

The spectral element method consists of a particular choice of test functions together with a quadrature rule to approximate the integrals of
the weak form. The challenge in finding an appropriate set of test functions is to come up with functions that fulfil the boundary conditions
at all internal discontinuities, while guaranteeing higher-order convergence of the method to efficiently achieve a high level of accuracy. The
first condition is solved by subdividing the domain into Ne subdomains �e called elements, such that the internal discontinuities of the model
align with element boundaries. To address the second condition, the solution within each element is expanded in terms of p + 1 Lagrange
polynomials ψ e

i (i = 1,..., p + 1) of degree p on the Gauss–Lobatto–Legendre (GLL) points. These points represent the optimal choice for
Lagrange interpolation with the first and last point located on the element boundary (e.g. Igel 2017, eq. 7.33). This particular choice coincides
with the optimal points for Gauss quadrature that integrate polynomials of degree 2p − 1 exactly. At element boundaries, continuity of the
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Figure 1. Illustration of the local-to-global transformation for DOFs on the boundary of the elements using gather and scatter operators according to (eq. 14).
The simplest case is for toroidal modes, where the solution is scalar. For spheroidal modes the solution has multiple DOFs per Gauss–Lobatto–Legendre point,
which needs to be reflected in the gather/scatter operators.

test functions is enforced explicitly as discussed in the following and continuity of traction is implied by the weak form as discussed in the
previous section.

Given the subdivision of the domain, the integrals over the whole domain in the weak form can be split up into a sum of integrals over
all elements. While the integrals could in principal be solved analytically given the test functions, it is common practice to apply a quadrature
rule instead. The Gauss quadrature on the GLL points is accurate for polynomials up to degree 2n − 1, while the equations contain terms up to
order 2n. While this implies that the integrals are computed approximately, it is sufficiently accurate to maintain the convergence order of the
method (e.g. Cohen & Pernet 2017, p.208). The main benefit of this quadrature is that the mass matrix M becomes diagonal as the quadrature
points are identical to the interpolation points, that is the Lagrange basis on the GLL point is orthogonal with respect to the GLL quadrature.
The mass matrix induces an inner product in the discrete space equivalent to the integrals in the continuous variational principle, such that
the discrete weak form of the equation corresponds to a discrete variational principle. If the mass matrix is diagonal this inner product is
particularly simple and all integral quantities derived from perturbation theory in the continuous problem (such as attenuation factors, group
velocity) hold exactly in the discrete case if the same quadrature is used to approximate the integral.

To evaluate the integral, each element �e needs to be mapped onto a reference element, which, in the 1-D case considered here, is just
the interval [−1, 1]. This mapping is defined as

Fe : [−1, 1] → �e, r = Fe(ξ ), e ∈ [1, . . . , Ne]. (11)

We define the Lagrange polynomials of order p within an element by

	
p
i (ξ ) :=

p+1∏
j 	=i

ξ − ξ j

ξi − ξ j
. (12)

The element-wise integrals can then be expressed in the reference coordinates ξ and approximated by Gauss quadrature as

∫
�e

f (r ) dr =
∫ 1

−1
f (ξ )J (ξ ) dξ ≈

p+1∑
i=1

σi f (ξi )J (ξ ). (13)

where J (ξ ) is the Jacobian given by J (ξ ) = dr
dξ

and the GLL integration weights are σi = ∫ 1
−1 	

p
i (ξ ) dξ . The derivative of the Lagrange

polynomials needed in the discretization of the full equations can readily be derived from the polynomial basis functions.
Requiring continuity of the solution at the element boundaries is simplified by the fact that the GLL points include the boundary. The

two DOFs on the boundary of two neighbouring elements correspond to a single global DOF, so no linear system needs to be solved but the
mass and stiffness matrices need to be assembled. This can be done in terms of gather and scatter matrices QT and Q (e.g. Nissen-Meyer
et al. 2007): The scatter operator copies elements from global-to-local degrees of freedom, while its transpose, the gather operator, sums up
element boundary contributions into the single global DOF.

A global operator A corresponding to an ODE on the full domain can then be assembled from the element-wise operator AL as:

A = QTAL Q. (14)

In the 1-D case, where each element has exactly two neighbours and the DOFs can trivially be indexed by sorting along the radius, the gather
and scatter operators take a very simple form. The resulting matrix then is a band matrix where the bandwidth is equal to the size of the
blocks in the local operator, that is the number of degrees of freedom per element (Fig. 1).

Finally, we can write the ODE in terms of a generalized weakly non-linear matrix eigenvalue problem

ω2Ms = K(l, ω)s, (15)

where K(l, ω) is the positive definite stiffness matrix that is a function of angular degree l and frequency ω. This is the case when attenuation
is taken into account, in which case the material parameters become frequency-dependent (see Section 3.4 for details). M is the mass
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Figure 2. Logical flow chart of the specnm software as summarized in Section 3.1. Numbers in parenthesis indicate sections where details of the respective
step can be found.

matrix, which is positive semi-definite for the spheroidal equation with full gravity and positive-definite otherwise. The system can be solved
numerically for the M-orthonormalized eigenvectors nsl , where n is the overtone number and to each of these eigenvectors there exists a
corresponding eigenfrequency nωl.

