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Abstract In this paper we estimate and invert local electromagnetic (EM) sounding data for 1-D
conductivity profiles in the presence of nonuniform oceans and continents to most rigorously account
for the ocean induction effect that is known to strongly influence coastal observatories. We consider
a new set of high-quality time series of geomagnetic observatory data, including hitherto unused data
from island observatories installed over the last decade. The EM sounding data are inverted in the
period range 3–85 days using stochastic optimization and model exploration techniques to provide
estimates of model range and uncertainty. The inverted conductivity profiles are best constrained in
the depth range 400–1,400 km and reveal significant lateral variations between 400 km and 1,000 km
depth. To interpret the inverted conductivity anomalies in terms of water content and temperature,
we combine laboratory-measured electrical conductivity of mantle minerals with phase equilibrium
computations. Based on this procedure, relatively low temperatures (1200–1350∘C) are observed in the
transition zone (TZ) underneath stations located in Southern Australia, Southern Europe, Northern Africa,
and North America. In contrast, higher temperatures (1400–1500∘C) are inferred beneath observatories
on islands, Northeast Asia, and central Australia. TZ water content beneath European and African stations
is ∼0.05–0.1 wt %, whereas higher water contents (∼0.5–1 wt %) are inferred underneath North America,
Asia, and Southern Australia. Comparison of the inverted water contents with laboratory-constrained
water storage capacities suggests the presence of melt in or around the TZ underneath four geomagnetic
observatories in North America and Northeast Asia.

1. Introduction

Inferring the internal structure of the Earth is a key aspect for understanding its origin, evolution, and dynam-
ics. In this regard, geophysical techniques such as seismic, geodetic, gravimetric, and electromagnetic (EM)
studies play prominent roles because of their ability to sense structure at depth. In particular, EM studies
aim at mapping electrical conductivity variations in the Earth. Electrical conductivity is sensitive to temper-
ature, chemical composition, oxygen fugacity, water content, and the presence of melt (e.g., Karato & Wang,
2013; Park & Ducea, 2003; Yoshino, 2010). Hence, mapping electrical conductivity in turn enables constraining
chemistry, mineralogy, and physical structure of the lithosphere and mantle (e.g., Deschamps & Khan, 2016;
Dobson & Brodholt, 2000; Fullea et al., 2011; Khan et al., 2006; Pommier, 2014; Toffelmier & Tyburczy, 2007; Xu
et al., 2000). For instance, global-scale (Kelbert et al., 2009; Semenov & Kuvshinov, 2012; Sun et al., 2015; Tarits
& Mandéa, 2010) and semiglobal-scale (e.g., Koyama et al., 2006, 2014; Shimizu et al., 2010) three-dimensional
(3-D) EM inversions of long-period geomagnetic data reveal the presence of large-scale lateral heterogeneities
in the mantle.

Although significant improvements have been achieved in the last years with the emergence of the first set of
3-D mantle conductivity models, 3-D global and semiglobal EM induction studies still face several challenges.
First, because of the high computational cost of 3-D forward operators only a coarse model parameterization
is currently feasible resulting in limited radial resolution. Second, the deterministic approaches hitherto used
in 3-D EM inversion lack quantification of uncertainties in the recovered 3-D conductivity models. Finally, the
obtained 3-D conductivity models have poor lateral resolution in many regions of the world, especially in the
oceans, due to the extremely nonuniform distribution of geomagnetic observatories.
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To improve the latter, considerable efforts have focused on improving global data coverage of ground-based
geomagnetic observatories. In particular, several island geomagnetic observatories have been installed in the
last decade (see next section). Availability of these new data provides an opportunity to study the deep elec-
trical conductivity structure under hitherto unexplored regions of the Earth. Kuvshinov et al. (2002) showed
that EM response functions in the form of local C-responses (Banks, 1969) are influenced by the presence of
the conductive oceans at coastal and island observatories. Several correction schemes to isolate experimental
C-responses from the influence of oceans have been proposed (Kuvshinov et al., 2005; Püthe, Kuvshinov, Khan,
& Olsen, 2015; Utada et al., 2003, among others). However, due to the nonlinearity of the problem, the most
consistent way to account for the ocean induction effect (OIE) is to model it simultaneously with the inver-
sion. In particular, for the period range considered here, oceans can be approximated by a thin surface shell
of known conductance. Semenov and Kuvshinov (2012) computed magnetic fields for conductance distribu-
tions with different lateral resolution concluding that a resolution of at least 1∘ × 1∘ is necessary to accurately
account for the OIE in the thin-shell approach. However, global 3-D EM studies typically exploit a lower lateral
resolution to preserve computational efficiency. In such cases, an unaccounted-for OIE might be translated
into spurious anomalies in the recovered conductivity images.

In the light of the aforementioned challenges, the main goal of this study is to map lateral variations of electri-
cal conductivity in Earth’s mantle by relying on a quasi 1-D stochastic inversion of local C-responses. In short,
we estimate local C-responses at a number of worldwide geomagnetic observatories and invert these indi-
vidually for a local 1-D conductivity profile in the presence of nonuniform oceans and continents. This quasi
1-D inversion allows us to (a) improve radial resolution of local 1-D conductivity models, (b) properly account
for the OIE, and (c) quantify uncertainties of the recovered conductivity profiles.

In the following, we describe estimation of local C-responses from a new data set provided by the British
Geological Survey (Macmillan & Olsen, 2013) that consists of cleaned-up time series of the Earth’s magnetic
field recorded at geomagnetic observatories distributed across the globe (section 2). Section 3 introduces
rigorous and accurate modeling of the OIE by implementation of a surface conductance map with lateral
variable resolution. Section 4 presents the inverse problem formulation based on a stochastic optimization
and model exploration technique. The inverted conductivity models and estimated uncertainties are dis-
cussed in section 5 and interpreted in terms of variations in transition zone water content and temperature
in section 6.

