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The rate of occurrence of High Frequency (HF) marsquakes, as recorded by InSight at Homestead Hollow, 
Elysium Planitia, increased after about L S = 33◦, and ceased almost completely by L S = 187◦, following 
an apparently seasonal variation with a peak rate near aphelion. We define seismic rate models based 
on the declination of the Sun, annual solar tides, and the annual CO2 cycle as measured by atmospheric 
pressure. Evaluation of Akaike weights and evidence ratios shows that the declination of the Sun is the 
most likely, and the CO2 cycle the least likely driver of this seismic activity, although the discrimination 
is weak, and the occurrence of a few events in August 2020 is in favor for a triggering by CO2 ice 
load. We also show that no periodicity related to Phobos’ orbit is present in the HF event sequence. 
Event rate forecasts are presented to allow further discrimination of candidate mechanisms from future 
observations.
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1. Introduction

NASA’s InSight (Interior exploration using Seismic Investiga-
tions, Geodesy, and Heat Transport) mission, launched in May 
2018, landed in the western part of Elysium Planitia, about 500 km 
to the north of the dichotomy boundary and 1500 km west of 
Cerberus Fossae, which was suspected to be seismically active by 
Taylor et al. (2013). After the touchdown on 26. Nov. 2018, deploy-
ment of the seismometer experiment SEIS (Seismic Experiment for 
Interior Structure; Lognonné et al., 2019, 2020) was completed on 
sol 70 (the 70th Martian day of the mission). SEIS started contin-
uous recording on sol 73 (09. Feb. 2019), and reached full perfor-
mance on sol 85 (21. Feb., Banerdt et al., 2020). With the exception 
of a downtime from 28. Aug. (sol 267) to 18. Sep. 2019 (sol 288, a 
minor power management problem was extended to three weeks 
by the 2019 solar conjunction), and a few smaller data losses due 
to downlink interruptions, SEIS has been recording seismic data 
continuously ever since.

Estimates of the seismic activity of Mars published prior to the 
InSight mission basically assumed that marsquakes would occur 
like earthquakes: according to a Gutenberg-Richter magnitude dis-
tribution, and randomly in time (Phillips, 1991; Knapmeyer et al., 
2006; Taylor et al., 2013; Plesa et al., 2018, and references therein). 
A certain class of events, namely High Frequency (HF) and 2.4 Hz 
events, however, exhibits an occurrence rate that appears variable 
in time (Giardini et al., 2020), as shown in Fig. 1. HF and 2.4 Hz 
events are considered jointly here since the latter are small HF 
events visible only by their excitation of an ambient resonance 
at 2.4 Hz (Clinton et al., 2021). We interpret the timing of these 
events as result of a nonstationary Poisson process (supplemen-
tal text S7), and compare it with several time-varying processes 
in order to identify what might drive the nonstationarity. Without 
even crude epicenter locations, and without knowledge about the 
current general state of stress - visible faults are millions to bil-
lions of years old (Knapmeyer et al., 2006) - a causal stress model 
to modulate the event rate is not warranted. Our goal is thus to 
identify a process with a time dependency fitting the event rate, 
which may inform the identification of candidate source regions: A 
change of seismicity based on changes of surface load, for example, 
would point to regions with seasonal ice cover, while a correlation 
with solar tides would point to the regions with the largest tidal 
stresses.

Temporal variation of seismic activity is not unheard of. The 
activity of deep moonquakes is tied to the revolution around the 
Earth (e.g. Nakamura, 2003; Kawamura et al., 2017), with some 
source regions being active around perigee or apogee, while oth-
ers are active at the orbital nodes (Bulow et al., 2007). Short-term 
temporal variations in lunar impact rate were also detected (Oberst 
and Nakamura, 1987)

Event rate variations were also described on Earth. Bollinger et 
al. (2006), for example, conclude that an annual seismicity cycle 
in Nepal, with a maximum from January to March, is due to the 
mass loading resulting from the summer monsoon in the Ganges 
area. At Mt. Hochstaufen, Germany, a strong correlation of seismic-
ity at up to 4.5 km hypocentral depth with rainfall is explained by 
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pore pressure changes in the hectopascal range, which follows rain 
(Hainzl et al., 2006).

Martian seismicity is certainly not controlled by rainfall, but 
groundwater pressure might be relevant. Manga et al. (2019) sug-
gest that stresses due to solar tides, Phobos tides, and the diurnal 
variation of barometric pressure may induce seismic activity by 
varying aquifer pore pressure beneath a cryospheric ice layer.

The demonstration of a time dependent seismicity on Mars, and 
of a possible driving force, is impeded by circumstances visible in 
Fig. 1: Solstices and apsides occur at nearly the same time, i.e. 
seasonal changes of the weather conditions, especially wind speed, 
insolation, and atmospheric CO2 cycle, but also the solar tides all 
show similar periods and small phase shifts with respect to each 
other. As reported before by InSight (Lognonné et al., 2020; Gi-
ardini et al., 2020; Banfield et al., 2020) and other space craft 
(Martínez et al., 2017), wind speed varies considerably between 
day and night, and between seasons, and wind at the landing site 
is the main source of seismic background noise (Lognonné et al., 
2020). It must be shown first that we observe a variation of a seis-
mic source process rather than of detectability. In order to achieve 
this, a representative subset of all events must be chosen that ex-
cludes uncertain detections and possible non-seismic disturbances.

We first describe criteria for the selection of events to evalu-
ate, how we compare a given event rate model with the observed 
sequence of events, and then discuss a number of simple rate mod-
els that are motivated by astronomical or meteorological effects: a 
noise-dependent detectability of an otherwise constant rate, Pho-
bos tides, impacts, insolation, CO2 sublimation/deposition, and so-
lar tides. These rate models are then compared and ranked using 
information theoretical methods.

