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Abstract We present a new methodology for inverting P-to-S receiver function (RF) waveforms directly
for mantle temperature and composition. This is achieved by interfacing the geophysical inversion with
self-consistent mineral phase equilibria calculations from which rock mineralogy and its elastic properties
are predicted as a function of pressure, temperature, and bulk composition. This approach anchors
temperatures, composition, seismic properties, and discontinuities that are in mineral physics data, while
permitting the simultaneous use of geophysical inverse methods to optimize models of seismic properties
to match RF waveforms. Resultant estimates of transition zone (TZ) topography and volumetric seismic
velocities are independent of tomographic models usually required for correcting for upper mantle
structure. We considered two end-member compositional models: the equilibrated equilibrium assemblage
(EA) and the disequilibrated mechanical mixture (MM) models. Thermal variations were found to influence
arrival times of computed RF waveforms, whereas compositional variations affected amplitudes of waves
converted at the TZ discontinuities. The robustness of the inversion strategy was tested by performing
a set of synthetic inversions in which crustal structure was assumed both fixed and variable. These tests
indicate that unaccounted-for crustal structure strongly affects the retrieval of mantle properties, calling
for a two-step strategy presented herein to simultaneously recover both crustal and mantle parameters. As
a proof of concept, the methodology is applied to data from two stations located in the Siberian and East
European continental platforms.

1. Introduction

P-to-S converted waves are teleseismic P waves that convert a portion of their energy into S waves when
encountering a discontinuity in material properties. Such converted waves are recorded as part of the P wave
coda and contain a significant amount of information on the seismic structure beneath the receiver. However,
they are strongly influenced by the seismic source signature and the structure encountered along their propa-
gation path through the mantle. These influences can be eliminated by deconvolving the vertical component
v(t) from the radial component r(t) (Phinney, 1964). The result is a time series called the receiver function (RF)
(Langston, 1979) where time is a proxy for depth and positive (or negative) amplitudes roughly correspond
to an increase (or decrease) in shear-wave velocities.

RF waveforms are mostly sensitivity to the shape of velocity gradients and contain little information on abso-
lute velocities (Rondenay, 2009). Constraints on absolute velocities are typically gained by adding a priori
information from a global/regional seismic model (e.g., Ammon et ., 1990) or by combining RF waveforms
with other geophysical observables such as surface wave group and phase velocities (e.g., Calò et al., 2016;
Moorkamp et al., 2010; Shen et al., 2013). More commonly, RF waveforms are used to identify discontinuities
in seismic velocities such as the Moho (e.g., Calò et al., 2016; Kind & Vinnik, 1988; Langston & Hammer, 2001;
Lodge & Helffrich, 2009; Lombardi et al., 2009), the lithosphere-asthenosphere boundary (Heit et al., 2007;
Kind et al., 2012; Kumar et al., 2012; Sodoudi et al., 2006), and the 410- and 660-km discontinuities (Cottaar
& Deuss, 2016; Lawrence & Shearer, 2006a; Tauzin et al., 2008; Vinnik et al., 2009). The latter discontinuities
are the most seismically visible features of the mantle transition zone (TZ). The 410-km discontinuity reflects
the exothermic olivine→wadsleyite phase transition, and the 660-km discontinuity is mainly produced by the
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Figure 1. Schematic representation of teleseismic P-to-S waves scattered in
the mantle transition zone and recorded at a seismic station (black triangle).
Solid and dashed lines correspond to P and S ray path segments,
respectively. Figure modified from Schmandt (2012).

endothermic ringwoodite→bridgmanite + ferropericlase transition
(Ringwood, 1975). As these phase transitions are sensitive to variations
in mantle thermo-chemical state, changes in temperature or composi-
tion affect location and sharpness of the discontinuities and TZ velocity
gradients (e.g., Bina & Helffrich, 1994; Khan et al., 2009; Shearer, 2000).

As shown in Figure 1, P410s and P660s correspond P-to-S waves converted
at the 410- and 660-km discontinuities, respectively. These converted
waves can be used to map variations in the sharpness and depth range
of velocity gradients in the mantle TZ (e.g., Helffrich, 2000; Lawrence &
Shearer, 2006b; Schmandt, 2012). In this context, previous studies have
mapped both regional (e.g., Cao & Levander, 2010; Chen & Ai, 2009; Farra
& Vinnik, 2000; Owens et al., 2000) and global (e.g., Chevrot et al., 1999;
Lawrence & Shearer, 2006a; Tauzin et al., 2008) variations in TZ thickness
and velocity. Interpretation of the inferred variations in terms of mantle
temperatures are typically reported as deviations from an arbitrarily cho-
sen reference geotherm (e.g., Cottaar & Deuss, 2016; Deuss et al., 2006;
Deuss et al., 2013; Tauzin & Ricard, 2014) and are often based on knowl-
edge of the Clapeyron slope for pure (Mg,Fe)2SiO4-phases but neglect the
contribution from other phases (e.g., pyroxene and garnet; Owens et al.,
2000; Tauzin et al., 2013).

Here we describe a strategy to determine composition, thermal state, min-
eralogy, and seismic properties of Earth’s mantle, directly from the inversion of P-to-S converted waves in
the form of RF waveforms. The inversion scheme makes use of self-consistent mineral phase equilibria cal-
culations from which rock mineralogy, and ultimately its elastic properties, can be predicted as a function of
pressure, temperature, and bulk composition from thermodynamic data. The advantage of this approach is
that it inserts plausible geophysical/petrological knowledge of seismic discontinuities, while permitting the
simultaneous use of geophysical inverse methods to optimize profiles of physical properties (e.g., bulk and
shear modulus and density) to match geophysical data (e.g., Afonso et al., 2013; Cammarano et al., 2005; Cob-
den et al., 2008; Drilleau et al., 2013; Khan et al., 2006; Khan et al., 2009; Stixrude & Lithgow-Bertelloni, 2005a;
Tirone et al., 2009). As an illustration hereof, Khan et al. (2013) used surface-wave phase-velocity dispersion
data to directly image upper mantle Mg/Fe and Mg/Si variations and topography on the 410-km discontinu-
ity beneath the Australian continent. This study showed that (1) compositional effects could not be excluded
even at long wavelengths and (2) the thermochemically induced phase transformations strongly contribute
to lateral variations in structure and topography across the 410-km discontinuity (see also Zunino et al., 2016).
In contrast to estimation of TZ topography and thickness derived from RF migration (e.g., Cottaar & Deuss,
2016; Tauzin et al., 2013), the methodology proposed here does not require the use of a tomographic model to
correct for crustal and upper mantle effects. While a previous study (e.g., Ritsema, Cupillard, et al., 2009) only
attempted to map effects related to temperature variations in the upper mantle from comparison of theoret-
ical and observed differential travel times between P410s and P and between P660s and P410s, we perform a
systematic study that considers variations in the entire RF waveform with respect to all relevant parameters.