2.5 Fluid layers

In fluid layers (L = N = 0), the shear traction TV vanishes and the horizontal displacement V can be computed from the other two degrees
of freedom (Dahlen & Tromp 1998, eq. 8.143). However, due to the occurrence of ω2 in this relation, this replacement would render the
eigenvalue problem quadratic. Typically, quadratic eigenvalue problems are transformed to linear problems, doubling the size of the matrices
in the process. To avoid this complication, we follow the same approach as Wiggins (1976), Buland & Gilbert (1984) and Zábranová et al.
(2017) and keep the same representation of the solution in the fluid as in the elastic part of the domain. If the boundary condition on the solid
side of the solid-fluid boundary is correctly set (no horizontal traction, TV = 0) then the eigenvectors are computed correctly both in the fluid
and the solid. This boundary condition again corresponds to the natural boundary condition of the weak form of the equations. As a result,
it is easily implemented by dropping the explicit condition of continuity of V at the solid–fluid boundary in the gather and scatter operators.
The additional degrees of freedom in the fluid are not constrained by the physics and lead to spurious, that is unphysical, additional solutions
of the discrete system (Wiggins 1976). The spurious modes, how they differ from the undertones discussed by Buland & Gilbert (1984) and
our filtering technique to remove them from the spectrum will be further discussed in Section 3.3.

3 N U M E R I C A L I M P L E M E N TAT I O N

3.1 Overview of the workflow

The schematic workflow for computing complete catalogues of normal modes as implemented in our software specnm is shown in Fig. 2. In
the following, we provide an overview after which we detail the most important steps. The workflow is divided into three main parts:

First, a set-up stage generates the mesh based on the input 1-D model and frequency range, such that each discontinuity in the
model aligns with an element boundary and the element size is smaller than a given fraction of the S-wavelength (P-wavelength in the fluid).
In the examples shown below, we find that two elements per wavelength with a polynomial order p = 5 provides sufficient accuracy. The
model parameters are subsequently converted to the transverse isotropic parameters (A, C, L, N, F, see e.g. Dziewonski & Anderson 1981),
the most general elastic medium with spherical symmetry, and the gravitational acceleration as a function of the radius g(r) is computed from
the density profile by numerical integration. Given the discretization and model parameters, the gather and scatter operators, mass matrix, and
all terms needed to build the stiffness matrices can be precomputed. As the stiffness matrix is a function of the angular degree and frequency
through the material parameters, it is split into terms independent of the angular degree l and the material properties (see eq. 15). Assembly
of the full stiffness matrix is then efficiently implemented as a series of sparse matrix operations.

Secondly, a solver stage computes the normal mode catalogue by iterating over all angular degrees l and computing all overtones n up
to a user-defined frequency fmax. If the frequency dependence of the material parameters due to attenuation is ignored, the eigenvalue problem
is linear and the eigenpairs can be directly computed (see Section 3.2). If this is not the case, the stiffness matrix needs to be updated as a
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function of frequency and we solve the non-linear problem using eigenvector continuation in an inner loop over overtones (see Section 3.4).
In the spheroidal case with fluid layers, the spurious modes need to be filtered from the mode spectrum (Section 3.3).

Thirdly, once the eigenfrequencies and eigenfunctions are known, the decay factors γ = ω

2Q (from first order perturbation theory),
dispersion curves, sensitivities as well as the displacement s(x, ω) at any location within the planet can be calculated by summation over all
angular degrees l and overtones n (Dahlen & Tromp 1998, eq. 10.61) in a post processing stage:

s(x, t) =
∞∑

n=0

∞∑
l=0

nAl (x)nω
−2
l [1 − cos(nωl t) exp(−nγl t)]. (16)

Here, the amplitude factor nAl is computed from the eigenfunctions and a given source location, depth and moment tensor. For comparison
to MINEOS, the corrections of the eigenfunctions for the response of a seismometer on Earth’s surface need to be included (Dahlen & Tromp
1998, eq. 10.71–72).

3.2 Numerical solution of the eigenvalue problem

While small eigenvalue problems can be solved directly via matrix decomposition, it is more efficient to use iterative methods, such as the
Lanczos or Arnoldi methods, for large matrices (Lehoucq et al. 1998). This is particularly true for sparse matrices and in case that only a
fraction of the eigenvalue spectrum needs to be computed. For the particular matrices in the problem we consider here, we found a modern
variation of the Arnoldi method called implicitly restarted Krylov–Schur (Hernandez et al. 2005) to be efficient and reliable.

Iterative eigenvalue solvers converge to eigenvalues successively, starting from the largest. In the normal mode problem, we are interested
in small eigenvalues, but not necessarily the smallest because of the presence of undertones (Buland & Gilbert 1984). The undertones for a
fixed angular degree l have eigenfrequencies that accumulate at zero with an infinite number of modes below any finite frequency. To select
the range of eigenvalues of interest, we apply a shift-invert method and solve the corresponding auxiliary problem in which the eigenvalues of
interest are in fact the largest (Scott 1982). Importantly, this method can be applied to the generalized eigenvalue problem with a semi-definite
mass matrix, as in the case of spheroidal modes with full gravity.