2. Data Analysis
2.1. Data Selection
While satellite data are becoming increasingly important for constraining the electrical conductivity struc-
ture of the Earth (Constable & Constable, 2004; Grayver et al., 2017; Kuvshinov & Olsen, 2006; Olsen et al.,
2003; Püthe, Kuvshinov, Khan, & Olsen, 2015; Velímský, 2010, among others), ground-based observatory data
remain a major input for global EM induction studies. However, as stated above, there are still major gaps in
the geomagnetic observatory network, especially in oceanic areas and in the Southern Hemisphere. Over the
last decade, a number of geomagnetic observatory projects have been initiated to improve the coverage by
long-term measurements in oceanic regions. For instance, since 2007 GFZ (Helmholtz-Zentrum Potsdam) has
been operating an observatory in the South Atlantic Ocean on St. Helena Island (Korte et al., 2009). In 2008, an
observatory on Easter Island (South Pacific Ocean) was installed by the Institut de Physique du Globe de Paris
(France) and Direccion Meteorologica de Chile (Chulliat et al., 2009). Since 2009 GFZ and the National Space
Institute at the Technical University of Denmark have been operating an observatory on Tristan da Cunha
Island in the South Atlantic Ocean (Matzka et al., 2009). The Institute of Geophysics, ETH Zurich (Switzerland),
installed two observatories in the Indian Ocean: on Gan island, Maldives (in cooperation with Maldives
Meteorological Service and National Geophysical Research Institute, Hyderabad, India), and on Cocos Island
(in cooperation with Geoscience Australia). The data from these stations have, so far, not been used for
studying mantle conductivity structure.

To support the analysis of pre-Swarm and Swarm satellite data, the British Geological Survey (BGS) has recently
provided a database of quality-controlled observatory hourly mean values for the years 1997–2016. This
new data set consists of definitive or close-to-definitive data derived from the World Data Center (WDC) for
Geomagnetism (Edinburgh) for which any known discontinuity in the records (reported by the observatories
in their annual mean values) have been corrected and poor-quality data removed (Macmillan & Olsen, 2013).
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Figure 1. Distribution of geomagnetic observatories used in this study. Stations around dip equator (black) were not
used in the inversion. Stations acronyms are defined in Table 1.

The BGS data set contains data from 171 geomagnetic observatories distributed worldwide. In selecting
data for this study, we excluded data from (1) stations containing significant gaps or record lengths shorter
than 3 years, (2) high-latitude stations that are known to be affected by the auroral current system (Fujii &
Schultz, 2002; Semenov & Kuvshinov, 2012), and (3) on-land stations that have been frequently used in pre-
vious studies. Further, the selection procedure was applied so as to achieve as uniform global coverage as
possible. To this end, we selected a subset of 39 high-quality stations from the BGS data set, including 6 new
island geomagnetic observatories (IPM, TDC, ASC, SHE, GAN, and CKI) that are mainly located in the Southern
Hemisphere. Additionally, we included definitive time series from the WDC data set for two geomagnetic
observatories (TKT and ODE) that have been inoperative for the last 20 years. Locations of the selected stations
are shown in Figure 1.

2.2. Estimation of Local C-Responses
Time series of the magnetic field, corrected for the main field and its secular variations, were used to deter-
mine local C-responses in the period range 3–85 days. Under the assumption that geomagnetic variations at
the Earth’s surface due to the magnetospheric ring current can be described via the first zonal harmonic in
geomagnetic coordinates, C-responses are defined as (Banks, 1969)

C(ra, 𝜔) = −a tan 𝜃

2

Z(ra, 𝜔)
H(ra, 𝜔)

, (1)

where Z ≡ −Br and H ≡ −B𝜃 correspond to the respective radial and colatitudinal components of the geomag-
netic field at location ra = (r = a, 𝜃, 𝜙). The Earth’s mean radius is denoted a, 𝜃 is the geomagnetic colatitude,
and 𝜙 is the geomagnetic longitude. C-responses from observatory data were estimated using a section-
averaging (e.g., Olsen, 1998) and iteratively reweighted least squares approach (e.g., Aster et al., 2005). Obser-
vational errors were determined using a jackknife estimator (e.g., Chave & Thomson, 1989). This method
provides unbiased estimations of C-response uncertainties without assumptions about the statistical distri-
bution of experimental errors (Efron, 1982). The main field and secular variation have been removed following
Semenov and Kuvshinov (2012).

As an example, Figure 2 shows C-responses and squared coherencies estimated for Alice Springs (ASP) and
Honolulu (HON) geomagnetic observatories. For comparison, C-responses estimated using raw time series,
provided by INTERMAGNET, for the time window 1957–2007 (Semenov & Kuvshinov, 2012) are also plotted.
The new C-responses are characterized by an increase in smoothness and squared coherency, as well as a
decrease in experimental uncertainties.

Further, visual inspection of the estimated C-responses and squared coherencies revealed a decrease in
coherency for stations close to the dip equator and polar regions. The latter is likely explained by the fact that
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Figure 2. Real (positive) and imaginary (negative) parts of the experimental C-responses (bottom row) and squared coherencies coh2 (top row) estimated in this
study for Alice Springs (ASP) and Honolulu (HON) geomagnetic observatories using BGS data (red). Error bars indicate uncertainties of the experimental
C-responses. For comparison, C-responses computed for the time window 1957–2007 (Semenov & Kuvshinov, 2012) are shown in blue.

Table 1
Summary of Geomagnetic Observatories Acronyms, Names, Geodetic Geographic Coordinates (GG), Geomagnetic Coordinates (GM), and Time Interval of Measured Data

Code Station GG latitude (deg) GG longitude (deg) GM latitude (deg) GM longitude (deg) Data length