All mathematical details, including tables coefficients and pa-
rameters, and technical details of the grid search for parameter 
estimation, are presented in the supplementary information, and 
will be referred to where appropriate (Sn to refer to supplemen-
tary text n, and SFn, STn for figures or tables).

2. Event selection

We use a preliminary version of the fifth event catalog (InSight 
Marsquake Service, 2021) covering events that occurred between 
12. Jan. 2019 and 31. Aug. 2020. The catalog was published on 
04. Jan. 2021, our version was however frozen on 03. Nov. 2020 
to have a stable working version. There are no changes from the 
fourth (InSight Marsquake Service, 2020) to the fifth catalog re-
lease concerning HF events, except for quality D event S0568a (02. 
July 2020). Using the November freeze instead of the public release 
does thus not affect our results.

The definitions of event categories are given by Clinton et al.
(2021, also S2) and are mainly based on the frequency content of 
signals and, to a lesser extent, other features of the waveforms.

None of the HF events analyzed by van Driel et al. (2021) has 
a magnitude larger than about 2.2. The events cluster between ap-
prox. 20◦ and 30◦ distance (van Driel et al., 2021), it was however 
not possible to locate any of them. Both distances and magnitudes 
currently depend on assumptions about crustal velocities (v S = 2.3

https://pds-imaging.jpl.nasa.gov/
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Fig. 1. HF activity over time (all 415 detected events up to 31. Aug. 2020), in relation to the Martian orbit. Rectangular cells indicate the occurrence times of HF events in 
bins of 5◦ heliocentric longitude, each rectangle corresponds to one event. High Frequency and 2.4 Hz events are distinguished by edge shading as indicated in the legend. 
The total event counts for both groups are given in the legend, in brackets. The dashed circle marks the mean orbital radius of Mars (about 1.52 AU), while the heavy ellipse 
shows the actual orbit, Mars moving counterclockwise (lighter parts indicate times without registration, before and after catalog refers to times before 06. Feb 2019 and after 
31. Aug. 2020, as covered by the event catalog used here). Ticks along the orbit denote the beginning of terrestrial months from December 2018 (label D18) until September 
2020 (label S20). Equinoxes, solstices, perihelion, aphelion, and zero heliocentric latitude are also marked. The eccentric thin line, and the degrees-scale pointing to the left, 
indicate the elevation of the sun at noon for the InSight landing site. On 13. Apr. 2019 and 21. Mar 2020, the noonday sun was in the zenith over the InSight lander, and 
north of InSight in the time between. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
km/s, v P /v S = 1.7 in van Driel et al., 2021), where future studies 
will provide more reliable values.

We focus on the HF family (415 events), but exclude the Very 
High Frequency events which show a wide distribution of epicen-
tral distances (van Driel et al., 2021), suggesting they are caused by 
a different process. A future study will deal with the magnitude-
frequency distribution and the distribution in time of the Low 
Frequency and Broadband events (Clinton et al., 2021).

Based on the clarity of seismic arrivals and the degree of polar-
ization, Clinton et al. (2021) define four quality levels “A” (best) to 
“D” (events that might be artefacts, e.g. wind gusts). We remove all 
events classified as quality “D” to avoid contamination with non-
seismic effects. No HF event is of quality “A”.

To cope with limited data transmission volumes, InSight imple-
mented a strategy which includes the buffering of full resolution 
data on the lander, while only downsampled channels were down-
linked continuously (Lognonné et al., 2019). Up to 01. June 2019, 
continuous data is available at 10 Hz sampling frequency, and at 
20 Hz afterwards (see also figure SF1). Data with higher sam-
pling rates are also available for times of identified events prior 
to 01. June 2020. Although the majority of HF events should be 
detectable in the 10 Hz data stream, we exclude from our analysis 
all data that was recorded prior to 01. June 2019.

The most important source of environmental noise is wind. Tur-
bulent winds build up after sunrise and reach speeds of 20 m/s, 
3

sometimes more. Around 17:00 LTST, about one hour before sunset, 
the turbulent flow collapses, and slow laminar winds prevail for 
several hours (Banfield et al., 2020). Wind speeds increase again 
after midnight. This has direct consequences for the detection of 
events, as Giardini et al. (2020) show: 80% of all HF events were 
detected between 17:00 LTST (Local True Solar Time) and midnight, 
15% between midnight and sunrise, and the remaining 5% shortly 
after sunrise or shortly before 17:00 LTST. The distribution of wind 
speeds shown by Banfield et al. (2020) mirrors the noise amplitude 
recorded by SEIS: Figs. 2a and c show the probability density dis-
tribution of the noise amplitude, computed as standard deviation 
of the vertical displacement during 2 min windows, and in relation 
to a reference displacement of 1 m. These PDFs show the increase 
of noise during daytime (Fig. 2a and b) as well as its evolution 
throughout the seasons (Fig. 2b and c).