The auxiliary problem of the shift-invert method is defined as

(K − σM)−1Ms = Cs = μs, (17)

where σ is the shift-value around which the eigenvalues are sought, μ is the eigenvalue of the auxiliary problem and related to the eigenvalue
ω2 of the original problem by

μ = 1

ω2 − σ
. (18)

The eigenvectors remain identical under this transformation.
As K is banded (see Fig. 1) and M is diagonal, the inverse can be computed via sparse LU decomposition (Amestoy et al. 2001) and the

fill-in is limited to the bandwidth of K. The iterative solution for the eigenvalues hence remains highly efficient under this transformation.
The convergence criterion to accept the eigenvalues from the iterative method is based on the L2-norm of the residuum vector of the

generalized eigenvalue problem

r = (K − ω2M)s (19)

scaled by the matrix norms of the mass and stiffness matrices:

ε > ‖r‖2/
(‖K‖2 + ω2‖M‖2

)
. (20)

This scaling is crucial as the matrix norms can vary significantly and this choice guarantees consistently small relative errors on the eigenvalues.
By default, we conservatively choose ε = 10−12, as potential performance gains for larger residuals appear marginal in the cases we consider
below. Importantly, this criterion only refers to the discrete problem. An estimation of the error of the eigenvalue for the continuous problem
is discussed in the next section.

3.3 Spurious modes and undertone filter

Spurious modes have previously been reported in matrix-based approaches in the spheroidal case for planets with fluid layers (Wiggins
1976; Buland & Gilbert 1984; Zábranová et al. 2017). While Wiggins (1976) attributed their presence to the overparametrization in the fluid,
where only two of the three eigenfunctions are linearly independent, Buland & Gilbert (1984) attributed them to under-resolved undertones
that can be mapped to higher frequency in the discrete system. Here we will argue that both interpretations are partially valid and that two
corresponding distinct additional mode types can be identified.

Undertones occur in fluid layers that are not neutrally stratified, as a consequence of which the Brunt–Väisälä frequency is non-zero
(Dahlen & Tromp 1998, section 8.8.11). The dominant forcing for these modes is gravitational and derives from density and buoyancy
changes as the material experiences a difference in pressure when displaced vertically. In contrast to modes dominated by elastic forces,
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(a) (b) (c)

Figure 3. Detection of three classes of modes for anisotropic PREM and spheroidal modes with full gravity. In both (a) and (b), the horizontal dashed lines
indicate the cut-off rayleigh quotient epsilon and cut-off kinetic energy in fluid, while the vertical dashed lines show the frequency cut-off used for the filtering of
the modes. (a) The Rayleigh quotient filter identifies well-resolved solutions, corresponding to the physical modes of interest and long-wavelength undertones.
(b) The normalized fluid kinetic energy is used to separate the modes of interest from undertones and spurious modes. (c) Eigenfunctions of three modes
representative of the different classes are labelled (1), (2), and (3) in panels (a) and (b).

these modes have very low eigenfrequencies despite having highly complex eigenfunctions. The maximum frequency of the undertones is
bound by the maximum of the Brunt–Väisälä frequency as a function of depth. As a consequence, the undertones violate the typical meshing
criterion based on the seismic velocities and may have arbitrarily high errors relative to the corresponding solution of the continuous equation.
Importantly, we do not observe this class of solutions in the discrete system when the Cowling approximation is used and P = 0, although
undertones may in principle still exist. In any case, we do not observe a mapping of the discrete eigenfrequencies of the undertones into the
elastic eigenfrequency range, in contrast to earlier suggestions by Buland & Gilbert (1984).

A second class of spurious modes can be observed independently of gravity and as there is no correspondence in the continuous solution,
the Rayleigh quotient error ε (Takeuchi & Saito 1972) is consistently high. These modes overlap with the elastic modes of interest in the
spectrum and we identify the modes through the interpretation of Wiggins (1976).

Buland & Gilbert (1984) use the fraction of kinetic energy in the fluid as a discriminant for these additional modes Ekin(�fluid)/Ekin(�),
where the kinetic energy is given by (Dahlen & Tromp 1998)

Ekin(�) =
∫

�

ρ(U 2 + V 2)r 2 dr. (21)

While this seems appropriate for almost all modes, we nevertheless find that some of the modes belonging to the second class may also
include non-zero energy in the elastic part, rendering this criterion by itself unreliable. Instead, we use a combined criterion of Rayleigh
quotient error εRQ and fluid kinetic energy together with a minimum frequency [for an early discussion on this see Valette (1987)] to separate
the three mode types. Thus, if any mode in the frequency range of interest has a high Rayleigh quotient error but a low fluid kinetic energy,
the separation fails and mesh refinement or a higher order polynomial is required to ensure that this mode is either well-resolved or correctly
identified as spurious.

Importantly, the discrete Rayleigh quotient is exactly what the eigenvalue solver minimizes, so we cannot compute it directly using the
mass and stiffness matrices in the same discretization. Instead, we interpolate the eigenfunctions to the next higher polynomial degree and
use GLL quadrature to approximate the integrals in the analytical expressions of the Rayleigh quotient for the anisotropic case (Dahlen &
Tromp 1998, eqs 8.126–130, 8.208). This ensures exactness of quadrature and provides a reliable and efficient estimator for the relative error
of the eigenfrequency of the continuous problem as suggested by Takeuchi & Saito (1972), which is given by

εRQ = 1

2

(
Epot

ω2 Ekin
− 1

)
, (22)

where Epot is the total potential energy and the additional factor 1
2 is needed to propagate the error from the eigenvalue to the eigenfrequency.