AAA Alma Ata 43.20 76.90 34.31 153.05 2006–2012
AMS Martin de Vivies −37.80 77.57 −46.00 145.09 1999–2008
API Apia −13.80 188.22 −15.22 263.05 2012–2016
AQU L’Aquila 42.38 13.32 42.17 94.62 1998–2009
ASP Alice Springs −23.77 133.88 −32.42 208.61 1998–2016
BGY Bar Gyora 31.72 35.09 28.14 112.73 2004–2010
BOU Boulder 40.14 254.76 47.99 321.47 1998–2016
BSL Stennis Space Center 30.35 270.36 39.58 340.48 1998–2005
CKI Cocos-Keeling Islands −12.19 96.83 −21.90 168.54 2012–2016
CNB Canberra −35.32 149.36 −42.71 226.94 1998–2016
FRD Fredericksburg 38.20 282.63 47.88 354.05 1998–2016
FRN Fresno 37.09 240.28 43.19 306.13 1998–2013
FUR Furstenfeldbruck 48.17 11.28 48.13 94.64 1998–2015
GLM Golmud 36.40 94.90 26.54 168.47 2010–2015
GNA Gnangara −31.80 116.00 −41.93 188.84 1998–2016
HBK Hartebeesthoek −25.88 27.71 −27.04 95.12 1998–2013
HER Hermanus −34.43 19.23 −33.98 84.02 1998–2016
HON Honolulu 21.32 202.00 21.60 270.41 1998–2016
IPM Isla de Pascua −27.20 250.58 −19.13 325.37 2010–2015
KAK Kakioka 36.23 140.18 27.37 208.95 1998–2016
KDU Kakadu −12.69 132.47 −21.55 206.07 1998–2016
KNY Kanoya 31.42 130.88 21.89 200.75 1998–2016
LZH Lanzhou 36.10 103.84 26.02 176.52 1998–2015
ODE Stepanovka 46.78 30.88 19.76 57.89 1957–1991
MBO Mbour 14.38 343.03 35.52 211.87 1998–2016
MMB Memambetsu 43.91 144.19 43.71 112.71 1998–2016
SFS San Fernando 36.67 354.06 39.73 73.38 1998–2016
SJG San Juan 18.11 293.85 27.83 6.62 1998–2016
TAM Tamanrasset 22.79 5.53 24.39 82.09 1998–2016
TAN Antananarivo −18.92 47.55 −23.48 116.46 1998–2004
TDC Tristan da Cunha −37.07 347.69 −31.52 54.3 2009–2016
TKT Tashkent 41.33 69.62 33.30 146.35 1957–1981
TUC Tucson 32.18 249.27 39.50 316.9 1998–2013
VSS Vassouras −22.40 316.35 −13.51 27.15 2001–2010

Note. Time series for years 1997–2016 were provided by the British Geological Survey (Macmillan & Olsen, 2013). Additionally, data for Tashkent (TKT) and
Stepanovka (ODE) geomagnetic observatories were taken from the World Data Centre for Geomagnetism (Edinburgh).
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the radial component of the magnetic field goes through zero at the dip equator. The former corresponds to
violations of the source assumption because of the influence of polar currents, which cannot be represented
using the first zonal harmonic only. In what follows, we therefore considered data from 34 stations that pro-
vide C-responses with an average squared coherency>0.5. Detailed information of the selected geomagnetic
observatories (red dots in Figure 1) is summarized in Table 1.

3. Forward Problem and Model Parameterization
3.1. The Ocean Induction Effect
Oceans are large conductive bodies that cause significant perturbations in C-responses at coastal and island
observatories for periods <40 days (cf. Kuvshinov et al., 2002). In the following section, we stress the impor-
tance of accounting for the OIE when working with C-responses at observatories near the coast. As an
illustration of this, Figures 3a and 3b show observed and synthetic C-responses for Hermanus and Kakioka
geomagnetic observatories. Two types of synthetic C-responses were calculated: C1D correspond to responses
for a radially symmetric 1-D conductivity structure derived from satellite and ground-based data (Püthe,
Kuvshinov, Khan, & Olsen, 2015) and C1D+shell denote responses estimated using the same 1-D conductivity
model overlain by a surface layer accounting for conductivities relevant to the oceans and continents. The
vertical and horizontal components of the magnetic field were calculated by numerically solving Maxwell’s
equations in spherical geometry (Kuvshinov, 2008). As expected, for a radially symmetric geometry (Weidelt,
1972), the real part of C1D monotonically increases with period, whereas the imaginary part is negative.
However, the real part of the observed C-response at Hermanus observatory exhibits a nonmonotonic behav-
ior, while the imaginary part changes sign. At Kakioka observatory, the behavior of the C-response follows the
monotonic variation expected for a radially symmetric geometry, but it nonetheless appears to be affected
by the ocean. Accounting for the OIE clearly improves the fit to the observed C-responses.

Figures 3c–3h show relative differences between 3-D and 1-D synthetic C-responses across Australia,
Southern Africa, and Japan. These plots show that the OIE considerably distorts both real and imaginary parts
of the C-responses. The largest distortions occur near the coasts where the imaginary part is influenced the
most. This figure emphasizes that accounting for the OIE is essential when analyzing C-responses at coastal
and island observatories.

Over the last decade, several approaches for correcting for the OIE have been proposed (Everett et al., 2003;
Kuvshinov & Olsen, 2006; Püthe, Kuvshinov, Khan, & Olsen, 2015; Semenov & Kuvshinov, 2012, among others).
For example, Utada et al. (2003) proposed the following (additive) correction:

Cexp,corr(𝜔) = Cexp(𝜔) + C1D(𝜔) − C1D+shell(𝜔), (2)

where Cexp corresponds to the observed experimental C-response, C1D is the synthetic C-response of a radially
symmetric conductive Earth (without oceans), and C1D+shell is the C-response of the same radially symmet-
ric conductive Earth overlain by an inhomogeneous shell (which approximates the distribution of oceans).
Semenov and Kuvshinov (2012) reported that the effectiveness of the correction depends on the lateral res-
olution of the conductance distribution and the 1-D conductivity structure used for computing synthetic
C-responses. The authors suggest that in order to accurately model the OIE using the thin-shell approxima-
tion, surface conductance should be described with a resolution of at least 1∘ × 1∘ near the observation point.
Furthermore, the conductivity structure must be representative of the region of interest. Although this cor-
rection succeeds in reducing the OIE in observed C-responses, it cannot completely remove the influence
of ocean-induced fields because of the nonlinearity of the problem. Here we propose to properly account
for the OIE by modeling the ocean/continent conductivity distribution as a thin shell of laterally varying
surface conductance.

3.2. Model Parameterization
Our model parameterization consists of a thin spherical shell of known laterally varying surface conductance
on top of a radially symmetric unknown conductivity profile (see Figure 4a). The thin-shell approximation is
justified since for periods>3 days the penetration depth is much larger than the thickness of the oceanic layer.
The surface conductance map was obtained by considering contributions from both seawater and sediments.
The ocean conductance map was taken from Manoj et al. (2006) and incorporates bathymetry, salinity, tem-
perature, and pressure variations. Conductance of the sediments was added for both continental and oceanic
regions. The radially varying conductivity structure underneath consisted of 20 layers (50 km thick) between
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Figure 3. Real (left column) and imaginary (right column) parts of observed (Cobs ) and synthetic C-responses for
(a) Hermanus and (b) Kakioka geomagnetic observatories. Synthetic C-responses were calculated for a global average
conductivity model (Püthe, Kuvshinov, Khan, & Olsen, 2015) with (C1D+shell) and without (C1D) ocean-induced fields.
Figures 3c–3h show real (left column) and imaginary (right column) parts of the relative differences Cdiff between 3-D
and 1-D synthetic C-responses for a period of 3 days across (c, d) Australia, (e, f ) Japan, and (g, h) Southern Africa.
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Figure 4. Model parameterization. (a) The Earth is parameterized as a thin spherical layer of laterally varying surface conductance (shown in Figure 4b) on top of
a radially symmetric conductivity profile. The radial conductivity structure consists of 20 layers (50 km thick) in the depth range 0–1,000 km and 18 layers
(100 km thick) in the depth range 1,000–2,900 km. (b) Example of nonuniform conductance map built for Canberra geomagnetic observatory.