The events with the smallest recorded displacement amplitudes 
are most affected by wind noise. The set of selected events should 
however be representative for the entire population. We therefore 
exclude from our analysis all events that are recorded with small 
amplitudes or low signal-to-noise (SNR) ratio (S2 summarizes data 
processing). To determine acceptance thresholds, we analyze the 
distributions of amplitudes and SNRs. Fig. 3 shows that the cu-
mulative size-frequency distributions of both amplitudes and SNRs 
follow a Gutenberg-Richter-like power law. We estimate complete-
ness thresholds for both using the maximum curvature method 
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Fig. 2. SEIS background noise and times and amplitudes of the 118 selected events. Noise level is computed as RMS amplitude of vertical displacement between 1.2 Hz and 
3.0 Hz, in dB relative to 1 m, and averaged over 2 min windows. Event displacement amplitudes as described in S2. (a) Distribution of noise RMS (2D occurrence count 
histogram, scaled according to color bar on the right) and event amplitudes (squares) as function of local time LTST. Vertical lines indicate mean sunrise and sunset. (b) 
Noise RMS amplitude (background color) and event detection times (squares) over time. InSight mission Sol is on the vertical, local time LTST on the horizontal axis. The 
white point of the color scale is set to the smallest event amplitude (event S0383a, ca. 20:30 LTST, −214.89 dB), such that all events would be detectable at times where 
the background is blue. Data gaps also map to horizontal white lines. (c) distribution of noise RMS (2D histogram, same scaling and color bar as in (a) and event amplitudes 
(squares) as function of the InSight mission Sol, dashed horizontal lines indicate beginning of northern seasons. A kernel density estimation of the detection rate is shown in 
blue (see S3).
(employing kernel density estimation (KDE), see also S4), the dis-
tribution slope is obtained as maximum likelihood power law (S4). 
Based on the results we exclude all events that were recorded with 
vertical displacement amplitudes below −215 dB, or with an SNR 
below 2.56. We do not attempt to convert displacement ampli-
tudes into source magnitudes or seismic moments, as this would 
require better knowledge of epicentral distances than we currently 
have (cf. van Driel et al., 2021).

With all selection criteria combined, 118 events remain (squares 
in Fig. 2), of which S0518a is the most recent. These occurred dur-
ing 458 days (446 sols or 0.67 Martian years). The estimated rate 
of detection of acceptable events is shown in Fig. 2c (blue), ob-
tained from a kernel density estimation (S3).

3. Inverse problem, parameterization and uncertainties

The problem to solve is to estimate the parameters of a stochas-
tic point process, in the light of a single realization of that process 
(i.e. the event catalog), requiring a maximum likelihood approach.

If the point process is a non-stationary simple Poisson process 
(S7), the likelihood L of a candidate rate function is given by (e.g. 
Ogata, 1983)
4

log L (θ) =
N∑

i=1

logλ (ti, θ) −
T∫

S

λ (u, θ)du (1)

(ti : detection times, λ: rate function, θ : parameter vector, times 
S and T : beginning and end of observations, respectively). This 
likelihood is the product of the probability that no event occurs be-
tween the observed ones, and the probability of occurrences in an 
infinitesimal interval after the given times (Ogata, 1983). Multipli-
cation is granted if events are independent. Equation (1) uses the 
event times directly - it is not necessary to produce any numerical 
rate estimation based on histograms or kernel densities. Arbitrary, 
continuously defined candidate rate functions can be compared di-
rectly with the event catalog. Lacking epicenters, we approximate 
source times by arrival times. This introduces 5 to 8 min time er-
rors (van Driel et al., 2021), negligible in comparison to expected 
rate changes.

We define a generic occurrence rate model, where the actual 
event rate is the sum of some function of time and a constant 
baseline rate λB ≥ 0, and can never fall below the baseline. Also, 
the event rate is allowed to lag behind the driving function ac-
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Fig. 3. Event size dependent acceptance thresholds (quality A, B, C events only, 227 events in total): (a) Displacement-Amplitude-frequency distribution, (b) SNR-frequency 
distribution. Dots represent the observed amplitudes and SNRs, black lines show a kernel density estimation (KDE, with bandwidth as given in the legend) of the respective 
PDFs (scaled to better comply with the vertical axis range, as only the location of the maximum is important), straight lines show the fitted power law (with completeness 
threshold a inferred from the KDE, Number N of events above completeness threshold in brackets, and slope b from maximum likelihood estimation, values given in the 
legends).
cording to a retardation parameter. The detection rate function, as 
a function of time t and a parameter vector θ , is

λ (t, θ) = ϒ(t)ηdet (t)max
(
λB , f

(
t, θ\λB

) + λB
)

(2)

where f is a model-specific kernel function that depends on time 
and a parameter vector θ\λB (meaning θ without λB ), and λB is 
the baseline event rate. The function ϒ(t) is 0 during downtimes, 
1 else, to describe data gaps (ST2) in the likelihood evaluation. The 
detection efficiency function 0 ≤ ηdet (t) ≤ 1 accounts for the vari-
ability of the noise background (see S4 for details).

The maximum likelihood solution θMLE is obtained from a se-
quence of nested grid searches (S10). Models with different physi-
cal backgrounds are ranked based on Akaike’s information criterion 
(corrected, AICc, S13) and evidence ratios (S14).

The variances of model parameters are given by the inverse 
Fisher information matrix of the log-likelihood. If this results in 
negative or extremely large values, we resort to a comparison of 
likelihoods across the grid and obtain an uncertainty correspond-
ing to ≈ 3σ (S12).

4. Event rate models

4.1. Can we rule out a constant event rate?

Even if the actual production of events does not vary with time, 
the strong variation of wind induced noise on SEIS would still re-
sult in a parallel variation of the number of event detections per 
sol. Before comparing event detections with any forcing, it is nec-
essary to demonstrate that a variation exists beyond that expected 
due to the variable wind noise (i.e. f

(
t, θ\λB

) ≡ 0 is the worst ker-
nel). Beyond the qualitative demonstration of Fig. 2, we need a 
quantitative description.

While it is impossible to know how many events we miss dur-
ing daytime, we can estimate how many of the events detected at 
night we would miss if the noise level were higher.