Fig. 3 shows a comparison of the three mode types and their Rayleigh quotient error εRQ as well as their fluid energy. While the Stoneley
mode has a high fluid kinetic energy, it is non-zero also in the elastic part and has a low Rayleigh quotient error. Both the spurious modes
and the undertones are concentrated in the fluid and have a high Rayleigh quotient error. The spurious mode, however, has oscillations at the
resolution limit, while the physical undertone is significantly smoother.

3.4 Attenuation

As a consequence of the Kramers–Kronig relations and causality, attenuation of the elastic waves is directly related to the frequency
dependence of the elastic moduli, that is, physical dispersion. This results in a weakly frequency-dependent stiffness matrix and consequently
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(a) (c)

(b) (d)

Figure 4. Illustration of avoided [subfigures (a) and (b)] and true mode crossings [subfigures (c) and (d)]. (a) Avoided crossing of 10S2 with 11S2 and (c) true
crossing of 24S20 with 25S20 as a function of the reference frequency at which the material properties are evaluated. In the vicinity of an avoided crossing, the
radial eigenfunctions U of these spheroidal modes exchange character (b), rendering the perturbation of the eigenfrequencies non-linear. This is not the case
for a true crossing (d).

a weakly non-linear eigenvalue problem. Instead of using perturbation theory to only correct the eigenfrequencies and not the eigenfunctions
for the frequency-dependence, we follow the same approach as established in MINEOS and other codes and include the physical dispersion
by evaluating the model parameters at the frequency of the mode. The amplitude decay due to attenuation (i.e., the imaginary part of the
eigenfrequency) is thus incorporated in the computation of the seismograms. Although exact methods are available (Tromp & Dahlen 1990),
this approximation has proven accurate enough for most applications (e.g. Dahlen & Tromp 1998; Al-Attar 2007, and references therein).

Assuming the quality factors Q to be independent of frequency ω and that the five elastic parameters α ∈ {C, F, N, L, A} are specified at
a given frequency ω0 in the 1-D model of interest, the elastic parameters can be evaluated at any frequency ω using the logarithmic relation
(Dahlen & Tromp 1998)

α(r, ω) ∝ α(r, ω0) ln

(
ω

ω0

)
. (23)

As solvers for non-linear eigenvalue problems are much less developed than for linear problems and the solutions of the normal mode
problem are only weakly non-linear, we adopt a strategy based on linear solvers. This is as an extension of the approach by Zábranová
et al. (2017), who proposed to solve the full eigenvalue problem at a series of fiducial frequencies and then used interpolation to obtain the
eigenfrequencies, eigenfunctions and attenuation factors of the non-linear problem. As mentioned by Zábranová et al. (2017), one problem
that arises is the association of the modes between the eigenvalues computed at different reference frequencies for spheroidal modes, related
to the observation that some eigenfunctions exhibited a strong dependence on the reference frequency.

We confirm this observation and provide an interpretation in Fig. 4. As eigenvalue branches may cross as a function of reference
frequency, there are two distinct types of crossings: avoided and true crossings. Avoided crossings or level repulsions are well known for
overtone branches as a function of angular degree (Dahlen & Tromp 1998) and have been observed in several studies of normal mode coupling
(Park 1986; Snieder & Sens-Schönfelder 2021). In the particular case illustrated in Fig. 4, we observe that the eigenvalues of 10S2 and 11S2

avoid a crossing close to their eigenfrequencies in PREM. The eigenfunctions overlap and exchange character in the avoided crossing, that
is, the eigenfunctions of the two modes are rotated in a two-dimensional subspace. In contrast, the eigenfunctions of 24S20 and 25S20 do not
overlap and the eigenvalue branches cross without any interaction. The eigenfunctions switch character from one overtone to the other and the
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924 J. Kemper et al.

Figure 5. Iterative strategy to find the solutions of the non-linear eigenvalue problem for spheroidal modes at angular degree l = 2. Firstly, two fiducial
frequencies ωl and ωr are used to bracket blocks of eigenfrequencies that are shown here in blue and orange. Secondly, log-linear interpolation is applied to
update the stiffness matrix that results in the solutions depicted by the green crosses. Lastly, eigenvector continuation improves the accuracy of eigenpairs
giving the solution for the modes depicted by the red circles. This solution has a much higher accuracy than the simple solution we get by applying the log-linear
interpolation as shown in the bottom panel, which indicates the relative difference between the log-linear interpolation and the final solution in blue and the
estimate of the final relative error εRQ of the eigenvalue based on the Rayleigh quotient.

eigenvalues are log-linear in the reference frequency. In order to achieve a reliable association of branches across discretely sampled reference
frequencies as required for interpolation of the eigenfrequencies, a dense sampling is required.

Using the iterative solver with the shift-invert method as described in Section 3.2 is most efficient if a small number (between 5 and
20) of eigenvalues are computed at once for a fixed reference frequency due to the overhead related to updating the stiffness matrix and
computing the inverse for the auxiliary problem. We thus follow the approach illustrated in Fig. 5: we first solve the linear problem for a
block of eigenfrequencies which is bounded by two fiducial reference frequencies. Importantly, the difference between the two reference
frequencies is small, as a result of which the eigenfunctions only change slightly and the aforementioned association problem does not occur.
In the next step, we estimate the eigenfrequency of the mode by log-linear interpolation between the fiducial frequencies. As the interpolation
has no closed-form solution, we use numerical root-finding instead of the ad hoc relation proposed by Zábranová et al. (2017, eq. 68). Using
the resulting approximate eigenfrequency, we update the stiffness matrix and use the eigenfunctions computed at the two fiducial frequencies
as a basis in a Rayleigh–Ritz approach (Dahlen & Tromp 1998) to account for the potential non-linearity close to avoided crossings. This
idea is also called ‘eigenvector continuation’ in other fields (e.g. Frame et al. 2018) and we summarize the main steps in the following.