In summary, in the present study we wish to extend the methodology employed by Khan et al. (2013) to
invert RF waveforms directly for mantle thermo-chemical parameters with the ultimate goal of improving
constraints on TZ structure. Synthetic RF waveforms are computed from the thermodynamically predicted
velocity profiles as described in sections 3 and 4. The inverse problem is solved by combining a Markov chain
Monte Carlo (McMC) method with a stochastic optimization technique (section 5). We first performed a series
of synthetic tests (sections 6) in order to examine the effectiveness and robustness of the proposed approach.
Finally, as a proof of concept, we apply the proposed strategy to retrieve crustal and mantle structure beneath
two permanent stations located in two distinct stable continental regions.

2. Model Parameterization
2.1. Computation of Mantle Mineral Phase Equilibria
Mineralogical models of the Earth typically view the mantle as either homogeneous and pyrolitic
(Bass, 1995; Francis, 1987; Ringwood, 1975) or chemically stratified with homogeneous and equilibrated
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Table 1
CFMASNa Basalt XB and Harzburgite XH End-Member Model
Compositions (in wt%)a

Component XB XH

CaO 13.05 0.50

FeO 7.68 7.83

MgO 10.49 46.36

Al2O3 16.08 0.65

SiO2 50.39 43.64

Na2O 1.87 0.01

aTaken From Khan et al. (2009).

compositions in each layer (e.g., Mattern et al., 2005). To first order, such models are
capable of explaining the observed composition of mid-ocean ridge basalts (Chen
et al., 1991; Frey et al., 1978; McKenzie & Bickle, 1988) and seismic velocities of the
upper mantle and TZ (Irifune, 1993; Ita & Stixrude, 1992; Weidner, 1985). However,
experimental measurements of mantle mineral chemical diffusivity (e.g., Hofmann
& Hart, 1978) suggest that equilibration may not be accomplished over the age of
the Earth for the amount of stretching and folding predicted in mantle convection
simulations (e.g., Brandenburg & van Keken, 2007; Davies, 2006; Nakagawa & Buffett,
2005; Xie & Tackley, 2004). Moreover, trace element chemistry of basalts (e.g., Hof-
mann & White, 1982; Sobolev et al., 2007) and analysis of scattered seismic waves (e.g.,
Bentham & Rost, 2014; Hedlin et al., 1997; Helffrich, 2006; Tauzin et al., 2017) also point
to the mantle as consisting of a mechanical mixture.

Xu et al. (2008) explored the effect of major element disequilibrium on seismological
properties of the mantle. The authors considered two types of mantle composi-

tional models: mechanical mixture and equilibrium assemblage. The former represents the scenario in which
pyrolitic mantle has undergone complete differentiation to basaltic and harzburgitic rocks. The bulk proper-
ties of this model are computed as the Voigt-Reuss-Hill average (Watt et al., 1976) of the properties of the
minerals in the basaltic and harzburgitic end-members. In contrast, bulk properties of the equilibrium model
are computed based on the mineralogy of the averaged bulk composition. Xu et al. (2008) demonstrated that
even with identical bulk compositions, an equilibrium assemblage and a mechanical mixture result in differ-
ent mineral modes and, as a consequence, different bulk S, P wave velocities (Vs and Vp, respectively), and
densities (𝜌). The authors also reported that mechanically mixed models are characterized by faster S wave
velocities as well as sharper velocity gradients.

In view of this and to test these models quantitatively against data, here we consider both the equilibrium
assemblage (EA) and mechanical mixture (MM) model. The mineralogy for the EA model is defined as

𝜙[f XB + (1 − f)XH], (1)

and the phase assemblage for the MM model is given by

f 𝜙[XB] + (1 − f)𝜙[XH], (2)

where 𝜙 corresponds to the phase proportions given the bulk compositions of basalt XB, harzburgite XH,
and the basalt fraction f. For the purpose of this work, we follow Xu et al. (2008) and consider the man-
tle to be compositionally homogeneous. The choice of basalt and harzburgite as end-members of mantle
composition relies on crust formation processes at mid-ocean ridges. To first order, mid-ocean ridges repre-
sent the major source of chemical differentiation of the Earth’s mantle. At ridges, partial melting generates
a basaltic crust leaving behind its depleted complement, harzburgite (McKenzie & Bickle, 1988). The result-
ing physically and chemically stratified oceanic lithosphere is then cycled back into the mantle at subduction
zones, becomes entrained in the mantle flow and remixes (e.g., Tackley et al., 2005). In this work, basalt
and harzburgite compositions are described using the CFMASNa model chemical system comprising the
oxides CaO-MgO-FeO-Al2O3-SiO2-Na2O (Table 1); which account for ∼98% of the mass of Earth’s mantle (e.g.,
Irifune, 1994).

Mantle thermal structure is described by an adiabatic geotherm underneath a conductive lithosphere. The
lithospheric temperature is estimated as a linear gradient defined by the temperature (T0) at the surface and
the temperature (Tlit) at the bottom of the lithosphere (zlit); where zlit is defined as the depth at which the
conductive lithospheric geotherm intersects the mantle adiabat defined by the entropy of the lithology at the
temperature Tlit and pressure Plit. The pressure profile is obtained by integrating the load from the surface.

We combine the free-energy minimization strategy described by Connolly (2009) with the self-consistent
thermodynamic formulation of Stixrude and Lithgow-Bertelloni (2005b) and the parameters given by
Stixrude and Lithgow-Bertelloni (2011) to estimate rock mineralogy, seismic velocities, and density as a
function of pressure, temperature, and bulk composition. The free-energy minimization can be carried out
in two ways: by dynamic or by static implementation. Dynamic implementation means minimizing the
Gibbs free-energy of the system at a particular value of pressure, temperature, and composition during the
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inversion process (e.g., Afonso et al., 2013; Chust et al., 2017; Duesterhoeft & Capitani, 2013; Duesterhoeft
et al., 2014; Khan et al., 2006). Alternatively in the static implementation, physical properties are calculated
for a certain range of pressure-temperature conditions and stored in tables prior to the solution of the
inverse problem (e.g., Zunino et al., 2011). Zunino et al. (2011) developed the Python/Fortran package
PHEMGP (https://github.com/inverseproblem/Phemgp) that allows fast recovery of bulk rock properties
by assembling three-dimensional (pressure-temperature-composition) tables from two-dimensional
(pressure-temperature) precomputed tables for single compositions.

Static implementation is very suitable for computing properties in a mechanically mixed mantle because only
tables for basalt and harzburgite are needed to calculate properties as a continuous function of mantle com-
position. A resolution of 0.1 in f is necessary to reproduce velocities in the equilibrium model with the accuracy
required for most geophysical applications (Zunino et al., 2011). In the present study, we employ a static imple-
mentation (PHEMGP) for computing properties in MM models and a dynamic implementation based on the
software Perple_X (http://perplex.ethz.ch/) for calculation of mantle properties in EA models.