In order to detect events with a displacement of −215 dB with 
an SNR of 2.56, the noise level must be −223 dB, which is about 
the lowest observed noise amplitude (Fig. 2). At higher noise lev-
els, the detection rate will be reduced according to the slope of 
the amplitude-frequency distribution (Fig. 3a) We compute, from 
5

noise seismograms and the amplitude distribution slope, a detec-
tion efficiency ηdet (t) which estimates the fraction of events that 
can be detected at any given time (S4). The difference between 
the observed cumulative event count and that expected for a sta-
tionary Poisson process with detections impeded by the detection 
efficiency (Fig. 4) then indicates if a significant nonstationary com-
ponent exists (S5).

In the maximum likelihood analyses of all rate models, we use 
a polynomial approximation (coefficients in S6) of the empirical 
detection efficiency function.

As shown in Fig. 4a, the detection rate is almost constant be-
tween sol 289 and sol 385; about 67/96 = 0.698 events/sol. The 
thin blue dashed line in Fig. 4a extrapolates the detection rate ex-
pected for a stationary Poisson process.

Between sol 289 and sol 385, the detection efficiency (red in 
Fig. 4a) is almost constant at 0.146, implying an occurrence rate of 
4.78 events/sol. By multiplying this occurrence rate with the time 
dependent detection efficiency for any time, we obtain the cumula-
tive event count that results from noise level variations (blue solid 
curve in Fig. 4a). This follows a straight line until about sol 460, 
when it starts to bend down due to the decreasing detection effi-
ciency, while the observed count starts bending down on sol 385: 
The observed detection rate starts decreasing before a decrease 
could be expected from the increasing noise level.

At the time of the last observed event, on sol 518, there is a 
deficit of 58 events between the observed cumulative count and 
the straight-line extrapolation, while the deficit between the noise-
modulated stationary Poisson process and the straight-line extrap-
olation is only 18 events: The observed detection rate decreases 
faster than could be expected from the decreasing detection effi-
ciency. Similar deviations are visible before sol 289.

The observed event sequence is only a single realization of a 
stochastic process. Individual 446-sols realizations from these pro-
cesses would however show deviations from the expectation, ac-
cording to the variance of Poisson processes.

We therefore repeat an analysis like the above for all times at 
which events were detected, and with a large number of realiza-
tions of the simulated noise-modulated stationary Poisson process 
(see caption of Fig. 4). We compute a residual (observed minus 
predicted detection count) and calibrate it in terms of the proba-
bility that it is smaller than its actual value coincidentally (Fig. 4b). 
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Fig. 4. Nonstationary event rate: (a) Detection efficiency (red curve) relative to a per-sol average noise level of −223 dB, and polynomial fit (pink); Dashed vertical lines: 
catalog time window. Dash-Dot vertical lines: time window used to estimate the rate of a stationary Poisson process; squares: observed cumulative event count; thin blue 
dashed line: stationary Poisson process with detection rate 0.698 events/sol (see text); heavy blue solid line: modulation of that process by the actual detection efficiency; 
heavy blue dashed line: modulation of the same stationary Poisson process by the polynomial fit to the detection efficiency. (b) Residual between observed cumulative count 
and modulated stationary Poisson processes; thin gray lines: percentiles of the distribution of 107 synthetic stationary event sequences that use the rate determined in the 
time window between dash-dot lines. Percentile values correspond to 1, 3, and 5 standard deviations of a normal distribution.
The probability of accidentally obtaining the observed residual is 
below 10−6 at both ends of the observation time.

For computational efficiency, we use a polynomial approxima-
tion (pink in Fig. 4a). Cumulative count and residual are hardly 
distinct from the empirical curve and residual.

In summary, we have shown that the event detection rate drops 
too early, too fast, and statistically highly significant. Therefore, a 
constant event rate is ruled out.

To validate our grid search scheme, we run it with a kernel 
function

f
(
t, θ\λB

) = 0 (3)

Using only the events between sols 289 and 385 (parameters 
in ST11), we find an optimum occurrence rate of 4.63 events/sol 
(log L = −92.97, AICc = 188, after 6 iterations), i.e. close to the 
4.78 estimated above, while the theoretical values for a rate of 
67/96 are log L = −91.1 and AICc = 184.2 (see S9).

From a grid search using all selected events (ST3), the AICc of 
the best constant rate is 476.9 (ST17). Any viable time dependent 
model must have a smaller AICc.

4.2. Are HF events caused by Phobos tides?

We first investigate if the event sequence contains a short pe-
riod component that could be connected to the groundwater pore 
pressure effect suggested by Manga et al. (2019).
6

A spike train Fourier transform (Bulow et al., 2007, S8) does 
not show any periodicity of event occurrence that can be related 
to Phobos’ orbit. Actually, the power spectral density at Phobos 
monthly periods (draconitic, anomalistic, synodic) and its culmi-
nation period is low compared to the remainder of the analyzed 
period windows (SF8). The power spectral density shows clear 
peaks at diurnal and semidiurnal periods. Comparison with syn-
thetic sequences (SF9) lets us attribute the diurnal peak to the 
low detection probability during daytime. The semidiurnal peak 
might partially be due to tides, but clearly contains a contribu-
tion from the different detection probabilities during the first and 
second half of the night (SF9). Isolating a solar diurnal or semidi-
urnal tide signal would require additional effort outside the scope 
of this paper, which is on longer periods. At this point, we can 
neither confirm nor exclude the existence of a semidiurnal tidal 
signal, although we expect that a more dedicated analysis would 
rather reject it.

We conclude that Phobos did not induce the HF marsquakes 
studied in this work.