First, the mass and stiffness matrix are projected into the subspace spanned by the two eigenfunctions sl , sr computed at the fiducial
reference frequencies ωl, ωr:

N =
(

sT
l Msl sT

r Msl

sT
l Msr sT

r Msr

)
(24)
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Figure 6. Relative error of eigenvalues compared to the analytical solution for the homogeneous sphere for spheroidal modes with (a) full gravity, (b) without
gravity and (c) for toroidal modes. The error is calculated for angular degree l = 5, and we show the mean relative error of the first 10 overtones n < 10 as a
function of the element size h. As expected based on theoretical consideration, the eigenvalues converge with order h2p.

H =
(

sT
l Ksl sT

r Ksl

sT
l Ksr sT

r Ksr

)
, (25)

The solution of the 2-D generalized eigenvalue problem

ω2Nv = Hv (26)

then provides the eigenvalue ω2 and basis coefficients as eigenvector v to reconstruct the eigenfunction in the original solution space of the
spectral elements.

As this method only requires a few sparse matrix–vector products and the solution of a 2-D eigenvalue problem, it is computationally
cheap. Yet, it improves the accuracy relative to the log-linear interpolation by approximately two orders of magnitude (cf. lower panel in
Fig. 5). Note that although the spurious modes are well-behaved throughout this process, we include them in the figure here for the purpose
of illustration, but always filter them out in a final step.

3.5 Accuracy of the method

One major advantage of the spectral element method is the flexibility in choosing the polynomial degree of the Lagrange basis functions.
Higher orders typically result in higher efficiency, particularly if high accuracy of the solution is required. Here, we demonstrate that the
theoretically expected convergence rates can also be observed in the numerical solution in comparison to analytical solutions on a homogeneous
sphere (Takeuchi & Saito 1972; Dahlen & Tromp 1998).

According to Babuška & Osborn (1991), the absolute error in the eigenvalue λh calculated on a mesh with element size h is bounded by

C1‖r‖2
2 ≤ |λh − λ| ≤ C2‖r‖2

2, (27)

where C1 and C2 are constants and r is the residuum of the eigenfunction . ‖r‖2, however, is proportional to hp, where p is the polynomial
degree of the test function (Cohen & Pernet 2017). As a consequence, the eigenvalues λh converge with O(h2p) and the same order is expected
for the eigenfrequencies ωh = √

λh , with the relative error offset by a constant factor (0.5). This result is numerically confirmed for spheroidal
modes with full gravity, spheroidal modes without gravity and toroidal modes for a homogeneous elastic sphere in Fig. 6.

4 B E N C H M A R K A N D A P P L I C AT I O N S

In the following, we benchmark specnm against mode catalogues and seismograms calculated for Earth (PREM Dziewonski & Anderson
1981) using MINEOS (Woodhouse 1988; Masters et al. 2011). To further demonstrate the versatility of specnm, we apply the method to models
of Mars and Jupiter’s moon Europa, two planetary objects that differ in structure from the Earth: the former has a purely liquid core (Stähler
et al. 2021), whereas the latter consists of a global ice layer that overlies a liquid ocean (Stähler et al. 2018), giving rise to a plethora of
interesting seismic phases.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Dispersion diagram and comparison of eigenfrequencies and quality factors for toroidal (a–c) and spheroidal (d–f) modes with full gravity computed
with specnm and MINEOS. For the spheroidal case, the Cowling approximation was used in both codes for l > 200 due to stability issues with MINEOS. Since
we were unable to produce the complete spectrum needed for this comparison with MINEOS, we had to bi-linearly interpolate the relative error for a small
number of modes (13) in the spectrum. Due to the use of the approximation, the subfigures (e) and (f) show a visible discontinuity at angular degree l = 200.
The dashed light blue curves indicate isofrequency levels in which the labels are given in mHz.

4.1 Earth

4.1.1 Mode comparison

Fig. 7 shows a comparison between the results obtained with specnm and MINEOS in terms of the eigenfrequencies and quality factors Q for
both toroidal and spheroidal modes up to a maximum angular degree l = 500 and overtone number n = 300, corresponding approximately to
eigenfrequencies up to 320 and 230 mHz, respectively.

For the majority of the modes, the relative difference of the eigenfrequencies is below 10−4. Somewhat surprisingly, the relative error
is largest for the lowest modes, where the spatial resolution of the spectral element mesh is the highest relative to the complexity of the
eigenfunctions. This is most clearly observed for toroidal modes, but is also the case for spheroidal modes. A similar pattern was also observed
by Zábranová et al. (2017) in the comparison of their method to MINEOS, and therefore this is unlikely an issue with specnm.