the surface and 1,000 km depth, followed by 18 layers (100 km thick) down to the core-mantle boundary
(∼2,900 km depth). Vertical and horizontal components of the magnetic field for a 3-D spherical geometry
were computed using the frequency domain 3-D integral equation (IE) solver (X3DG) of Kuvshinov (2008).
Kelbert et al. (2014) showed that for the model setup considered in this work, the methods based on IE formu-
lation require significantly shorter CPU times than methods based on either finite elements, finite differences,
or spherical harmonic-finite elements.

Typically, IE modeling is performed using a surface conductance of laterally uniform resolution. In this paper
the ocean/continent conductivity distribution was modeled using a surface conductance with variable lateral
resolution. The reason for this is twofold. First, at every location, fields are weakly influenced by the conduc-
tance distribution located far away from the observation point. And second, X3DG implementation works
such that the computational time depends quadratically on the number of cells in the latitudinal direction.
Since in this study, C-responses were calculated at a single location, it was possible to use a nonuniform spac-
ing without loss of accuracy. As a result, for every station a surface shell model was built. The conductance
map had uniform (1∘) resolution in longitude and nonuniform resolution in latitude. Latitudinal resolution
was 1∘ in a region of ±20∘ around the observation site, and the grid size was increased by a factor of 1.6
for every 10∘ beyond. As an example, Figure 4b depicts the nonuniform surface conductance map built for
Canberra geomagnetic observatory. This nonuniform conductance map reduces computation time (without
loss of accuracy) by a factor of 17 compared to a uniform 1∘ × 1∘ conductance distribution. Such a gain in
performance allows us to utimately apply a stochastic inverse technique.

The choice of model parameterization and strategy to solve the inverse problem (section 4) was principally
guided by our aim to overcome the aforementioned limitations existing in 3-D global studies.

4. Stochastic Inversion

Although significant improvements in the performance of X3DG have been achieved by introducing a nonuni-
form conductance distribution, the computational cost of the 3-D forward operator makes purely probabilistic
inversion algorithms based on Markov chain Monte Carlo (McMC) (Tarantola, 2005) infeasible. Alternatively,
deterministic derivative-based methods, such as quasi-Newton or Gauss-Newton, can be applied. However,
for nonlinear inverse problems, these methods are highly dependent on the initial model, typically converge
to a local minimum, require additional adjustments (e.g., Borsic & Adler, 2012) in the case of non-L2 norms
(Grayver & Kuvshinov, 2016), and do not provide uncertainty quantification. Therefore, our inverse prob-
lem formulation is based on a mixed scheme that combines a stochastic optimization technique known as
Covariance Matrix Adaptation Evolution Strategy (CMAES) (Hansen & Ostermeier, 2001), with McMC methods
(e.g., Mosegaard & Tarantola, 1995).

CMAES explores the model space globally and exhibits a remarkable robustness on ill-conditioned problems
(Hansen et al., 2011). Although the use of CMAES in geophysics is not common, it has been implemented in
recent studies as a global minimization method (Alvers et al., 2013; Diouane, 2014; Fonseca et al., 2014; Grayver
et al., 2016, 2017; Shen et al., 2015) outperforming other techniques such as genetic algorithms and particle
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Swarm optimization (Arsenault et al., 2013; Auger et al., 2009; Elshall et al., 2015). Additionally, Grayver and
Kuvshinov (2016) showed that the use of CMAES for finding regions of low misfit can improve performance
of conventional McMC methods.

In this section, we briefly present the algorithm; for details the reader is referred to Grayver and Kuvshinov
(2016) and Hansen and Ostermeier (2001). Given M unknown parameters, at every iteration the algorithm
samples 𝜆 = 4 + 3 ln M models from the current multivariate normal distribution and evaluates the misfit
function. Then, the best 𝜆∕2 candidates are selected and used to update the distribution mean, step size, and
covariance matrix. We use the CMAES algorithm to find the maximum posterior probability model, mMAP, by
solving the following optimization problem:

mMAP = argmin
m

[
𝜙d(m) + 𝛽𝜙m(m)

]
, (3)

where 𝛽 is a regularization parameter. The data (𝜙d) and model (𝜙m) terms are given by

𝜙d(m) = 1
2

N∑
i=1

|||||
Cobs (𝜔i) − Cmod (m, 𝜔i)

𝛿Cobs (𝜔i)

|||||

2

, (4)

and

𝜙m(m) = 1
p

M∑
i=1

||∇mi
||p
, (5)

where N is the number of measurements, Cmod indicate modeled C-responses, whereas Cobs denote observed
C-responses with uncertainties 𝛿Cobs . Vector m = (m1,m2,… ,mM)T denotes the radial part of the conductiv-
ity model. Note that different norms were used for data and regularization terms. For the former, a common
L2 norm is chosen, whereas the latter is computed using L1.5 norm (p = 1.5). This choice relies on studies per-
formed by Grayver and Kuvshinov (2016) who showed that the L1.5 norm provides a good balance between
sharp conductivity contrasts (L1 norm) and smooth models.

5. Results
5.1. Data Fit
The estimated C-responses were individually inverted to determine the most probable set of conductivi-
ties under each observatory. For each station, an L-curve analysis was performed to determine the optimal
trade-off between data misfit and regularization terms (see supporting information). Figures 5 and 6 show
observed and synthetic C-responses for the best-fit candidate model and final root-mean-square (RMS) error
for each station. For most observatories considered in this work, both real and imaginary parts of the observed
C-responses can be explained within experimental uncertainties using a 1-D conductivity profile overlain
by a high-resolution thin shell. In particular, the nonmonotonic behavior of observed C-responses at coastal
observatories is successfully reproduced. Although a certain complexity is neglected when reducing the data
into a finite set of complex-valued C-responses, the model parameterization considered in this work appears
reasonable for mid-latitude data.