4.3. Are they impacts?

Theoretical models of short-term variations in the impact rate 
(Ivanov, 2001; JeongAhn and Malhotra, 2015) predict an increased 
impact rate around aphelion, slightly before the observed seismic 
activity peak. Although impacts are currently occurring on Mars at 
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Fig. 5. Lowest AICc values attained for each tested Sine model period (naming 
conventions: “A” is for amplitude parameter, “O” for offset, “p”, “n”, “z” denotes 
positive, negative, or zero values, respectively; the likelihood functions for positive 
amplitudes are symmetric to those with negative amplitudes when inverting the 
offset sign). The vertical line indicates an annual period. Since the Sine models used 
cover different parts of the same parameter space, the existence of minima with the 
same depth points to the existence of a trade off zone that extends throughout the 
multidimensional parameter space. With the given data, only periods shorter than 
300 days or so can be excluded with some certainty.

a measurable rate (Daubar et al., 2013; Malin et al., 2006), and a 
fresh crater was found photographically only about 37 km south of 
InSight, we do not yet have an unambiguous seismic observation of 
an impact (Daubar et al., 2020). However, attributing the variation 
in the HF event occurrence rate to impacts would imply that a 
significant fraction, if not all, of the HF events were in fact impacts. 
This is also in contradiction with the epicentral distance range of 
van Driel et al. (2021): Impacts should be distributed uniformly 
over the planetary surface, and sinusoidal over epicentral distance, 
with a maximum at � = 90◦ . We do not think that the current 
observations support an identification of HF events as impacts, so 
we lay aside the impact hypothesis for now.

4.4. Is there an annual cycle?

The spike train Fourier analysis has no resolution at periods as 
long as a Martian year yet. Estimating a period length from an 
observational interval shorter than the expected period clearly in-
volves some extrapolation and can never provide a definitive proof. 
To test for a periodicity corresponding to that of the Martian year 
(i.e. T = 686.9726 d, S16), we use the simplest periodic kernel 
function,

f (t) = A sin (2πt/T − ϕ) + K (4)

and determine the maximum likelihood period. For eq. (4), the du-
ration of the time windows at which λ (t, θ) = λB holds, depends 
on sin−1 K/A, thus K is not redundant with λB .

We split the parameter space into quadrants of the A-K -plane 
for reasons of CPU time management. The most likely period found 
for this kernel is 565 d (550 sols), for K = 0. The likelihood max-
ima identified with nonzero offset are at both shorter and longer 
periods, inspection of the search grids however shows that the 
period is poorly resolved (Fig. 5). The AICc as function of period 
shows a trough that shifts toward longer periods as the Offset pa-
rameter becomes smaller and negative, suggesting the existence 
of a tradeoff between Offset and other parameters. The common 
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envelope of all curves in Fig. 5 shows that the assumed period 
can be varied over a wide range without increasing the AICc. The 
standard deviations obtained analytically and from comparing like-
lihood values across the grid are either infinite or encompass the 
entire search grid (ST15, ST16), indicating that a reliable deter-
mination of the period is not yet possible. This evaluation nev-
ertheless supports that there is no significantly shorter period in-
volved.

This analysis neither proves nor disproves the existence of an 
annual cycle. Strictly spoken, we can also not exclude the possi-
bility that we witnessed a singular burst of activity, unless the 
activity actually repeats. But since annual periods are plausible and 
not prohibited, we investigate several mechanisms which imply an 
annual period.

4.5. Illumination model

The Sun’s elevation above the equator is described by sin L S (t)
(S15), where L S is the areocentric longitude of the Sun commonly 
used to define Martian seasons (S16). By a small modification of 
eq. (4) we thus obtain the illumination model

f (t) = Asin (Ls ( J DT T − D)) + K (5)

as kernel function, where time is measured as Julian Date J DT T

(index T T for terrestrial time, i.e. no leap seconds are introduced), 
and retardation is defined as a time delay D in days.

4.6. Surface load model

Induced seismicity is known on Earth from water level changes 
in reservoirs, caused by pore pressure changes at depth that fol-
low the load change (Bell and Nur, 1978). The phase lag between 
infill change and seismicity can even exceed 180◦ (Roeloffs, 1988). 
Besides reservoir mass, the water level change rate is one of the 
key parameters that control the temporal distribution of induced 
seismicity (Saxena et al., 1988). As the polar caps of Mars are 
known to show a seasonal deposition/evaporation cycle since Her-
schel (1784), we investigate the possibility of changing CO2 ice 
load as driver for the HF seasonality. A discussion of the involved 
atmospheric pressure changes and mass movements is provided in 
S12.

Since the surface load from CO2 deposition increases when 
atmospheric pressure decreases, we use a kernel function based 
on the negative of the pressure change. The time derivative of 
dP (L S (t))/dt also involves the time derivative of L S (t) (S17). The 
kernel function is

f (t) = A (−dP (LS ( J DT T − D))/dt) + K (6)

with parameters analogous to the illumination model.

4.7. Annual solar tide

Seismic activity of the Moon is mainly due to Earth’s tides (Bu-
low et al., 2007). Earthquakes triggered by lunar tides have been 
reported (e.g. Rydelek et al., 1988), but are overwhelmed by plate 
tectonic background activity: only about one percent of midcrustal 
seismicity is related to tides (Lockner and Beeler, 1999; Métivier et 
al., 2009). We are not aware of any study of earthquakes related to 
solar tides, but as these are weaker than lunar tides, earthquakes 
due to solar tides will be even more difficult to identify.