The relative difference of the quality factors is approximately below 1 per cent for most modes with eigenfrequencies smaller than 50
mHz, but becomes unacceptably large at higher frequencies, in particular for Stoneley modes at the core–mantle boundary and the outer-inner
core boundary. Again, this was also observed by Zábranová et al. (2017). Stoneley modes are known to be particularly challenging for
integration methods because of the explicit boundary condition on the free surface, where the eigenfunctions are very close to zero (Dahlen
& Tromp 1998). For a verification of our calculation of the attenuation factors independent of other software, we use the linear approximation
of the dispersion correction (Dahlen & Tromp 1998, eq. 9.55) and find very good agreement with the non-linear solution if the reference
frequency is chosen close to the mode of interest, that is, where the linearization is a good approximation (not shown).

An alternative error quantification for the eigenfrequencies is provided by the Rayleigh quotient error εRQ and shown in Fig. 8. Using
a polynomial order p = 5 and a mesh resolution of two elements per wavelength at the highest frequency, we reliably achieve an error εRQ

< 10−5, which we consider acceptable for most applications. As previously observed by Zábranová et al. (2017), the error is largest for the
inner-core Stoneley modes, but is more than two orders of magnitude smaller in our work. If higher accuracy is needed for these modes, a
mesh refinement around the solid-fluid boundary would be a simple and efficient solution.

In summary, we consider the comparison to MINEOS together with the low Rayleigh quotient error and the convergence test in the
previous section as a confirmation of the correctness of our implementation.

4.1.2 Seismogram comparison

Fig. 9 shows a comparison between seismograms computed with specnm and MINEOS. We computed all modes up to a maximum frequency
of 40 mHz as eigenfrequencies and attenuation factors computed with specnm and MINEOS agree reasonably well in this range, and MINEOS
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(a) (b)

Figure 8. Estimate of the eigenfrequency error from the Rayleigh quotient εRQ for (a) toroidal and (b) spheroidal modes in PREM. The calculations were
performed with polynomial order 5 and a mesh with two elements per wavelength at the maximum frequency. Due to the use of the Cowling approximation for
angular degree of l > 200, the subfigure (b) shows a visible discontinuity in the Rayleigh quotient εRQ at angular degree l = 200. The dashed light blue curves
indicate isofrequency levels in which the labels are given in mHz.

Figure 9. Synthetic acceleration seismograms computed for the Tohoku Oki earthquake at the Black Forrest Observatory (BFO) seismic station. Z, R and T
refer to vertical, radial and transverse component, respectively. The green line indicates the difference between MINEOS and specnm. All modes up to 40 mHz
are included in both MINEOS and specnm. A low-pass filter was applied at 33.3 mHz.

reliably computes all modes with full gravity (which is not the case for higher frequencies). For the computation, we use the centroid solution
of the 2011 Tohoku Oki earthquake as source and the black forest observatory (BFO) as representative station. Free air, potential and tilt
corrections to the eigenfunctions are applied before calculating the excitation coefficients for each mode.

The resultant three-component acceleration seismogram for a duration of 2 hr (after the event) is shown in Fig. 9. The seismograms
are low-pass filtered at 33.3 mHz to avoid ringing at the cut-off frequency of the mode catalogues. The difference between specnm and
MINEOS is only a few percent in amplitude relative to the signal, with the largest discrepancy caused by slight phase shifts of the fundamental
mode surface waves, as expected from the difference in eigenfrequencies discussed above. We also computed and compared spectra from the
seismograms, which are illustrated in Fig. 10. The spectra are computed over a time window of 24 hr. The spectra are seen to be commensurate,
with the largest difference again occurring on the transverse component, which is dominated by toroidal modes. This provides further evidence
for the proper calculation of long-period seismograms.

4.2 Mars

Normal mode seismology on Mars has been considered in the context of theoretical and pre-mission (e.g. Viking 1 and 2, Mars 96, InSight)
science studies on Mars (e.g. Bolt & Derr 1969; Okal & Anderson 1978; Gudkova et al. 1993; Lognonné et al. 1996; Zheng et al. 2015; Bissig
et al. 2018). Presently, Mars’ internal structure is informed by recent observations of seismic body wave phases from marsquakes recorded
by the InSight lander (Banerdt et al. 2020). The data indicate that Mars consists of a volatile-rich liquid Fe core, an iron-enriched silicate
mantle (relative to Earth), and a crust with a thickness in the range 25–45 km (Knapmeyer-Endrun et al. 2021; Khan et al. 2021; Stähler et al.
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Figure 10. Three-component amplitude spectra of the seismic traces shown in Fig. 9 computed from a 24-hr time window. Z, R and T refer to vertical, radial
and transverse component, respectively. The difference (green line) is computed as the absolute value of the difference of the complex spectra and therefore
mostly shows phase shifts due to the slight difference in the eigenfrequencies of the fundamental mode and first overtones.

(a) (b) (c)

Figure 11. Normal mode seismology on Mars. (a) Radially symmetric Mars model. (b) Spheroidal spectrum of modes for Mars using full gravity with fluid
core and attenuation. (c) Spheroidal mode eigenfunctions for the modes indicated in (b): 20S2, 2S32, 6S41 and 0S39. See main text for details.

2021). In anticipation of the detection of normal modes on Mars by InSight, we consider the elastic model shown in Fig. 11(a) from (Stähler
et al. 2021), augmented with anelastic information from (Khan et al. 2018).