The final conductivity models, on average, have a RMS error <0.95. There are four stations (CKI, IPM, KDU,
and MBO) for which RMS error ≈ 2. This increase is due to differences between the imaginary part of the
observed and synthetic C-responses at short periods. As is shown in Figure 6 for Cocos Island (CKI) and Easter
Island (IPM), synthetic C-responses explain the imaginary part of the observed C-responses at long periods
(T > 20 days) but disagree at shorter periods. One can speculate that differences in the imaginary part of
C-responses for short periods reflect either the presence of anomalously shallow structures or are artifacts
arising from unmodeled OIE. In order to address the latter, we additionally computed C-responses using a
surface conductance map on a 0.25∘ × 0.25∘ grid for the best fit candidate models. No significant differences
were observed between the C-responses for 1∘ × 1∘ and 0.25∘ × 0.25∘ grids. One may therefore argue that
differences between observed and computed C-responses are due to anomalous structure in the upper man-
tle, unless the conductance distributions considered in this work do not account for certain small-scale local
features in bathymetry or seawater conductivity.

5.2. Uncertainty Quantification
Uncertainty quantification of the final models is essential to evaluate the robustness and reliability of the
retrieved conductivity structures. Studies based on deterministic approaches typically perform sensitivity
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Figure 5. Real parts of observed (circles) and synthetic (dashed lines) C-responses for the best-fit conductivity models at
the 34 geomagnetic observatories considered in the study (see Table 1). Uncertainties of observed C-responses are
indicated by the error bars.
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Figure 6. Imaginary parts of observed (circles) and synthetic (dashed lines) C-responses for the best-fit conductivity
models at the 34 geomagnetic observatories considered in the study (see Table 1). Plots also include root-mean-square
(RMS) error for real and imaginary parts of the responses. Uncertainties of observed C-responses are indicated by the
error bars.
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Figure 7. (a) Inverted conductivity models for Hermanus (HER), Tristan da Cunha (TDC), Honolulu (HON), Canberra
(CNB), and Alice Springs (ASP) observatories. (b) Sampled posterior probability distribution for Hermanus geomagnetic
observatory, with black indicating most probable and white least probable. Final posterior probability distributions for
all analysed stations are shown in supporting information.

analysis based on applying small perturbations to the final conductivity model and comparing their effect on
the computed responses (e.g., Baba et al., 2016; Meqbel et al., 2014). Although this strategy provides some
insight, one can argue that the region of the model space sampled in such a sensitivity analysis is strongly
study dependent (e.g., Trampert, 1998). Alternatively, a more consistent uncertainty quantification can be
achieved by exploration of the model space around the best solution. Following this concept, model uncer-
tainties are estimated using a McMC (e.g., Mosegaard & Tarantola, 1995) method. However, inversions based
on McMC require a substantial amount of forward computations. The computational cost of the 3-D forward
operator (even with the introduced laterally varying grid) makes model space exploration based on purely
McMC methods prohibitive. Here we propose an alternative strategy where we explore the model space in
the region around mMAP. First, we computed 1-D and 3-D synthetic C-responses for mMAP, followed by appli-
cation of equation (2) to obtain experimental C-responses corrected for OIE. As mentioned in section 3.1,
if the conductivity model mMAP is a good estimation of the conductivity structure beneath the station, Cexp,corr

is largely isolated from the influence of the oceans. Following this, we performed an exploration of the
model space around the most probable candidate using the Metropolis-Hastings (Hastings, 1970; Metropolis
et al., 1953) algorithm considering Cexp,corr as observed data and employed a 1-D forward operator to compute
synthetic C-responses.

For each geomagnetic observatory, we performed a total of 1 million McMC iterations. The first 200,000
iterations were considered as burn-in period. Moreover, we analyzed the statistical independence of pro-
posed models by estimating the cross correlation between candidates from successive realizations. In order
to ensure the independence of proposed models (cross correlation < 0.4), only one candidate per 1,000 iter-
ations was retained. The obtained models were used to estimate uncertainties of the electrical conductivity
underneath each station assuming a log-normal distribution. Further, sampled conductivities were used to
build a histogram of the marginal probability distribution for each layer. The sampled posterior probability dis-
tribution, shown in Figure 7b for a single station (HER), indicates increased uncertainty in the upper (<400 km
depth) and lowermost mantle (>1,400 km depth). Therefore, and in agreement with previous studies (cf. Khan,
Kuvshinov, & Semenov, 2011), the C-responses estimated in this work best constrain the conductivity structure
in the depth range between 400 and 1,400 km.

5.3. Conductivity Models
In this section, we describe some of the most prominent features observed in the final conductivity models. To
this end, Figure 7a shows the obtained conductivity structures for five geomagnetic observatories: Hermanus
(HER), Tristan da Cunha (TDC), Honolulu (HON), Canberra (CNB), and Alice Springs (ASP). These five stations
were chosen to highlight the significant variability of the final models. Additionally, a global average model
derived from satellite and observatory data (Püthe, Kuvshinov, Khan, & Olsen, 2015) is shown for comparison.
First, there are considerable differences in the first 400 km. Although the sensitivity analysis described in
section 5.2 indicates low resolution in the uppermost mantle, the observed variability nonetheless suggests
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Figure 8. Conductivities recovered in this study (left column) averaged over four depth intervals: 410–520, 520–670,
670–900, and 900–1,100 km. For comparison, conductivities extracted from the 3-D conductivity model derived by
Semenov and Kuvshinov (2012) are shown in the right column. Highlighted circles refer to island observatories that
were not part of the Semenov and Kuvshinov (2012) data set.

that our results are sensitive to the bulk conductivity of the uppermost mantle. Second, significant lateral vari-
ability is observed in the depth range 400–1,100 km. And finally, variability is reduced in the lower mantle,
reflecting more uniform structure in accordance with seismologic evidence (Schaeffer & Lebedev, 2015).