The present thermodynamic model of Stixrude & Lithgow-Bertelloni, (2005b, 2011) has limitations. First, the
equilibrium assumption is dubious at low temperatures because equilibrium might not be achieved (e.g.,
Wood & Holloway, 1984). Consequently, mineralogy for temperature below 800 ∘C is computed at 800 ∘C. The
resultant mineralogy is then used to calculate physical properties at the temperature of interest. Second, devi-
ations from adiabatic temperature profiles due to radioactive heating and thermal boundary layers induced by
phase transitions are neglected (Stixrude & Lithgow-Bertelloni, 2011). The thermodynamic model presented
here precludes consideration of redox effects (e.g., Cline et al., 2018) as well as minor phases and components
such as H2O and melt due to lack of thermodynamic data. Density and elastic moduli are estimated to be
accurate to within ∼0.5% and ∼1–2%, respectively (Connolly & Khan, 2016).

Although it is difficult to quantify the error produced by neglecting H2O, experimental evidence suggests that
the presence of H2O would tend to thicken the TZ by moving the olivine-wadsleyite transition up (e.g., Frost
& Dolejš, 2007) while deepening the dissociation of ringwoodite (Ghosh et al., 2013). Furthermore, the pres-
ence of H2O is expected to reduce seismic velocities due to the weakened chemical bonding by hydrogen
(Karato, 2010). However, experimental studies suggest that the influence of water on high-frequency elas-
tic wave velocities is minor (<0.1%) for water content less than ∼0.1wt% at relevant mantle conditions (e.g.,
Chang et al., 2015; Mao et al., 2008; Schulze et al., 2018; Thio et al., 2015). In addition to changes in phase equi-
libria, the solidus decreases with increasing water content (e.g., Hirschmann, 2010; Litasov, 2011). Therefore,
a hydrated TZ could also result in dehydration-induced partial melting on top of the 410-km and underneath
the 660-km discontinuity (e.g., Bercovici & Karato, 2003; Schmandt et al., 2014). These effects could potentially
be significant in regions around subduction zones.

2.2. Crustal Structure
In the present study, crustal structure is not modeled in terms of the thermo-chemical parameteriza-
tion because the thermodynamic database considered here comprises only mantle minerals (Stixrude &
Lithgow-Bertelloni, 2011). Instead, crustal structure beneath each station is parameterized in terms of five
layers with variable S wave velocity Vi

s and thickness di. Crustal velocities are assumed to increase as a func-
tion of depth (V1

s < V2
s < V3

s < V4
s < V5

s < VMoho
s ) with S wave velocity below the Moho VMoho

s determined
by the mantle compositional and thermal structure (see section 2.1). As discussed by Roy and Romanowicz
(2017), the choice of crustal Vp∕Vs ratio does not significantly affect the recovery of crustal velocity models.
Therefore, crustal P wave velocities and densities are computed using Vp∕Vs and 𝜌∕Vs ratios taken from PREM
(Dziewonski & Anderson, 1981).

3. Data Processing

The data consist of three-component seismograms recorded at two broad-band permanent stations (see
Figure 2a) between 1976 and 2016. To ensure a good signal-to-noise ratio, we selected teleseismic events
occurring at epicentral distances (Δ) between 40∘ and 95∘ with magnitudes larger than 5.5.

The records are first band-pass filtered using a Butterworth filter in the period range 1–100 s. Afterwards, the
incident and scattered wavefields are separated by rotation of the three orthogonal components of the seis-
mogram (N-S, E-W, and vertical) into radial (R), transverse (T), and vertical (Z) components. After rotation, the
ratio between the maximum amplitude of the signal (measured on the vertical component in the time window
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Figure 2. (a) Map showing geographical location of the two seismic stations considered in this study: Yakutsk (YAK) and Kongsberg (KONO). (b) Distribution of
slownesses of the P wave recorded at KONO (left) and YAK (right). (c) Receiver function (RF) waveforms observed at KONO (left) and YAK (right) as a function of
epicentral distance before move-out correction, resulting mean stacks (red), and uncertainties 𝛿RFobs(t) estimated using bootstrap resampling (black, almost
indistinct from the mean).

tp−5s < t < tp+25s, where tp is the theoretical P wave arrival) and the averaged root-mean-square of the ver-
tical component is computed. All seismograms for which this ratio is lower than 5 are discarded. The selected
traces are then trimmed to the time window (tp − 50 s, tp + 150 s) and iterative time-domain deconvolution
(Ligorria & Ammon, 1999) is applied to deconvolve the Z and R components. Time-domain deconvolution
is performed by progressively constructing the Earth’s impulse response through iterative cross-correlation
between the observed radial component and source wavelet (vertical component), and extraction of the high-
est correlated signal at each iteration. This approach has the advantage of providing long-period stability and
requiring causality in the recovered RF waveforms (Ligorria & Ammon, 1999; Rondenay, 2009).

As the amplitudes of P410s and P660s are considerably smaller compared to the P wave amplitude, the
signal-to-noise ratio must be increased to guarantee the detectability of the converted waves (Rondenay,
2009). This can be achieved by stacking a large number of RF waveforms. Prior to stacking, RF waveforms
are low-pass filtered to remove frequencies higher than 0.2 Hz. Frequencies higher than 0.2 Hz are removed
because the amplitude of TZ conversions on stacked waveforms significantly decreases at higher frequencies
due to environmental noise, signal processing effects, and the effect of 3-D heterogeneities on travel-times.
The stacking procedure averages hundreds of RF waveforms from different events recorded at a station and
thus characterized by different epicentral distances, ray parameters (slownesses) of the P wave, and therefore
P wave incidence angles. As the path of P and S waves between the interface of conversion and the surface
have different lengths depending on the angle of incidence, a curvature (move-out) is observed in the differ-
ential travel time between the conversion and the P wave. In order to coherently stack the converted waves,
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a correction for this curvature (move-out correction) should be applied prior to stacking. The move-out cor-
rection is here computed for the IASP91 (Kennett & Engdahl, 1991) velocity model at a reference slowness of
6.5 s/deg, which corresponds to a reference epicentral distance of∼ 65∘. Finally, errors on stacked amplitudes
𝛿RFobs(t) (2 standard deviations) are estimated using a bootstrap resampling approach (Efron & Tibshirani,
1991). In order to test the influence of the velocity model used for the move-out correction on the final stacks,
we computed corrections for IASP91 and a best-fitting velocity model (to be described in the following). Dif-
ferences in the resulting waveforms (see Figure S1 in supporting information) were found to be negligible in
comparison to 𝛿RFobs(t).

Figure 2c depicts observed RF waveforms as a function of epicentral distance before move-out correction, and
the corresponding final move-out corrected stack for the two stations located in Figure 2a. Both conversions
of interest at the 410- and 660-km discontinuities, P410s and P660s, appear on individual RF waveforms at
roughly 40 and 70 s after the P wave. The strong conversion at the Moho discontinuity (Pms) and the multiple
reverberations within the crust are at the origin of the strong amplitudes in the early part of the RF waveform.