We ruled out diurnal Phobos tides as reason for HF marsquakes 
above, while the daily wind speed pattern makes solar diurnal 
tides inaccessible for our analysis. Phillips (1991) concluded that 
the annual solar tide does not contribute to Martian seismicity, 



M. Knapmeyer, S.C. Stähler, I. Daubar et al. Earth and Planetary Science Letters 576 (2021) 117171

Fig. 6. Evidence ratios and rate forecasts. a) Evidence ratios for individual models and model groups (numerical values in table ST17). Filled circle: most supported model, 
open circles: evidence ratios with respect to the most supported model (Rbest = 1), black bars: evidence ratios of model groups with respect to the most supported group. 
A marker at a ratio R means that the model or group at Rbest = 1 is R times more likely to be the truly best model or group than the one with Ri = R. The lower part 
of the diagram is a continuation of the upper part, with higher vertical resolution. b) Rate forecast until sol 1200 (12. Apr. 2022) for models with Ri < 100 (excluding Sine 
models, numbers in legend indicate evidence ranking). Vertical lines mark the time covered by observations (solid; catalog start and 1st event coincide) and the terrestrial 
calendar year (dash-dot lines for 1. Jan, starting 2019). A kernel density estimation (heavy solid curve with a bump between sols 500 and 600) illustrates the observed event 
rate but is not used during the inversion. The secondary x axis gives the areocentric solar longitude LS corresponding to the mission sols, see Fig. 2b for the relation to 
martian seasons.
since absolute strain is low, although strain rates are high, com-
pared to other sources of deformation. In contrast, Manga et al. 
(2019) conclude that an annual variation of seismic activity due to 
the ellipticity of the Martian orbit is well possible. With the ob-
servations of InSight, it now becomes possible to challenge both 
views.

Although Manga et al. (2019) provide a detailed framework for 
the modification of seismicity due to volumetric strain and result-
ing changes of pore pressure in the crust, we continue to use our 
rate function approach. An evaluation of deformation and stress 
tensors, and the dependency of phase lag on fault orientation, 
would require more knowledge of the seismic sources and their 
location than we currently have. Instead, we define a time de-
pendency in terms of the radial tidal displacement. The resulting 
radial strain rate is proportional to Ṙ(t)/R4(t), where R(t) is the 
heliocentric distance of Mars (S20). We use a truncated series ap-
proximation of this distance and its derivative (S20) to capture the 
time dependency, but leave aside scaling parameters like masses 
and Newton’s constant of gravity when we define the kernel func-
tion

f (t) = AṘ( J DT T − D)/
(

R3
0 R4( J DT T − D)

)
+ K (7)

with parameters analogous to the illumination and surface load 
models, and R0 being the mean distance between Mars and Sun in 
astronomical units.

5. Solutions and forecasts

From the model types described above, we define a total of 
16 distinct models, which either use different kernel functions 
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(“Cnst”, “Ilmn”, “Load”, “Sine”, or “Tide”), or are restricted to cer-
tain parameter ranges. After test runs, we decided to investigate 
positive and negative values of amplitude factors and constant ker-
nel offsets separately, to avoid convergence to local maxima. We 
append an “A” and an “O”, followed by “n”, “p”, or “z”, respec-
tively, to indicate if amplitude and offset are negative, positive, or 
zero.

With a collection of models that imply different physical effects 
at the source of the HF events, we not only have to ask which val-
ues of the model parameters are most likely, but which model is 
the most likely one, in the light of stochastic point process data. 
An appropriate framework is the concept of Kullback-Leibler in-
formation (Kullback and Leibler, 1951), which allows asking how 
much information is lost when the data is described by a model 
instead of the unknown real processes. From the maximum likeli-
hood solution, we compute the Akaike Information Criterion with 
bias correction (AICc) and use Akaike weights and evidence ratios 
Ri between models (S13, S14).

The evidence ratios account for the sampling uncertainty of the 
computed AICc values (S11, ST16, ST17) and indicate how much 
more likely the preferred model is actually the best choice, rather 
than just appearing so by chance due to the limited data. Since 
our models form groups according to the rate kernels used, we 
also compute evidence ratios for these groups (Fig. 6a). For com-
parison, Fig. 6b also shows a kernel density estimation (KDE) of 
the observed rate function.

It is not surprising that the evidence speaks clearly (i.e. with 
a high evidence ratio) against the constant-rate model Cnst_AzOz, 
since the obvious deviation from a constant rate was what trig-
gered our study, demonstrated above.
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The preferred model is Ilmn_AnOn. The second-best model is 
Sine_AnOz. The group of Ilmn-models is actually the best group, 
while the group of Sine models comes second.

The Sine models, however, have no physical background but 
were introduced only to test the plausibility of an annual peri-
odicity. Inspection of the coefficients in the series expansion of 
L S (t) (ST6) shows that L S (t) is dominated by the i = 0 term, 
i.e. L S (t) ∝ t can be considered as first order approximation, and 
hence the Sine models perform so well because they are a good 
approximation to the Illumination model. The Sine models are thus 
redundant with the Illumination models and are not considered 
any further. This leaves us with the annual solar tide models as 
the second-best model group, while the surface load models come 
third. The best individual tide model Tide_ApOn is also the 2nd

best physical model in total. Only three of the surface load mod-
els are supported by the data: the variants with negative offset 
are ruled out by evidence ratios exceeding R > 103, compared to 
R < 20 for positive offsets.

We examine closer models with evidence ratio below 100, i.e. 
the 11 best models (Fig. 6b).

Their effective amplitude at the time of the activity maxi-
mum is 3.5 to 4.5 events per day, about the observed rate after 
correction for detection efficiency. The baseline rate is about 0.5 
events/day in most cases, and thus considerably below the maxi-
mum rate.