In order to visualize lateral variations in the inverted conductivity models, Figure 8 shows average conductivity
values over four depth intervals: 410–520, 520–670, 670–900, and 900–1,100 km depth. Average conduc-
tivities for depths >1,100 km are not shown because of the aforementioned reduced lateral variation. For
comparison, Figure 8 also depicts conductivity values extracted from the global 3-D conductivity model
derived by Semenov and Kuvshinov (2012). The authors inverted local C-responses (period range 3–104 days)
at 119 mid-latitude geomagnetic observatories to image the 3-D global electrical conductivity distribution in
the mantle. They parameterized the depth range 410–1,600 km by five spherical layers of 110, 150, 230, 300,
and 400 km thickness, respectively. All forward calculations were performed on a 3∘ × 3∘ grid, whereas the
lateral resolution of the inverse domain was chosen to be 9∘ × 9∘. The observed C-responses were corrected
for the ocean induction effect before inversion. Despite various differences in conductivity values, there is
general similarity between both conductivity models. For instance, both models indicate small conductivity
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anomalies underneath Southern Europe and Northern Africa, whereas large conductivity anomalies are
observed beneath North America and Northern Asia. The presence of a large conductivity anomaly under-
neath Northern Asia has also been reported by Kelbert et al. (2009) and more recently confirmed by Sun
et al. (2015). Finally, both models suggest the presence of a large conductivity anomaly beneath Southern
Australia. This feature is also consistent with the regional study performed by Koyama et al. (2014) and Koch
and Kuvshinov (2015).

The most significant difference between our results and the model derived by Semenov and Kuvshinov (2012)
concerns geomagnetic observatories located on islands. In the model of Semenov and Kuvshinov (2012),
more conductive anomalies are found beneath island stations. This difference can be attributed to (a) lack
of data from geomagnetic observatories located on Tamanrasset (TAM), Easter Island (IPM), Tristan da Cunha
(TDC), and Cocos Island (CKI) (see Figure 8) and (b) the fact that the correction scheme applied by Semenov
and Kuvshinov (2012) to account for the OIE is only approximate.

6. Thermochemical Interpretation of Conductivity Anomalies
6.1. Laboratory-Based Conductivity Profiles
In this section, we interpret the inverted conductivity anomalies in terms of transition zone thermal structure
and water content. For this purpose, we compared the inverted conductivity models with laboratory-based
conductivity profiles. We followed the approach described in detail in Khan (2016). Relative to Khan (2016),
the conductivity database has been updated with recent measurements for clinopyroxene and Al-bearing
bridgmanite. For brevity, only a summary is given here.

The laboratory-based conductivity profiles are computed from experimental measurements of mantle
mineral conductivities in combination with mineral phase equilibrium computations. To compute phase
equilibria, we employ the Gibbs free-energy minimization strategy described by Connolly (2009) and
the self-consistent thermodynamic formulation of Stixrude and Lithgow-Bertelloni (2005) with parameters
given by Stixrude and Lithgow-Bertelloni (2011), which predicts stable mineralogy (mineral modes) for a
given pressure, temperature, and composition. The obtained mineral phase proportions are combined with
laboratory-measured mineral conductivities to compute electrical conductivity as a function of pressure, tem-
perature, and composition. The contribution from individual minerals to bulk conductivity is obtained by
averaging using effective medium theory (Landauer, 1952) to produce a self-consistent solution. Khan (2016)
analyzed different averaging strategies and found the self-consistent solution to be the only estimator that
consistently lies within the Hashin-Shtrikman bounds (Hashin & Shtrikman, 1963). The latter bounds corre-
spond to the narrowest possible restrictions that exist on an arbitrary isotropic multiphase system (Mavko
et al., 2009).

Electrical conductivity is known to be highly sensitive to temperature and presence of water (e.g., Karato &
Wang, 2013). In order to account for the influence of temperature and water content on hydrous minerals, we
employ the electrical conductivity data from Yoshino and Katsura (2009) and Yoshino et al. (2012) for olivine,
from Zhang et al. (2012) for orthopyroxene, from Zhao and Yoshino (2016) for clinopyroxene, from Yoshino and
Katsura (2012) for wadsleyite, and from Yoshino, Manthilake, et al. (2008), Yoshino et al. (2012), and Yoshino
and Katsura (2009) for ringwoodite. Additionally, we consider electrical conductivity data from Yoshino, Nishi,
et al. (2008) for garnet, Katsura et al. (2007) for akimotoite, from Yoshino et al. (2011) for ferropericlase, from Xu
et al. (2000) for calcium perovskite, and from Yoshino et al. (2016) for Al-bearing bridgmanite. Figure 9a sum-
marizes conductivities for all minerals as a function of temperature, pressure, and water content. Following
Khan (2016), we parameterize the water content of the mantle in terms of the water contents of olivine and
wadsleyite. Water contents of clinopyroxene, orthopyroxene, and ringwoodite are estimated using the water
partition coefficients based on measurements from Inoue et al. (2010) and Férot and Bolfan-Casanova (2012).
Although we presently only use the measurements of Yoshino et al. because of their ready applicability we
have to acknowledge that experimental disagreements currently exists with regard to the electrical conduc-
tivity of wadsleyite and ringwoodite. Dai and Karato (2009) measured the influence of temperature and water
content on wadsleyite and ringwoodite reporting results that differ from those of Yoshino et al. Despite vari-
ous efforts, the disagreement has not yet been resolved and the controversy remains (Karato, 2011; Yoshino
& Katsura, 2013).

To illustrate the approach, Figure 9d shows the modal mineralogy and associated laboratory-based bulk elec-
trical conductivity profiles for a pyrolitic mantle (Lyubetskaya & Korenaga, 2007) with a moderate amount
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Figure 9. Summary of major (a) upper mantle, (b) transition zone, and (c) lower mantle single mineral electrical
conductivities based on laboratory measurements as a function of inverse temperature, and water content. In Figure 9a
colors scheme refers to differing water contents in nominally anhydrous upper mantle minerals: red, blue, and green
indicate 0.001 wt %, 0.005 wt %, and 0.01 wt % of water, respectively. Figure 9b conductivity variations are computed for
water contents of 0.01 wt % (red), 0.05 wt % (blue), and 0.1 wt % (green). (d) Modal mineralogy and bulk electrical
conductivity for a pyrolitic mantle (composition from Lyubetskaya & Korenaga, 2007) with 0.01 wt % of water in olivine
and different water contents in wadsleyite: 0.01 wt % (magenta), 0.1 wt % (green), and 1 wt % (red). The adiabatic
geotherm (blue) is defined by the entropy of the lithology at a temperature of 1350∘C at the base of a 100 km thick
lithosphere.

of water (0.01 wt %) in olivine (Karato, 2011; Khan & Shankland, 2012) and different amounts of water in wad-
sleyite (0.01 wt %, 0.1 wt %, and 1 wt %). The composition is described using the CMFASNa model system
comprising the oxides CaO-MgO-FeO-Al2O3-SiO2-Na2O, which account for∼98% of the mass of Earth’s mantle
(Anderson, 2007). The lithospheric temperature is computed by a linear gradient, whereas the sublithospheric
mantle adiabat is defined by the entropy of the lithology at the base of the lithosphere (corresponding to
1350∘C at 100 km depth). The pressure profile is obtained by integrating the load from the surface.
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Figure 10. Spatial distribution of inverted transition zone temperatures
(a) at 500 km depth and water content (b) in wadsleyite Cwad (C0 is equal to
1 wt %). The maps were obtained by converting the conductivity maps
(Figure 8) to temperature and water content using the approach described
in section 6. (c) Comparison of inverted water content with experimentally
determined water storage capacities (Litasov et al., 2011) show locations
where melt could potentially be present.