4. Computation of Synthetic RFs
4.1. Method
In the following, synthetic waveforms (frequency range: 0.01–0.3 Hz) for 25 slownesses (see section 4.2)
are computed using the reflectivity method (Fuchs & Müller, 1971; Muller, 1985) and subsequently filtered,
deconvolved, and stacked using identical methods to those applied to the observed seismograms (section 3).
Applying identical methods to both observed and synthetic seismograms is essential for modeling RF wave-
forms as accurately as possible. The reflectivity method is based on numerical integration of the plane wave
reflection coefficient (reflectivity) of a layered medium in the frequency-slowness domain and subsequent
multiplication with the source spectrum to obtain synthetic seismograms. The method allows for modeling
the full propagation from source to receiver and not only includes transmitted and converted waves but also
accounts for the interference of different phases (e.g., PP and PcP), surface multiples, and deviations of the
wavefront from a plane wave at a moderate computational cost (∼45 s per velocity model). As the source
influence is removed by the deconvolution, the source characteristics do not have a significant effect on the
synthetic RF waveforms. Hence, we model the source as a punctual explosion located at 25 km depth with
time signature given by a Heaviside step function. The choice of source depth does not introduce artifacts
in the stacked RF waveforms because the depth phases (pP and pS) have a completely different move-out
curvature relative to direct conversions across the deconvolved time-slowness section and thus stack incoher-
ently. The resulting RF waveforms have been benchmarked against RF waveforms computed using synthetic
seismograms obtained by full waveform modeling methods (Krischer et al., 2017; Van Driel et al., 2015),
see Figure S2.

4.2. Slowness Distribution
As the transmission coefficients and, consequently, amplitudes of P-to-S conversions depend on the angle
of incidence (Aki & Richards, 2002), replication of the observed slowness distribution (SD) is essential for
proper modeling of converted amplitudes. However, each stacked RF is typically composed of hundreds
of single observations characterized by different incidence angles making the computation of synthetic RF
waveforms for the entire range of observed slownesses computationally demanding. Here we propose an
alternative strategy to properly model converted amplitudes with relatively low computational cost. The pro-
posed scheme consists of (1) discretization of the SD into 25 evenly spaced slowness intervals, (2) estimation of
the mean observed slowness pi as well as the number of slownesses Ni in each interval, (3) computation of syn-
thetic RF waveforms for all estimated pi , and (4) move-out correction and stacking of synthetic RF waveforms
weighting each RF according to Ni.

Figure 3 illustrates the importance of correctly accounting for the observed slowness distribution. Figure 3a
shows the observed SD for KONO seismic station (orange), the discretized SD (black) obtained by the scheme
presented above, and a uniform SD (blue). Additionally, Figure 3b depicts the stacked RF waveforms com-
puted for the corresponding SD using the IASP91 velocity model (Kennett & Engdahl, 1991). No considerable
time differences are observed between the computed stacks. However, the estimated P410s (∼ 44 s) and
P660s (∼ 68 s) amplitudes significantly depend on the SD considered. In particular, computed amplitudes are
underestimated when a uniform SD is assumed. That P660s is more affected than P410s can be attributed
to the fact that the range of incidence angle is larger for the 660-km discontinuity making variations in
conversion amplitude larger.
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Figure 3. Influence of slowness distribution (SD) on the stacked receiver function (RF). (a) SD recorded at KONO seismic
station (orange), uniform SD (blue), and an approximation of KONO SD using 25 representative slowness values (black).
(b) stacked RF waveforms obtained for each of the aforementioned SD using the IASP91 velocity model (Kennett &
Engdahl, 1991).

This example illustrates how inaccurate modeling of the observed slowness distribution can result in signif-
icant deviations of the mean slowness and, consequently, amplitudes of conversion. Therefore, the obser-
vational slowness distribution must be accurately replicated when inverting RF amplitudes. In this regard,
the choice of reference slowness and velocity model used for computing the move-out correction is not sig-
nificant while identical reference slownesses and velocity models are used on the observed and modeled
RF waveforms. Alternatively, the dependency of stacked amplitudes on the heterogeneity of the observed
slowness SD could be addressed during data processing. For instance, by partially stacking the observed RF
waveforms into bins of slowness and subsequent stacking of the partial stacks. The resulting stack would be
less dependent on the heterogeneity of the observed SD. However, such a strategy would potentially increase
the weight of noisy data on the final stack. Alternative data processing schemes should be explored, but this
is beyond the scope of this work.

4.3. Attenuation
As discussed by Liu (2003), the observed amplitudes and inferred depth of discontinuities can be significantly
affected by anelastic effects (absorption and dispersion) (e.g., Kanamori & Anderson, 1977). This is illustrated in
Figure 4, which shows synthetic RF waveforms computed assuming different shear attenuation (Qμ) models: a
fully elastic medium (black), PREM reference model (blue), and two viscoelastic models (red and green) based
on the extended Burgers model of Jackson and Faul (2010). Relatively small variations in shear attenuation
model can result in non-negligible amplitude differences (e.g., blue and green models).

To account for anelastic effects, we rely on the extended Burgers viscoelastic model of Jackson and Faul (2010)
and rheological parameters tabulated therein. This model is based on laboratory experiments of torsional
forced-oscillation data on melt-free polycrystalline olivine. The main advantage of this model is that it can be
directly linked with the thermodynamic computations as the latter provide the unrelaxed (infinite-frequency)
shear modulus in addition to pressure and temperature (Khan et al., 2018). More specifically, shear attenuation
as a function of depth for a given thermo-chemical model is derived from the shear modulus, temperature,
and pressure profiles obtained by mineral phase equilibria calculations. In case the resultant shear attenu-
ation values are larger than 600 (PREM crustal values), Qμ is set equal to 600. This model thus allows us to
self-consistently account for the influence of temperature and pressure on the shear attenuation model.

4.4. Influence of Temperature and Composition on RFs
In this section, we analyze the dependency of RF waveforms on thermal and compositional variations. To this
end, we computed seismic properties for a range of basalt fractions and geotherms following the method-
ology described in section 2.1. The obtained properties were subsequently used to estimate synthetic RF
waveforms as described in section 4.1 using the PREM (Dziewonski & Anderson, 1981) shear attenuation
model. Figures 5a–5h summarize S wave velocity profiles and RF waveforms obtained using EA and MM mod-
els, respectively. Variations in phase proportions (modal mineralogy) for each thermo-chemical model are
shown in the supporting information (Figures S3 and S4).
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Figure 4. The effect of attenuation model on computed receiver functions (RF). (a) Shear attenuation models (Qμ)
correspond to: fully elastic medium (black), PREM reference model (blue), and two viscoelastic shear attenuation models
(red and green) based on the rheological model of Jackson and Faul (2010). Note that the fully elastic model is not
shown in panel (a) since Qμ = ∞. (b) Corresponding RF waveforms.