The lags of the models vary largely: event activity lags behind 
the driving function by 393 d for #1 ranked model Ilmn_AnOn, but 
only by 44 d for Ilmn_ApOn. If the illumination affects seismic ac-
tivity by heating the ground, even the higher value points to a very 
shallow source, as the annual heat wave is expected to penetrate 
only a few meters (Siegler et al., 2017). More indirect triggering 
mechanisms, e.g. via a pore pressure reduction after a fluid release 
in a gully, might have an effect to greater depth, similar to the rain 
at Mt. Hochstaufen (Hainzl et al., 2006). The tide models show lags 
of either about 280 d or about 575 d.

The load model lags are either around 16 d or around 500 d: 
For the best load model, Load_AnOp, the time lag is 18.4 d (17.9 
sols). This means that the seismicity maximum of sol 352 (22. 
Nov. 2019, L S = 110◦ , see Fig. 6b) is the response to the pres-
sure change in early November 2019 (L S = 102◦), which is the 
time of the largest pressure decrease (SF11). With a negative am-
plitude factor (ST15) this corresponds to the fastest ice deposition 
(on global average). Likewise, a lag time of about 494 or 507 d 
(Load_ApOn, Load_ApOp) points to late June or early July 2018 
(L S ≈ 200◦), when pressure increase was near maximum. With a 
positive amplitude factor, this corresponds to an increasing ice load 
as well.

It might be useful to consider periods longer than half a year 
as negative lags in the case of tidal models, and connect them to 
tidal dissipation models to further down-select the models.

We forecast the HF event rate for two Martian years follow-
ing deployment completion (Fig. 6b). All models agree that an 
activity phase comparable to that observed so far will repeat in 
basically identical form from April 2021 (sol 840 in Fig. 6b) to 
March or April 2022 (sol 1150 and later), with an activity maxi-
mum between September and November 2021 (approx. sol 990 to 
1050, precise dates in ST18). Two surface load models in this selec-
tion however forecast an earlier resume of activity, starting already 
from early spring 2020 (sol 496 for model Load_ApOp), with an ac-
tivity maximum in fall 2020 (between sol 641 for Load_ApOp, and 
sol 689 for Load_AnOp), and lasting until March 2021 (around sol 
810).

An interesting detail is the slight increase of the kernel den-
sity rate estimation after Sol 528 (21. May 2020, KDE in Fig. 6b), 
which approximately coincides with the second activity maximum 
predicted by the Load_ApOp model. Load_ApOp is the only model 
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showing an event rate above its baseline rate at this time (see also 
SF15). In May 2020 (L S = 205◦), the noise level was already in-
creased (Fig. 2) and the detection efficiency reduced (Fig. 4), thus 
only a small number of detections could be expected irrespective 
of the driving force. This result is in contradiction with the ex-
pected absence of CO2 ice in the vicinity of InSight, but, with the 
small number of involved events, it does also not prove much. An 
unambiguous (non-) observation of the additional activity maxima 
predicted by the ice load models would be strong evidence for 
(or against) them. Among the models with evidence ratio below 
100, Load_ApOp is however the second worst (evidence ratio 19.3). 
Without more data from this part of the activity cycle (if it is a cy-
cle) it is difficult to tell how important this detail in the KDE rate 
estimation really is. The differences in the times predicted above 
only account for the differences between the model types, but not 
for the uncertainty of model parameters. The time intervals given 
so far are therefore likely to underestimate the actual uncertainty 
of begin, maximum, and end times. Unfortunately, the determina-
tion of parameter uncertainties using the Fisher information matrix 
failed for the preferred model, and also for several other models, 
such that we have to resort to the Jackknife approach (results in 
ST16).

For Ilmn_AnOn we find a standard deviation of the likelihood 
σMLE = 6.36 (log LMLE = −213.57, ST16, ST17). To estimate the un-
certainty of the forecasts made above, we consider all parameters 
with likelihoods less than one standard deviation below the max-
imum. For these models, the beginning of the next activity phase 
varies from sol 853 (20. Apr. 2021) to sol 918 (26. June 2021), and 
the time of the next maximum is between sol 997 (15. Sep. 2021) 
and sol 1045 (03. Nov. 2021) (SF16). The expected number of 
events is as in the previous maximum. This timing uncertainty ba-
sically covers the variability between the individual models shown 
in Fig. 6b (except for the additional maxima of the load mod-
els).

For model Load_ApOp (log LMLE = −216.7), we obtain σMLE =
6.19 and again inspect models with likelihoods less than one stan-
dard deviation below the maximum (SF17). We find two distinct 
solutions for the timing of the additional activity phase, with max-
ima between sol 608 (11. Aug. 2020) and sol 738 (23. Dec. 2020), 
and a third maximum between sol 976 (25. Aug. 2021) and sol 
1040 (28. Oct. 2021) and event rates similar to those experienced 
so far. In most cases, however, the rate never decreases to 0, with 
a minimum rate between sol 828 (25. Mar. 2021) and sol 880 (18. 
May 2021) (SF17). The expected event rate for the December 2020 
maximum is about half the previous maximum. In general, these 
models alternate between two maximum rates, i.e. a higher maxi-
mum is followed by a lower one and vice versa.

For model Load_AnOp (log LMLE = −214.6) we obtain σMLE =
6.32, models within one standard deviation of the maximum like-
lihood solution are collected in figure SF19. Like Load_ApOp, this 
model also forecasts two phases of activity per year. One maxi-
mum is expected between sol 668 (12. Oct. 2020) and sol 719 (03. 
Dec. 2020). A phase with minimum or constant background activ-
ity might follow between sol 752 (06. Jan. 2021) and sol 862 (29. 
Apr. 2021), and another activity maximum is forecast to occur be-
tween sol 994 (12. Sep. 2021) and sol 1062 (21. Nov. 2021). The 
event rate at both the maxima is expected to be similar to the 
previous maximum.