6.2. Transition Zone Temperature and Water Content
From Figure 9d, we observe that laboratory-based conductivity profiles
implicitly incorporate discontinuities across the major phase transitions
(olivine → wadsleyite, wadsleyite → ringwoodite, and ringwoodite →

bridgmanite + ferropericlase), whereas the conductivity profiles retrieved
from the inversion of C-responses (Figure 7a) are characterized by
a continuous conductivity increase down to depths of ∼1,000 km.
These differences represent a fundamental challenge when comparing
laboratory-based conductivity profiles with models retrieved from inver-
sion of C-responses across the entire depth range. To overcome this com-
plication, we focus our comparison on the depth ranges 400–650 km and
900–1,400 km.

We first performed several synthetic inversions (not shown here) to char-
acterize compositional, thermal, and water content anomalies that can be
successfully recovered given the conductivity uncertainties estimated in
section 5.2. This synthetic analysis indicated that the conductivity profiles
obtained from inversion of C-responses are mostly sensitive to variations
in the thermal structure and water content of wadsleyite (Cwad). Based on
this result, we computed 900 laboratory-based conductivity profiles for
a pyrolitic mantle, where we varied thermal structure and water content
between T0 ∈ [900∘C, 1700∘C] and log(Cwad∕C0) ∈ [−3, 1.5], where T0 cor-
responds to the temperature at the base of a 100 km thick lithosphere
and C0 is a normalizing constant equal to 1 wt %. Conductivities were
compared using a L2 norm misfit function. The uncertainties on the final
temperatures (𝛿T ∼ 30∘C) and water contents (𝛿 log(Cwad∕C0) ∼ 0.12)
were determined by visual inspection of the misfit surface. Figure 10
summarizes the water contents and temperatures in the transition zone
(at 500 km depth) that best explain the observed electrical conductivity
profiles. All final models explain the observations within uncertainties.

Relatively low transition zone temperatures (1200–1350∘C) are found
underneath stations located in Southern Australia, Southern Europe,
Northern Africa, and North America. In contrast, higher transition zone
temperatures (1400–1500∘C) are obtained underneath several island
observatories (TDC, IPM, HON, and TAN). These anomalies seem to be
in agreement with higher potential temperatures beneath intraplate vol-
canic centers reported by Courtier et al. (2007). High-temperature anoma-
lies are also observed beneath Northeast Asia (MMB and KNY) and the
central region of Australia (ASP). Temperature variations in the transition
zone across the globe span ∼300–400∘C and are in overall agreement
with other regional studies (e.g., Cammarano & Romanowicz, 2007; Khan,
Zunino, & Deschamps, 2011; Ritsema et al., 2009).

Regarding variations in transition zone water content, geomagnetic obser-
vatories in Europe and Africa are characterized by Cwad ∼ 0.05–0.1 wt %,
whereas higher water contents (Cwad ∼ 0.5–1 wt %) are observed beneath
stations located in North America, Asia, and Southern Australia. A dry tran-
sition zone below Europe has already been suggested by Utada et al.

(2009) from joint inversion of electromagnetic and seismic tomographic models. Furthermore, temperatures
and water contents obtained beneath ASP, FUR, HER, HON, LZH, and TUC are in general agreement with pre-
vious studies where a similar methodology was applied (Khan & Shankland, 2012; Khan, 2016). Based on
experimental evidence of the water storage capacity (see below) of transition zone minerals (wadsleyite and
ringwoodite), transition zone water content is higher than that of the upper mantle (olivine) ranging from
∼0.1–1 wt % (Pearson et al., 2014; Peslier et al., 2017).
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Mantle water content has to be analyzed in terms of the water storage capacities of mantle minerals. The
water storage capacity is the maximum amount of water that a mineral or rock is able to retain at a given tem-
perature and pressure without producing a hydrous fluid (e.g., Hirschmann et al., 2005). This implies that at
locations where the water content exceeds the local storage capacity, hydrous melting ensues (e.g., Kohlstedt
et al., 1996). Litasov et al. (2011) reported that the temperature dependence of the water storage capacity
of wadsleyite (C) can be described by the exponential equation C = 637.07 e−0.0048T, where T is in degrees
Celsius. This provides an upper limit on the amount of water that can be stored in nominally anhydrous min-
erals in the transition zone. In the present work, we compared the estimated water storage capacities with the
inverted water contents beneath each station. As shown in Figure 10c, we found that water storage capacities
are only exceeded underneath four locations (BOU, FRD, MMB, and LZH). This suggests that thin melt layers
(∼10–20 km thick) could possibly exist in and around the transition zone underneath these locations.

Although the presence of melt can potentially increase conductivity by several orders of magnitude
(e.g., Pommier, 2014; Yoshino et al., 2010), the resolution of the conductivity profiles obtained here is not good
enough to resolve these layers, if present. The current observation of melt has to be viewed in the context
of the physical parameterization of the behavior of water-induced melting as observed experimentally by
Litasov et al. (2011) and Férot and Bolfan-Casanova (2012). Thus, although data might not be able to accurately
resolve a thin melt layer, physical conditions are such that melt is expected to appear.