As reported in previous studies (e.g., Bina & Helffrich, 1994; Khan et al., 2009; Xu et al., 2008, among others),
compositional and thermal variations affect the depth at which phase transitions occur as well as the ampli-
tude and sharpness of the corresponding seismic discontinuity. For instance, Figure 5a shows that depth
and amplitude of the 410-km seismic discontinuity decrease with increasing basalt fraction as the mode
of (Mg,Fe)2SiO4-phases decreases (see the supporting information) and ultimately disappears for f > 0.8.
Moreover, depth, amplitude, and sharpness of the 660-km discontinuity decrease with increasing basalt
fraction due to the occurrence of bridgmanite and its decreasing mode at greater depth (see the supporting
information), which simultaneously triggers the appearance of a discontinuity at ∼800 km depth. Note
that for f > 0.5, sharpness and amplitude of this new discontinuity significantly increase relative to those
associated with the 660-km discontinuity. Furthermore, differences in velocity profiles computed using the
EA (Figure 5a) and MM (Figure 5e) models are observed; for instance, MM velocity profiles are characterized
by sharper velocity gradients in comparison to the EA model (for a detailed discussion see Xu et al., 2008).

Figures 5c and 5g depict the influence of thermal structure on Vs for the EA and MM models, respectively.
Thermal variations have a larger effect on bulk velocities relative to compositional variations. Furthermore,
the depth of the 410-km discontinuity significantly increases (from ∼360 to ∼440 km depth) with increasing
temperature while the velocity jump remains almost constant. In contrast, the depth of the 660-km discon-
tinuity decreases with increasing temperature while the sharpness of the discontinuity decreases due to an
enrichment in majoritic garnet at higher temperatures (see the supporting information).

Figures 5b, 5d, 5f, and 5h illustrate how the aforementioned velocity variations affect amplitudes and travel
times of P-to-S conversions occurring at 410- and 660-km seismic discontinuities and Figures 5i and 5j depict
differential traveltime (tP660s − ttextP410s) as a function of basalt fraction and temperature, respectively. The
decrease in velocity jump and depth of the 410-km discontinuity associated with the increase in basalt fraction
results in decreasing P410s amplitudes and earlier arrival times with increasing f (Figure 5b). Furthermore,
the appearance of a second seismic discontinuity at ∼800 km depth with increasing basalt fraction leads to
changes in the P660s waveform from a single shallow peak (f = 0) to a single deep peak (f = 1) with a transition
stage characterized by two distinct peaks.

Distinct 660 RF peaks have been reported in a number of regional and global studies (e.g., Ai et al., 2003;
Andrews & Deuss, 2008; Maguire et al., 2018; Niu & Kawakatsu, 1996; Simmons & Gurrola, 2000; Tauzin et al.,
2018). Additionally, differences between EA and MM models are also reflected in P410s and P660s wave-
forms. On the one hand, RF amplitudes for the MM model (Figure 5b) are slightly larger than the amplitudes
estimated using the EA model (Figure 5f ). Finally, the differential travel time increase with increasing basalt
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Figure 5. Shear-wave velocities (Vs) and receiver functions (RFs) as a function of mantle composition (f) and thermal structure (Tlit) for equilibrium assemblage
(EA) and mechanical mixture (MM) mantle models. Velocity profiles as a function of basalt fraction f in (a) and (e) and the corresponding RF waveforms in (b) and
(f ) were computed assuming a sublithospheric adiabatic geotherm defined by the entropy of the lithology at a temperature Tlit of 1350 °C at the base of a
80-km-thick lithosphere. Vs profiles as a function of temperature in (c) and (g) and the associated RF waveforms shown in (d) and (h) were computed for fully
equilibrated and mechanically mixed homogeneous pyrolitic (f = 0.2034) mantle models, respectively. Modal mineralogy associated with each thermo-chemical
model is shown in the supporting information. Panels (i) and (j) depict differential travel times (tP660s − tP410s) as a function of basalt fraction and thermal
structure, respectively. The differential travel times are tabulated in supporting information (Tables S1 and S2).

fraction for the EA model, whereas it is only weakly sensitive to compositional changes for the MM model
(Figure 5i).

The influence of temperature on RF amplitude and travel time must be analyzed separately. Firstly, a linear
increase in both P410s and P660s travel times is observed with increasing temperature (Figure 5d) due to a
decrease in upper mantle velocities (Figure 5c). This typically results in the trade-off between the depth of an
interface and upper mantle velocity seen in traditional approaches. Secondly, the decrease in TZ thickness as a
function of temperature (Figure 5c) results in decreasing differential travel times with increasing temperature
(Figure 5j). This decrease is linear for the MM model, whereas it is quasi-linear in the case of the EA model.
Thirdly, P410s and P660s amplitudes depend nonlinearly on temperature due to variations in the sharpness
of the seismic discontinuities (Figure 5h). The occurrence of phase changes associated with majoritic garnet
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Table 2
Prior Information on Model Parameters and McMC Step Lengths

Description # Parameter Parameter Range Prior distribution Step size

Crustal nodes 5 di 0–15 km Uniform 4 km

Crustal velocities 1 V1
s 2.75–5 km/s Uniform 0.10 km/s

4 Vi
s Vi−1

s –5 km/s Uniform 0.10 km/s

Lithospheric thickness 1 zlit 60–250 km Uniform 10 km

Temperature at zlit 1 Tlit 800–1700 ∘C Uniform 15∘ C

Basalt fraction 1 f 0–0.7 Uniform 0.05

and ferropericlase (see the supporting information) adds additional complexity to the TZ response. Hence, to
avoid the pitfalls arising from the use of travel times of converted waves only, including the Clapeyron slope
of (Mg,Fe)2SiO4-phases, all phase changes need to be considered to infer mantle temperatures properly. As a
consequence, we use the entire RF waveform to map thermo-chemical variations in Earth’s mantle. This allows
for joint recovery of crust and mantle structure, while doing away with the need for tomographic models to
correct for crust and upper mantle effects.

Finally, bulk velocities are seen to affect the long-period content of RF waveforms. In particular, the
long-period behavior seems relatively stable in the case of changes in basalt fraction (Figures 5a, 5b, 5e, and 5f)
leading to only small variations in bulk S wave velocities within the mantle TZ. In contrast, temperature vari-
ations trigger long-period changes in the RF waveform, especially for the EA model (Figures 5d and 5h). This
behavior can be attributed to changes in the large-scale vertical velocity gradient and suggests that very
long-period waveforms may be suitable for constraining mantle velocity structure.

5. Inverse Problem

To infer TZ thermal and compositional structure, we invert the observed RF waveforms using the
model parameterization and the forward operator described previously (sections 2 and 4). Deterministic
derivative-based methods, such as Gauss-Newton, can be applied, but these methods typically depend
on the choice of initial model and converge to a local minimum. To overcome these limitations and the
non-uniqueness of RF inversion (Ammon et al., 1990; Jacobsen & Svenningsen, 2008), we combine a McMC
(Tarantola, 2005) method with a stochastic optimization technique known as Covariance Matrix Adaptation
Evolution Strategy (CMAES; Hansen & Ostermeier, 2001).

5.1. CMAES
This technique aims to explore the model space globally showing remarkable robustness on ill-conditioned
problems (Hansen et al., 2011). The use of CMAES in geophysics is not common, but has recently been imple-
mented as a global minimization method (Alvers et al., 2013; Diouane, 2014; Grayver et al., 2016; Munch et al.,
2018; Shen et al., 2015) outperforming other optimization techniques such as Genetic Algorithms and Particle
Swarm Optimization (Arsenault et al., 2013; Auger et al., 2009; Elshall et al., 2015).