6. Conclusions

We analyzed the High Frequency family of events detected by 
InSight on Mars, while we left out the Very High Frequency, Low 
Frequency and Broadband events which all appear to be of a dif-
ferent origin (Giardini et al., 2020; Clinton et al., 2021; van Driel 
et al., 2021).
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We tested time variable event rate functions based on five dif-
ferent driving effects. Two of them (Phobos tides and impacts) 
were excluded from further analysis in an early stage, for the other 
three models (elevation of the Sun, seasonal surface loads, and 
solar tides) we conducted a maximum likelihood analysis and pro-
vide an Akaike weight-based ranking.

The evidence ratios between our three groups of models, and 
the 16 individual models within those groups, are not fully con-
clusive yet. One challenge is the coincidental proximity of the 
solstices to aphelion and perihelion. A higher resolution of activ-
ity levels and durations is required in order to discern tidal and 
climate forcing. This may be achieved in the future by stacking ac-
tivity observations from more than one Martian year. Any of the 
models may still fail when future observations are compared to its 
activity forecasts, hence an extended observation would help dis-
criminate between models. At least observing a second cycle would 
be necessary to rule out that we just witnessed a singular, non-
recurring burst of activity.

The best ranked rate model is the seasonal change of illumina-
tion, followed by annual solar tides and changing CO2 ice load, in 
that order. There are indications of an additional activity maximum 
which could only be explained by the ice load model, though.

The physical mechanism for how illumination is connected to 
the HF marsquake sources remains to be determined. While ther-
mal shocking is a known agent of weathering (e.g. Hall and Thorn, 
2014), the penetration depth of the diurnal heat wave, and the 
amount of material mobilized in each cycle, are small (e.g. Lamp 
et al., 2017). In addition, landslides are inefficient seismic sources, 
which require enormous amounts of mass moved to obtain a seis-
mic signal that can be recorded over long distances (e.g. Berro-
cal et al., 1978; Deparis et al., 2008), especially when account-
ing for the Martian environment (Lucas et al., 2019). Assuming 
falling boulders in Cerberus Fossae as source, for example, would 
imply erosion rates which probably do not agree with the crisp 
topography of its deep, narrow valleys. Recent avalanches on the 
northern polar cap, captured by HiRise on 29. May 2019 (Image 
ESP_060176_2640), were not detected by InSight.

Gullies are known to show a seasonal activity as well (Dundas 
et al., 2012), but are found only at latitudes beyond 30◦ , some 
however within less than 35◦ distance from InSight (Conway et al., 
2019a,b). If gully activity is due to more or less deep aquifers (as 
suggested by Heldmann et al., 2007), aquifer pore pressure might 
be a crucial parameter. It is however unclear if this is the case, 
or if gaseous CO2 plays a major role, while the absence of CO2 in 
terrestrial analogs limits our understanding (see recent reviews of 
Conway et al., 2019a,b, and Dundas et al., 2019).

The CO2 ice load model, as used here, reflects global-scale de-
position and evaporation, but is mainly driven by the polar ice 
caps. These, however, are farther away from InSight than travel 
time analysis of the HF events allows the source to be. The as-
sumption of a circumpolar origin would require very high seismic 
velocities even in the upper mantle and would be more difficult 
to reconcile with the coda present in HF seismograms, which sug-
gest wave propagation dominantly through the crust (Giardini et 
al., 2020; van Driel et al., 2021). The lower latitude CO2 deposits 
mentioned before are smaller in volume, and may condensate and 
evaporate with shorter time constants than the larger polar de-
posits. Also, especially the evaporation is certainly not independent 
from insolation, and the respective rate models are not as inde-
pendent of each other as one would like them to be for a clear 
discrimination. Improved time dependency models for low-latitude 
ice deposits may help to disentangle the rate models.

We have shown that the annual variation of wind noise is not 
sufficient to explain the annual variability of HF event detections -
they really occur at a variable rate. Our study suggests that, once 
the epicenters of HF sources can be better constrained, we should 
10
inspect regions where topography causes strong seasonal insola-
tion variations, or where CO2 ice is deposited in the cold times 
of the year, for indications of macroseismic changes due to the 
“marsquake season”.
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Data availability

All SEIS data are available in SEED format (InSight Mars 
SEIS Service, 2019a) or PDS4 format (InSight Mars SEIS Service, 
2019b). Events used in this analysis are listed in the MQS cat-
alogue (InSight Marsquake Service, 2020, 2021). Noise RMS am-
plitudes and event catalog are based on waveform data which 
is released to the public via the NASA Planetary Data Sys-
tem (https://pds -geosciences .wustl .edu /missions /insight /seis .htm), 
IPGP Data center (https://www.seis -insight .eu /en /science /seis -data /
seis -data -description) and IRIS DMC (https://www.iris .edu /hq /sis /
insight) several times a year.

Data from the APSS pressure sensor and the temperature and 
wind (TWINS) sensor referenced in this paper are available from 
the PDS Atmospheres node. The direct link to the InSight data 
archive at the PDS Atmospheres node is https://atmos .nmsu .edu /
data _and _services /atmospheres _data /INSIGHT /insight .html.

Images from the Mars Reconnaissance Orbiter camera HiRise 
are stored in the NASA Planetary Data System at https://pds -
imaging .jpl .nasa .gov/.
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https://atmos.nmsu.edu/data_and_services/atmospheres_data/INSIGHT/insight.html
https://pds-imaging.jpl.nasa.gov/
https://pds-imaging.jpl.nasa.gov/
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