The spheroidal mode spectrum with full gravity is shown in Fig. 11(b) and because of the absence of an inner core and associated
inner-core-boundary modes appears less complex relative to Earth’s spectrum (Fig. 7d). However, as the boundary conditions are all implicitly
included in the weak form, this poses no additional challenge to specnm. For the four modes marked with red circles in Fig. 11(b), we show the
corresponding eigenfunctions in Fig. 11(c): 20S2 is representative of a core-sensitive mode; 2S32 is a core-mantle boundary (CMB)-sensitive
Stoneley mode; 6S41 is exemplary of a mode that has sensitivity throughout the entire mantle; and 0S39 is depictive of an upper mantle-sensitive
fundamental mode. Finally, we have tabulated the periods of the first ten fundamental spheroidal and toroidal modes, including their group
and phase velocities, for the Mars model considered here in Table 2.

4.3 Europa

Europa is the smallest of the four Galilean moons of Jupiter and of intense interest because of its astrobiological potential (Vance et al. 2018).
Direct, spectroscopic, gravity (Anderson et al. 1998) and magnetic field measurements (Khurana et al. 1998) suggest that Europa is covered
by a global layer of ice lying over an ocean of liquid water. There is evidence, based on an approximate surface age of 10 Myr (Zahnle
et al. 1998), that geothermal sources and tidal heating is keeping the ocean from freezing. For the calculations performed here, we rely on a

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/2/915/6448475 by ETH

 ZÃ¼
rich user on 07 February 2022



Spectral element normal mode code 929

Table 2. Selected fundamental mode periods, phase velocities and group velocities
for toroidal and spheroidal modes with full gravity for the Mars model shown in
Fig. 11.

Mode Period in s Phase velocity (km s–1) Group velocity (km s–1)

0T2 1976.3 4.399 6.479

0T3 1266.1 4.856 5.594

0T4 957.3 4.974 5.205

0T5 778.6 4.994 4.974

0T6 660.1 4.979 4.827

0T7 574.8 4.951 4.730

0T8 510.0 4.921 4.665

0T9 458.9 4.892 4.618

0T10 417.5 4.864 4.583

0S2 2742.1 3.171 4.348

0S3 1721.9 3.570 4.829

0S4 1217.4 3.912 5.289

0S5 929.2 4.185 5.469

0S6 749.6 4.384 5.440

0S7 630.6 4.513 5.225

0S8 548.5 4.576 4.845

0S9 489.9 4.582 4.434

0S10 446.0 4.553 4.149

(a) (b) (c)

Figure 12. Normal mode seismology on Europa. (a) Radially symmetric model of the Jovian moon Europa with 50 km ice thickness over a fluid ocean. (b)
Spheroidal mode spectrum based on the cowling approximation, since the size of the moon is small this is appropriate as gravity forces are small, and using
attenuation. The horizontal dotted green, blue and red points indicate the flexural, ocean resonance, and Crary model pseudo branches, respectively. The blue
dashed line indicates the frequency of the vertical fluid resonance branch when approximated as a simple vertical cavity resonator according to eq. (28). (c)
Spheroidal mode eigenfunctions for the modes indicated in the (b): 3S5 (flexural mode), 11S11 (ocean resonance mode), 25S1 (Crary mode). See main text for
details.

modified version of the interior structure model of Panning et al. (2017). The model, which is shown in Fig. 12(a), consists of a 50-km thick
ice layer atop a 50-km thick water layer. The mantle consists of rocky silicate material, whereas the core is considered to be Fe-rich and solid.

A planetary body with a decoupled ice-covered surface is, from a seismic perspective, an interesting object because it gives rise to
evanescent seismic phases that predominantly excite the ice sheet. These seismic phases are called Crary and flexural waves (Crary 1954).
Crary waves are resonant SV waves in the ice sheet produced by multiple reflections at the boundaries. Hence, their resonance frequency
depends strongly on the thickness of the ice sheet. Flexural waves are a predominantly vertical motion of the ice as a whole. Consequently,
studying the interior of Europa is probably best undertaken through detection and analysis of seismic surface waves (Kovach & Chyba 2001;
Panning et al. 2006).

Because of the small mass of the moon, there is little difference in normal mode spectra between full gravity and Cowling. Hence, we
use the Cowling approximation for the computations performed here. Resultant low-frequency spheroidal modes for Europa are shown in
Fig. 12(b), up to a frequency of 80 mHz and an angular degree of 100.
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In contrast to the terrestrial and Martian spectra shown earlier, Europa modes also include flexural and Crary modes that are exemplary
of modes that are trapped in the ice sheet. For the three modes marked in green, blue and red in Fig. 12(b), we show the corresponding
eigenfunctions in Fig. 12(c): 3S5 represents a flexural mode; 11S11 illustrates an ocean resonance mode; while 25S1 indicates a Crary mode.
We further identify flexural (green dotted lines), water resonance (blue dotted lines) and Crary (red dotted line) pseudo-branches.

The fundamental flexural pseudo-branch (green dotted line) in the spectrum shows a similar structure as the Crary pseudo-branch. We
also identify a vertical fluid resonance branch (blue dotted line). The frequency f of this vertical fluid resonance branch can, assuming a
simple vertical cavity resonator, be approximately estimated from

f (ñ) = (ñ + 1)VP

2d
, (28)

where ñ is the mode number and d is ocean thickness. For the case of a 50-km-thick fluid layer and a P-wave velocity of VP = 1.5 km s–1, a
frequency f = 15.0 mHz is obtained for ñ = 0, which is indicated by the horizontal blue dashed line in Fig. 12(b). This value is seen to be in
good agreement with the value obtained from superposition of the vertical fluid resonance branch (blue dotted line). Generally, the various
branches do not follow the overtone branches strictly, but at times instead consist of multiple overtones, which in superposition will give rise
to flexural, vertical fluid resonance and Crary phases in a seismogram.