We employ CMAES for finding the maximum a-posteriori model mMAP by solving the following optimization
problem

mMAP = argmin
m

(
Nw∑
i=1

𝜙i(m)

)
with 𝜙i(m) = 1

Ni

Ni∑
j=1

[
RFobs(tj) − RFmod(m, tj)

𝛿RFobs(tj)

]2

, (3)

where Nw is the number of time windows of interest (see section 6.2) and Ni is the number of samples in each
time window; RFmod indicates modeled RF waveform, whereas RFobs denotes observed RF waveform with
uncertainties 𝛿RFobs (see section 3). Vector m = (Tlit, zlit, f,V1

s ,… ,V5
s ,d1,… ,d5) contains the various model

parameters described previously (sections 2.1 and 2.2). Table 2 summarizes model parameters and model
parameters search ranges used in the inversions.

At every iteration the algorithm samples 𝜆models from the current multivariate normal distribution and eval-
uates the misfit between observed and synthetic data. Then the best 𝜆∕2 candidates are selected and used to
update the distribution mean, step size, and covariance matrix (Grayver & Kuvshinov, 2016). Following Hansen
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and Ostermeier (2001), a reasonable choice for the number of sampled models is given by 𝜆 = 4 + 3 ⌊ln M⌋;
where ⌊⋅⌋ is the floor function and M is the number of unknowns. This equation was used to choose the pop-
ulation size 𝜆 in all inversions. Finally, we considered different initial models and number of iterations Nmax

(25–400), but generally, solutions were found to be equivalent for Nmax > 100.

5.2. McMC
We solve the nonlinear inverse problem within a Bayesian framework using the probabilistic approach of
Tarantola and Valette (1982). In this formulation, the solution to the inverse problem is described in terms of
the posterior probability distribution 𝜎(m) given by (Mosegaard & Tarantola, 1995)

𝜎(m) = k𝜌(m)(m), (4)
where k is a normalization constant, 𝜌(m) is a probability distribution that describes the a priori information
on model parameters (summarized in Table 2), and the likelihood function (m) represents a measure of the
similarity between the observed data and the predictions from model m. Under the assumption that noise
can be modeled using a Gaussian distribution, the likelihood function is given by (Tarantola, 2005)

(m) ∝ exp

(
−1

2

Nw∑
i=1

𝜙i(m)

)
(5)

where Nw is the number of time windows of interest and 𝜙i(m) is the misfit between observed and modeled
data as defined by equation (3).

We employ the Metropolis-Hastings (Hastings, 1970; Metropolis et al., 1953) algorithm to sample the posterior
distribution in the model space using the solution retrieved from the CMAES algorithm mMAP as initial model.
This considerably improves the efficiency of the McMC method by significantly reducing the burn-in period
(Grayver & Kuvshinov, 2016). To further improve the efficiency of the McMC stage, the sampling is performed
using 10 independent chains (with a total length of 10,000 iterations) characterized by identical initial models
but different randomly chosen initial perturbations. This strategy allows for sampling 100,000 models with
moderate computational cost (∼5 days using 10 cores). Finally, the 50,000 best-fitting candidates are used to
build histograms of the marginal probability distribution of each model parameter.

6. Results
6.1. Synthetic Inversion
In order to test the robustness of our inverse scheme, we performed different sets of synthetic inversions. To
this end, a synthetic stack was computed for a homogeneous pyrolitic mantle (f = 0.2034), a temperature Tlit

of 1350°C at the base of a 150-km-thick lithosphere, and crustal structure fixed to IASP91 (Kennett & Engdahl,
1991). The computed stack was then contaminated with 7% Gaussian noise filtered in the frequency band
0.01–0.2 Hz. Finally, the resulting synthetic RF waveform was inverted to retrieve (1) the thermo-chemical
parameters, that is, Tlit, zlit, f assuming a known crustal structure and (2) both thermo-chemical and crustal
parameters.

Figure 6 summarizes the main inversion results for mantle thermo-chemical parameters for the case where
crustal structure is fixed to IASP91 (true solution) and an arbitrary choice of starting model. Figure 6a depicts
root-mean-square error (RMSE) surfaces estimated by grid search exploration of the model space. Green dots
represent the true solution and magenta dots indicate the best-fitting model candidate at each iteration of
the CMAES evolution from starting model (red triangles) to the final model (blue star). Figure 6b shows his-
tograms of marginal probability distributions for each model parameter built from the 50,000 best-fitting
models sampled by the McMC method. As shown in Figure 6c, model parameters retrieved by CMAES algo-
rithm (blue) and McMC sampled models (green) fit the data (black) within uncertainties (dashed lines). Visual
inspection of the RMSE surfaces reveals a positive correlation between zlit and Tlit and the existence of a local
minimum. Despite the nonlinearity of the problem, CMAES succeeds in finding the global minimum. In the
case of basalt fraction f, the CMAES solution is almost coincidental with the true model, whereas final val-
ues of Tlit and zlit are slightly shifted with respect to the true solution. These small differences are attributed
to the presence of noise in the data. Finally, sampled probability distributions provide uncertainties on the
recovered model parameters (𝛿Tlit ∼ 40∘C, 𝛿zlit ∼ 25km , and 𝛿f ∼ 0.05). Furthermore, the histogram for zlit

is broader suggesting a lack of sensitivity to this particular parameter. Sensitivity in the upper mantle can be
increased by incorporating additional information from other geophysical techniques such as surface wave
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Figure 6. Inversion of synthetic receiver functions (RF) for thermo-chemical parameters with fixed crustal structure (IASP91). (a) Root-mean-square error (RMSE)
surfaces obtained by grid search exploration of the model space considering 30 points in each direction. Green dots, red triangles, and blue stars indicate the
positions of true, initial, and final models, respectively. Magenta dots depict best-fitting solutions retrieved from the Covariance Matrix Adaptation Evolution
Strategy (CMAES) at each iteration. (b) Histograms showing thermo-chemical parameters sampled by Markov chain Monte Carlo (McMC) exploration of the
model space around the CMAES final solution. Vertical dashed lines indicate true model parameters. (c) Comparison between synthetic RF waveforms for the
initial (red), CMAES (blue), and true (black) solutions. Green lines depict McMC sampled RF waveforms. Dashed lines indicate data uncertainties.

group and phase velocities (e.g., Bodin et al., 2012; Calò et al., 2016; Khan et al., 2009; Shan et al., 2014) or
S-to-P conversions (e.g., Oreshin et al., 2008; Yuan et al., 2006).