It has been proposed that when material enriched in water is advected across the olivine → wadsleyite transi-
tion, it will undergo, due to differences in storage capacities between the two reservoirs, partial melting, and
leave behind a residue with a water content similar to that of the upper mantle (Bercovici & Karato, 2003). In
the water filter hypothesis by Bercovici and Karato (2003), this process is expected to occur globally rather than
being restricted to localized water-rich upwellings. Although an accurate characterization of the melt layer is
beyond the scope of this work, our results nonetheless suggest that the water filter hypothesis is only likely to
be operative on a local/regional scale. Experimental and seismic evidence in support of localized melt layers
on top of the transition zone (around 410 km depth) has also accumulated in the form of observations of low
shear wave velocity anomalies at various locations of which many appear to be associated with areas where
subduction has recently or is currently taking place (Freitas et al., 2017). The locations include western, cen-
tral, and eastern United States (Courtier & Revenaugh, 2006; Jasbinsek & Dueker, 2007; Song et al., 2004; Song
& Helmberger, 2006), Siberian platform (Vinnik & Farra, 2007), Arabian Plate (Vinnik et al., 2003), off the coast
of Japan (Bagley et al., 2009; Revenaugh & Sipkinf, 1994), Southwest Pacific (Courtier & Revenaugh, 2007), and
Afar Triple Junction in East Africa (Thompson et al., 2015).

The origin of water in the transition zone is likely due to water carried down with subducting plates along
cold geotherms (e.g., Ohtani et al., 2004; Peslier et al., 2017; Schmidt & Poli, 1998) and due to upward perco-
lation of hydrous melts from the lower mantle (e.g., Hirschmann, 2006), whose storage capacity is believed
to be extremely low (e.g., Bolfan-Casanova et al., 2002, 2003). The extent to which this actually results in a
water-enriched region in the transition zone is unclear. The water contents inferred here for the transition
zone show large variability and are relatively modest (∼0.1 wt %) beneath geomagnetic observatories located
in Europe, Africa, and Northern Australia but high (∼0.5–1 wt %) underneath stations in North America, Asia,
and Southern Australia. These water contents are consistent with what has been experimentally determined
(∼0.2 wt %) by Freitas et al. (2017). Since there is no evidence from geodynamic models that the “410 km” dis-
continuity acts as a barrier to mantle flow (e.g Christensen, 2001), material that is advected into the bottom
of the upper mantle with passive upwellings may provide an explanation for how subducted water is being
continuously drained from the transition zone and reenters the upper mantle and becomes remixed there.
The lateral variations in water content that we observe beneath the various regions may therefore be due to
subduction of water and possibly upwelling of hydrous melts that produces local water-rich regions in the
transition zone.

Finally, it should be mentioned that the thermal structure and water contents derived in this work are sub-
ject to several assumptions. First, in the present thermodynamic model we preclude consideration of redox
effects that might be expected to be important if native or ferric iron is present in Earth’s mantle. Second,
H2O, TiO2, Cr2O3, and partial melt are not considered in the phase equilibria calculations. Third, although
the pyrolitic model of Ringwood (1975) has become widely accepted as being representative of Earth’s
average upper mantle composition, compositional perturbations from the pyrolitic model should still be
explored (Khan et al., 2009). Finally, an inherent problem with the use of electrical conductivity for constraining

MUNCH ET AL. 16



Journal of Geophysical Research: Solid Earth 10.1002/2017JB014691

transition zone water content and thermal structure is the trade-off between the parameters. Here a slight
negative correlation between T0 and Cw is observed. Future studies will consider joint inversion of different
geophysical observables in order to reduce this trade-off and help distinguishing thermal from compositional
contributions (Afonso et al., 2013; Khan et al., 2009; Utada et al., 2009; Verhoeven et al., 2009, among others).

7. Concluding Remarks and Outlook

In this study, we estimated and inverted local C-responses (in the period range 3–85 days) at 34 midlati-
tude geomagnetic observatories to map lateral variations in the mantle electrical conductivity in the depth
range 400–1,400 km. Novelties of this study include (a) usage of a new, high-quality data set including hith-
erto unused data from geomagnetic observatories installed on islands over the last 10 years; (b) rigorous and
accurate modeling of the ocean induction effect; and (c) inversion of the data using a stochastic optimization
technique. The ocean induction effect was rigorously accounted for by including a laterally varying surface
conductance map in the computation of synthetic C-responses. Our inverse problem formulation was based
on a mixed scheme that combines stochastic optimization (CMAES) with model space exploration (McMC)
methods to estimate uncertainties of the retrieved models.

Uncertainty analysis demonstrates that the C-responses estimated in this work best constrain the con-
ductivity structure in the depth range 400–1,400 km. However, our results are also sensitive to the bulk
conductivity of the uppermost mantle. The obtained conductivity models indicate strong lateral variability
for depths <1,100 km. The inverted conductivity structure was subsequently interpreted in terms of vari-
ations in thermal structure and water content in the transition zone. For this purpose, we compared the
inverted conductivity models with laboratory-based conductivity profiles that were obtained by combining
laboratory-measured electrical conductivity of mantle minerals with mantle mineralogy estimated using a
self-consistent thermodynamic formulation. Transition zone temperature variations across the globe span
∼350∘C. The transition zone underneath stations located in Europe and Africa is characterized by water
contents around ∼0.05–0.1 wt %, while higher water contents (∼0.5–1 wt %) are observed beneath geo-
magnetic observatories situated in North America, Asia, and Southern Australia. Finally, we compared the
obtained water contents with the water storage capacities measured by Litasov et al. (2011) to inquire about
the possible presence of melt. The comparison suggests the presence of melt underneath four geomagnetic
observatories in North America and Northeast Asia.

Some limitations of this work should be noted. First, high-latitude geomagnetic observatories were excluded
from the analysis because of the influence of the auroral current system. Second, we described the field vari-
ations under consideration via the first zonal harmonic in geomagnetic coordinates. As a consequence, the
potential complexity of the ring current system is not fully taken into account. Future work should focus on
(a) including observatories at higher latitudes and (b) increasing the complexity with which the source mech-
anism is described. Isolating high-latitude data from the influence of the auroral current system could be
partially addressed by the application of principal component analysis (Shore et al., 2016). A step toward han-
dling more complex source models has been proposed by Püthe, Kuvshinov, and Olsen (2015). The authors
introduced transfer functions that relate the local vertical magnetic field to the spherical harmonic coefficients
describing the external part of the magnetic potential. However, this methodology implies that source and
conductivity structure should be jointly determined. Deriving a suitable inversion scheme for this purpose
is a challenge that will be considered in the future. Finally, resolution of lithospheric and uppermost mantle
conductivity can be improved by jointly inverting multisource data. For instance, Grayver et al. (2017) showed
that 1-D global conductivity models retrieved from joint inversion of tidal and magnetospheric signals better
constrain the global conductivity structure of the upper mantle and transition zone.
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