5 D I S C U S S I O N A N D C O N C LU S I O N

In this work, we have used the spectral element method to build the software package specnm for the generation of normal mode spectra of
spherically symmetric bodies. One of the main motivations for this approach was to avoid the potentially unstable mode counting based on
zero crossings of the characteristic function (Woodhouse 1988) that is required in classical methods to ensure all eigenfrequencies are found.
While we succeeded in this goal, the eigenfunctions are computed directly in the matrix-based approach and not as a linear combination of
fundamental solutions. The characteristic function, computed from the fundamental solutions and used for mode counting, is therefore not
accessible. As a potential drawback, the overtone number of a given mode can thus not be obtained from the mode itself, but only indirectly
from its location in the spectrum.

Nevertheless, we are confident that the versatility, simplicity and accuracy of specnm, will be of benefit to the community and we publish
it alongside this study in open source format.

Future developments in normal mode seismology will include the development of 3-D long-period numerical time simulations, in which
specnm may be used as a tool for setting limits on the frequency range for which a full gravity implementation will be needed (van Driel
et al. 2021).
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A P P E N D I X A : E Q UAT I O N S F RO M T H E L I T E R AT U R E

This sections includes the equations used in the derivations in the main part of the paper, copied from Dahlen & Tromp (1998) for completeness.
Toroidal first order equations:

∂r W = r−1W + L−1T, (A1)

∂r T = [−ω2ρ + (k2 − 2)Nr−2]W − 3r−1T . (A2)

Spheroidal first order equations:

∂r U = −2C−1 Fr−1U + kC−1 Fr−1V + C−1 R, (A3)

∂r V = −kr−1U + r−1V + L−1 S, (A4)

∂r P = −4πGρU − (l + 1)r−1 P + B, (A5)

∂r R = [−ω2ρ − 4ρgr−1 + 4(A − N − C−1 F2)r−1]U + [kρgr−1 − 2k(A − N − C−1 F2)r−2]V − (l + 1)ρr−1 P

−2(1 − C−1 F)r−1TU + kr−1TV + ρTP , (A6)

∂r S = [kρgr−1 − 2k(A − N − C−1 F2)r−2]U − [ω2ρ + 2Nr−2 − k2(A − C−1 F2)r−2]V + kρr−1 P

−kC−1 Fr−1TU − 3r−1TV , (A7)

∂r B = −4πG(l + 1)ρr−1U + 4πGkρr−1V + (l − 1)r−1TP . (A8)

A P P E N D I X B : W E A K F O R M O F T H E R A D I A L O D E s

This section includes some additional derivations and equations for the symmetric weak form as described in the main part of the paper.
Radial equation with eigenfunction U(r) and its test function Ũ (r ). The included traction TU(V = 0) is the same as for spheroidal modes
setting the V eigenfunction to zero:

ω2

∫
�

ρUŨr 2 dr = − [
TU (V = 0)Ũr 2

]rsurf

0
+ [

TU (V = 0)Ũr 2
]+
−

+
∫

�

Cr 2∂r U∂r Ũ dr +
∫

�

2Fr (U∂r Ũ + ∂r UŨ ) dr +
∫

�

[4(A − N ) − 4ρgr ]UŨ dr. (B1)

Full gravity spheroidal equation with eigenfunctions U(r), V(r), P(r) and its symmetric counterparts Ũ (r ), Ṽ (r ), P̃(r ):

ω2

∫
�

ρ(UŨ + V Ṽ )r 2 dr = − [
TU Ũr 2

]rsurf

0
− [

TV Ṽ r 2
]rsurf

0
− [

TP P̃r 2
]rsurf

0
+ [

TU Ũr 2
]+
− + [

TV Ṽ r 2
]+
− + [

TP P̃r 2
]+
−

+
∫

�

L(kU − V + r∂r V )(kŨ − Ṽ + r∂r Ṽ ) dr +
∫

�

(A − N )(2U − kV )(2Ũ − kṼ ) dr

−
∫

�

Fr [2(∂r UŨ + U∂r Ũ ) − k(V ∂r Ũ + ∂r U Ṽ )] dr +
∫

�

ρgr [−4UŨ + k(V Ũ + U Ṽ )] dr

+
∫

�

Cr 2∂r U∂r Ũ dr +
∫

�

N (k2 − 2)V Ṽ dr +
∫

�

ρr 2(∂r PŨ + P∂r Ũ ) dr +
∫

�

4πGρ2r 2UŨ dr

+
∫

�

kρr (PṼ + V P̃) dr +
∫

�

(4πG)−1r 2∂r P∂r P̃ dr

+
∫

�

(l + 1)(4πG)−1r (P∂r P̃ + ∂r P P̃) dr +
∫

�

(l + 1)2(4πG)−1 P P̃ dr (B2)

Note that the left-hand side does not include P(r) or P̃(r ), hence the mass matrix is positive semi definite.
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