In order to analyze the influence of unaccounted-for crustal structure on the retrieval of mantle
thermo-chemical parameters, we performed a set of synthetic inversions using different crustal models. More
specifically, we increased crustal velocities by 20% (model A) and Moho depth by 10 km (model B) from the
true solution (IASP91). Figure 7a depicts best-fitting basalt fractions f, adiabatic geotherms (left panel), and
the corresponding S wave velocity profiles (right panel) retrieved for each crustal model. Figure 7b shows the
fits between observed (black) and computed RF waveforms. Although P410s and P660s are explained within
uncertainties, significant differences are observed in the time window −5 s < t < 25 s. The amplitude of the
P-arrival as well as time and amplitude of the multiples significantly depend on the assumed crustal structure.
As shown in Figure 7a, differences in the crustal model are seen to significantly affect the retrieval of man-
tle thermo-chemical parameters (ΔTlit ∼50 ∘C, Δzlit ∼50 km, and Δf ∼0.1). This synthetic test illustrates the
importance of accurately accounting for crustal structure when inverting for the TZ structure.

6.2. Accounting for Crustal Structure
In light of the aforementioned results, an accurate characterization of the shallow structure beneath each
station is essential. As a result, we propose an inverse strategy that allows simultaneous recovery of crust
and mantle structure. Our strategy consists of two steps: in step 1, we invert the observed RF waveform in
the time window −5 s < t < 25 s for crustal structure (leaving mantle parameters variable), followed by a
second inversion (step 2) of the entire observed RF waveform in the time windows −5 s < t < 25 s, 36 s <

t < 50 s, and 60 s < t < 80 s to recover both crustal and mantle thermochemical parameters with the model
obtained from step 1 as input. We tested different time windows in which observations are fitted. The final
choice of specific time windows is somewhat arbitrary, but time windows containing considerably small or
no signal can introduce undesirable noise into the misfit function and unnecessarily increase the complexity
of the misfit surface.
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Figure 7. Single-step inversion of synthetic receiver functions (RF) for thermo-chemical parameters fixing crustal structure to three different crustal models (see
detailed model description in section 6.1): IASP91 (red), model A (blue), and model B (green). Panel (a) depicts best-fitting basalt fractions f and thermal structures
(left) and corresponding S wave velocity Vs as a function of depth (right). Panel (b) shows datafit between observed (black) and computed RF waveforms, given
the data uncertainties indicated by gray dashed lines. Yellow rectangles indicate the part of the RF waveform that is fitted in the inversion.

Figure 8 illustrates the performance of the proposed two-step inversion strategy. The method succeeds in
recovering the true thermal structure and basalt fraction, however, intra-crustal discontinuities are not well
resolved. This can be explained by the fact that the proposed methodology mainly focuses on the recovery
of mantle thermo-chemical structure and, thus, only an effective crustal structure that explains correctly the
long-period waveforms (below 0.2 Hz) is retrieved. Higher frequency content (up to 1 Hz) should be included
to increase the resolution in the crust. Future work will focus on incorporating the use of high frequency RF
waveforms into our two-step procedure for better reconstructing crustal structure. Synthetic tests (not shown
here) indicate that the use of the recovered model from step 1 as input model significantly improves the
performance of the algorithm in finding the global minimum.

The synthetic tests presented above were performed using the same model parameterization to solve both
forward and inverse problems. As an independent test, we computed a synthetic stacked RF waveform using
the IASP91 velocity model (Kennett & Engdahl, 1991) and subsequently inverted it for crustal and mantle
parameters. The main results are shown in Supporting Information (Figure S5). Both EA and MM models

Figure 8. Two-step inversion of synthetic receiver functions (RF) for crustal and thermo-chemical parameters. Panel (a) depicts best-fitting basalt fraction f and
thermal structure (left panel) and corresponding S wave velocity Vs (right panel). Panel (b) shows fit between observed (black) and computed RF waveforms with
yellow rectangles indicating time windows fitted in the inversion. Black curves correspond to the true model, red curves denote best-fitting model obtained by
inverting the early part of the RF waveform (step 1 −5 s < t < 25 s), and blue curves indicate best-fitting solution from inversion of the entire RF waveform
(step 2).
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Figure 9. Inversion results for Kongsberg (KONO) station. Panel (a) depicts sampled mantle thermo-chemical parameters for the equilibrium assemblage (EA) and
mechanical mixture (MM) mantle models, respectively. Orange-colored binds indicate model parameters for which EA and MM overlap. Panel (b) shows fit
between observed (black) and synthetic receiver function (RF) waveforms for the MM (red) and EA (green) mantle models. Data uncertainties are indicated by
black dashed lines. Panel (c) depicts sampled S wave velocity (Vs) profiles for the EA and MM models with black indicating most probable and white least
probable.

explain the observed RF waveform with almost identical mantle thermo-chemical parameters. The recovered
seismic profiles above the 410-km discontinuity are in reasonable agreement but show larger jumps at the
410-km discontinuity and lower TZ gradients. Finally, inferred Moho depth and absolute velocity in the first
layer are in agreement with the true solution, although, intracrustal discontinuities are not well resolved.

6.3. Data Examples
As a proof of concept, we apply the proposed methodology to infer mantle composition and thermal structure
beneath two permanent stations (see Figure 2a) located in two distinct stable continental regions: Kongsberg
(KONO) in the East European craton and Yakutsk (YAK) in the Siberian craton. Observed stacks and uncertainty
estimates (Figure 2c) were obtained by applying the data processing scheme detailed in section 3.

Figures 9 and 10 summarize the main results obtained for KONO and YAK, respectively. Panels (a) show sam-
pled marginal probability distributions of mantle thermo-chemical parameters retrieved for the EA and MM
mantle models; panels (b) depict the fit between observed (black) and synthetic RF waveforms for the MM
(red) and EA (green) mantle models; and panels (c) show sampled S wave velocity profiles. Mantle thermal
profiles and the associated shear attenuation models are depicted in supporting information (Figure S6).

All retrieved models succeed at explaining the observed P410s (40 s < t < 50 s) and P660s (65 s < t < 71 s)
waveforms within uncertainties as well as the amplitude of the P arrival (−2 s < t < 2 s) and main crustal
reverberations (5 s < t < 25 s). The models also predict a positive pulse in the RF waveforms (50 s < t < 60 s)
associated with the wadsleyite→ringwoodite transition. Such a feature is not present in the observed RF
waveforms for KONO, while it is partially observed for YAK. This difference can possibly be attributed to mul-
tiples originating from reflections atop sharp mid-lithospheric/cratonic discontinuities (e.g., Calò et al., 2016;
Rychert & Shearer, 2009) which can potentially mask weak P-to-S conversions occurring within the mantle TZ.
Alternatively, the wadsleyite→ringwoodite transition could be the result of the long-period behavior of RF
waveforms, which depends on the large-scale velocity gradient across the mantle TZ (see section 4.4).
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Figure 10. Inversion results for Yakutsk (YAK) station. Panel (a) depicts sampled mantle thermo-chemical parameters for the equilibrium assemblage (EA) and
mechanical mixture (MM) mantle models, respectively. Orange-colored binds indicate model parameters for which EA and MM overlap. Panel (b) shows fit
between observed (black) and synthetic receiver function (RF) waveforms for the MM (red) and EA (green) mantle models. Data uncertainties are indicated by
black dashed lines. Panel (c) depicts sampled S wave velocity (Vs) profiles for the EA and MM models with black indicating most probable and white least
probable.

