
1. Introduction
The study of the tidal response of Mars provides insights into the interior properties of the planet, and especially 
its deep structure (e.g., Lognonné & Mosser, 1993; Van Hoolst et al., 2003). The value of the second degree tidal 
Love number measured from orbit implies the presence of a liquid core (Yoder et al., 2003) and can be used to 
constrain the density and size of the core, including the mantle rigidity, when combined with other measure-
ments such as moment of inertia or bulk density. The secular acceleration s of Phobos has been measured to high 
precision from both ground-based observations and observations of Phobos' shadow on Mars by Mars Express 
and direct observations of Phobos by the Mars Reconnaissance Orbiter (e.g., Bills et al., 2005; Jacobson, 2010). 
Because of its proximity to Mars, the orbital evolution of Phobos is of particular interest as it is driven by the 
tidal dissipation occurring inside the Martian mantle, which, among other parameters, depends on its temperature 
structure and rheology (Bagheri et al., 2019, 2021; Khan et al., 2018; Nimmo & Faul, 2013). This dissipation is 
often quantified by the tidal quality factor Q, where a large Q value means small dissipation.

Because of the proximity of Phobos to Mars, higher degree tides are required to fully describe the tidal response 
of Mars (Bills et al., 2005). While only the degree-2 Love number has been measured, the measurement of the 
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current observations. We match a number of current interior structure models to the recent measurements of 
the tidal parameters and derive estimations of the possible core radius, temperature profile, and attenuation 
in the Martian interior. Our estimation of the core radius is 1,820 ± 80 km, consistent with recent seismic 
measurements. The attenuation profiles in the Martian interior at the main tidal period of Phobos are similar 
between the considered models, giving a range for the degree-2 bulk tidal attenuation Q2 = 93.0 ± 8.40 but 
diverge at seismic frequencies. At seismic frequencies, model shear attenuation Qμ ranges between 100 and 
4,000 in the lower mantle, so that a measurement of seismic shear attenuation could be used as an effective 
means for distinguishing between the models considered. Other constraints such as elastic lithosphere thickness 
and Chandler Wobble period favor a thicker elastic lithosphere and models with a frequency dependence α of 
the shear attenuation between 0.15 and 0.4. Improved constraints on the Martian interior should be possible 
with additional seismic and radio observations from the InSight mission.
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causing its surface to be deformed. The size of this tidal bulge depends on the elastic properties of Mars, while 
viscosity and anelasticity inside the planet cause the tidal bulge to be misaligned with the position of Phobos 
on its orbit. This misalignment between Phobos and the tidal bulge of Mars creates an acceleration in longitude 
for the moon, which can be measured and used with the size of the tidal bulge to constraint the interior of Mars. 
Both the size and orientation of the tidal bulge can be used as tidal constraints to probe the size of the core of 
Mars, the temperature profile in its interior, and how strong the viscous dissipation is in its mantle. Our current 
estimates give a wide range of possible attenuation in the Martian mantle, favoring larger core sizes with larger 
elastic thickness of the lithosphere, the rigid outermost layer of a solid planet. Knowledge of the Martian 
interior could be further improved with future seismic and radio measurements from the InSight mission.
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secular acceleration of Phobos has reached a level of accuracy that is sensitive to higher degrees. With increasing 
tidal degree, the depth probed by tides becomes shallower, allowing for additional constraints to be put on the 
shallower parts of the Martian interior. Hence, both the secular acceleration and the tidal Love number can be 
used to improve our knowledge of the Martian interior. One important complication is that periods of the solar 
tide (24.6 hr) and each of the tides raised by Phobos for degrees 2–5 (between 2.2 and 11.1 hr) are different; as a 
result, any attempt to model these effects must specify how tidal dissipation varies with frequency.

In this work, we will examine how several different models of the Martian interior (to be described in the follow-
ing section) make use of the Love number and the secular acceleration of Phobos to constrain characteristics of 
Mars such as mantle temperature and core size. By matching existing models with the most recent values of the 
Love number and the secular acceleration and comparing the different models, we can gain insight into which 
features are model-independent, and thus likely to be more robust. We proceed by first expanding the Martian 
tidal potential up to degree 5 and applying it to derive an expression for the secular acceleration of Phobos. By 
fitting or matching the measured Love number and secular acceleration for each model, we get a range of possi-
ble core sizes and temperature profiles for the Martian interior and compute their respective shear attenuation 
Qμ profiles at the tidal frequencies of Phobos. We then discuss several means of distinguishing between the 
constructed models by relying on elastic lithospheric thickness, seismic measurements, and Chandler wobble 
period.