While the results generally tend to agree between the EA and MM models, subtle differences are palpable.
For instance, marginally more harzburgite-enriched compositions are obtained for KONO (see Figure 9a) for
the MM model relative to the EA model. Thermal parameters inferred for KONO (EA) are characterized by a
broader distribution, whereas a relatively well-defined distribution is recovered for the MM model. Despite
this difference, most probable Tlit and zlit estimates are equivalent for both EA and MM. This contrasts with
what was reported by Ritsema, Xu, et al. (2009) where the EA model was found to result in higher temperature
estimates relative to MM. This discrepancy can be explained by the fact that Ritsema, Xu, et al. (2009) neglect
compositional effects and only considers a pyrolitic mantle composition. To further distinguish between EA
and MM models, additional sources of information should be considered such as temperature estimates from
olivine thermometry (e.g., Ritsema, Xu, et al., 2009).

Thermal parameters Tlit and zlit inferred for YAK and KONO correspond to potential temperature estimates
of 1230 ± 30 ∘C and 1280 ± 35 ∘C, respectively. These estimates are slightly lower than experimentally
determined mantle potential temperature estimates (1330 ± 40 ∘C) by Katsura et al. (2010). This discrep-
ancy can also be attributed to the fact that Katsura et al. (2010) focus on a pyrolitic mantle composition.
Moho depths inferred beneath KONO (∼34 km) and YAK (∼40 km) are in agreement with estimates (∼35
km and ∼42 km, respectively) from the regional crustal models EUNAseis (Artemieva & Thybo, 2013) and
SibCrust (Cherepanova et al., 2013), respectively. These crustal models represent compilations of European
and Siberian regional and local seismic models derived from controlled source and RF studies.

7. Discussion

First off, we performed waveform modeling in a homogeneous and radially stratified isotropically layered
model. Consequently, this approach is unable to account for material anisotropy and diffraction effects related
to three-dimensional mantle structure. In spite of stacking waveforms that sense the equivalent of a circular
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area exceeding 250 km in radius (at 660 km depth) beneath the station (see Figure 2 in Tauzin et al., 2008),
it is possible that these assumptions introduce errors into the recovered model. To obtain a better sense of
the errors, wave propagation simulations based on more advanced waveform modeling schemes should be
considered (e.g., Monteiller et al., 2012; Nissen-Meyer et al., 2014).

Second, the noise model considered in the synthetic examples (section 6.1) does not account for noise due
to incoherent stacking. As a quantitative description of this effect is challenging, we discuss the errors that
could potentially be introduced hereby. Incoherent stacking could broaden and decrease the amplitude of
converted waves. As a result, broader and smaller velocity gradients would be required to explain these wave-
forms. Given the influence of temperature and composition on RF waveforms (section 4.4), the recovered
thermo-chemical parameters would be biased in favour of more basalt-enriched compositions and higher
temperature estimates.

Third, the thermo-chemical parameterization (uniform adiabatic mantle) is technically limited to geotectonic
settings representative of “normal” mantle conditions and will need to be modified to encompass subduction
zones and other more complex geological settings. While reliance on basalt and harzburgite as end-members
to model mantle composition presents a practical first-order approximation from a geophysical point of view,
more complicated models can be built by incorporating other plausible end-members such as lherzolitic and
dunitic compositions. Although CFMASNa-equivalent basaltic and harzburgitic end-member compositions
are nonunique (cf. Brown & Mussett, 1993; Henderson & Henderson, 2009; Khan et al., 2009; Xu et al., 2008),
its influence on geodynamic models has been shown to be significant only for FeO and Al2O3 contents (Nak-
agawa et al., 2010). Finally, the viscoelastic model of Jackson and Faul (2010) employed here only considers
the viscoelastic behavior of olivine. Future studies, based on expanded experimental data, should consider
the importance of other minerals in more detail.

In spite of these caveats, it is our contention that the methodology outlined here is capable of making sig-
nificant quantitative predictions and presents several advantages with respect to classical inversion of RF
waveforms: it anchors temperature, composition, and seismic discontinuities that are in laboratory-based data
and models, while simultaneously permitting the use of geophysical inverse methods to optimize profiles of
physical properties (e.g., bulk and shear modulus and density) to match RF waveforms. As a result, depth and
sharpness of 410- and 660-km discontinuities are determined self-consistently from composition, tempera-
ture, and pressure. In contrast to studies relying on RF migration, estimates of TZ topography and volumetric
velocities derived here are independent of global/regional tomographic models and, finally, assumptions
about Clayperon slopes for interpretation of TZ thermal structure are obviated.

8. Concluding Remarks and Outlook

We presented a methodology for stochastic inversion of P-to-S converted waves to directly infer variations
in mantle temperature and composition. To this end, we employ self-consistent mineral phase equilibria
calculations to estimate mantle elastic properties as a function of pressure, temperature, and composition.
Two end-member compositional models for mixing harzburgite and basalt were considered: the completely
equilibrated Equilibrium Assemblage (EA) model and the disequilibrated Mechanical Mixture (MM) model.

We first analyzed the effect of thermal and compositional variations on RFs. The former was found to influence
arrival times, whereas the latter affected the amplitude of waves converted at the discontinuities that bound
the TZ. Based on this, we proceeded to consider interpretation of RF waveforms as an inverse problem with
the goal of determining mantle thermo-chemical and crustal structure by interfacing the geophysical analysis
with phase equilibria computations. During the inversion, the slowness distribution recorded at each station
must be accurately replicated and identical methods should be applied to both observed and synthetic seis-
mograms. The robustness of our inverse strategy was tested by performing a set of synthetic inversions in
which crustal structure was assumed both fixed and variable. This analysis indicated that unaccounted-for
crustal structure strongly affects the retrieval of mantle structure. Therefore, an accurate characterization of
crustal structure beneath a given station is needed. To properly account for the influence of the crust, we first
inverted for crustal structure, then used this model as input, and finally inverted for both crust and mantle
structure.

As a proof of concept, we applied the proposed methodology to data from two permanent stations located
in two distinct stable continental regions: Yakutsk on the Siberian craton and Kongsberg on the East
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European craton. The retrieved models based on both EA and MM succeeded in explaining the main features
of the observed RF waveforms within uncertainties with only minor differences in the retrieved candidates: the
MM model leads to marginally more harzburgite-enriched compositions beneath Kongsberg. To further dis-
tinguish between the two models, petrological constraints (e.g., olivine thermometry) should be incorporated
(e.g., Afonso et al., 2016; Ritsema, Xu, et al., 2009).

Future improvements will include (1) inversion of RF waveforms in multiple frequency bands (e.g., Schmandt,
2012) and jointly with surface wave data (e.g., Calò et al., 2016), (2) consideration of a depth-dependent com-
position, and (3) exploring deviations from an adiabatic profile. This will be needed to improve resolution in
the upper mantle and the TZ, to address convection simulations that suggest the existence of local composi-
tional gradients across the mantle (e.g., Ballmer et al., 2015), and to enable us to consider regions or features
that deviate from “normal” mantle conditions (e.g., stagnant slabs).
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