2. Previous Works
Various interior models of Mars have been proposed based on numerous observations of the red planet, including 
compositional estimates from Martian meteorites and in situ observations (e.g., G. J. Taylor, 2013; Wänke & 
Dreibus, 1994), gravity and topography measurements (e.g., Genova et al., 2016; Wieczorek & Zuber, 2004), 
thermal evolution (Plesa et al., 2018; Samuel et al., 2019), and geophysical modeling from laboratory exper-
iments (e.g., Zharkov & Gudkova,  1997; Zharkov et  al.,  2017). The inferred tidal response of Mars, mainly 
through the second degree Love number of Mars at the solar tide 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 , has also been used to derive the density 

and rigidity structure of Mars (e.g., Khan & Connolly, 2008; Nimmo & Faul, 2013; Rivoldini et al., 2011; Yoder 
et al., 2003; Zharkov & Gudkova, 2005). However, many of these studies did not focus on the tidal dissipation 
factor Q which provides pertinent information on the thermal structure of the Martian mantle and that can be 
constrained by measuring of the secular acceleration of Phobos (e.g., Bagheri et al., 2019; Khan et al., 2018; 
Nimmo & Faul, 2013).

To explain the observed bulk dissipation Q value, several different attenuation models have been proposed. 
Castillo-Rogez and Banerdt  (2012) derived a mantle temperature around 1700 K using an Andrade rheology 
based on dry olivine. Nimmo and Faul (2013) used an approach with a modified Burgers model based on the 
laboratory experiments of Jackson and Faul  (2010). With an assumed grain size of 1 cm and fitting the bulk 
density, moment of inertia, and tidal Love number of Mars, they estimated a present-day mantle potential temper-
ature of 1625 ± 75 K but did not consider a detailed multimineral structure model of the Martian mantle as their 
focus was not on rigidity but attenuation.

Using a set of interior structure models based on the Wänke-Dreibus mineralogy (Wänke & Dreibus, 1994), 
Zharkov et al. (2017) constructed a shear attenuation profile for the silicate shell of Mars assuming the Earth's 
profile for Mars based on the similarity between Earth's geotherm and the commonly employed areotherms for 
Mars (e.g., Plesa et al., 2016; Verhoeven et al., 2005; Zharkov et al., 2009). This approach used a simplified 
piecewise attenuation profile with a relatively low frequency exponent that describes the frequency dependence 
of Q to match the secular acceleration of Phobos in contrast to more recent works (e.g., Bagheri et al., 2019; Khan 
et al., 2018).

Samuel et al. (2019) modeled the thermochemical history of a Mars-like planet coupled to the orbital evolution 
of Phobos to constrain the rheology of the Martian mantle and the initial state of the planet. They combined the 
constraint that Phobos remained below the synchronous orbit during at least the last four Gyr of its evolution 
with the requirement that Mars' core produced a magnetic field early in Mars' history, together with constraints 
on the cooling of the Martian mantle during the Amazonian-Hesperian periods (Baratoux et al., 2011) and with 
the requirement that Mars' mantle remained in convective state until the present-day, as suggested by the recent 
traces of volcanism at the surface of Mars (Hartmann et al., 1999; Neukum et al., 2004). However, while their 
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expression for the secular acceleration accounted for tides up to degree 4, they fixed the Love number ratios k2/
k3 and k2/k4 rather than explicitly calculating higher degree terms, and Phobos remaining below the synchronous 
orbit for so long was shown to be unlikely in Bagheri et al. (2021).

Khan et al. (2018) and Bagheri et al. (2019) used laboratory-based viscoelastic dissipation models to construct 
geophysically constrained models of Mars. They used a parametric approach where mantle seismic properties 
are computed using Gibbs free energy minimization (Connolly, 2009) to compute stable mantle mineralogy and 
seismic properties as a function of pressure, temperature, and period based on the thermodynamic formulations 
and parameters of Stixrude and Lithgow-Bertelloni (2005) and Stixrude and Lithgow-Bertelloni (2011). Based 
on this parameterization, they inverted the degree-2 Love number, mean mass, global dissipation, and moment of 
inertia of Mars but not higher degrees terms that enters the expression for the secular acceleration.

Based on the detection of the Chandler Wobble of Mars, Konopliv et al. (2020) constructed interior structure 
models of Mars using a frequency dependent dissipation model to explain the observed period of the Chandler 
wobble, diurnal solar tide, and secular acceleration of Phobos (up to degree 5). Although, Konopliv et al. (2020) 
show that the dissipation model used can well describe all those observations, it is less suited to infer knowledge 
about the local temperature structure of the mantle since it is based on a depth-independent description. Like 
previous works, they did not highlight how the specifics of the orbital parameters of Phobos (low eccentricity, 
inclination, and equatorial location for the tidal bulge of Mars) impact the derivation of the full secular acceler-
ation expression.

3. Tidal Constraints of Mars
3.1. Observations

As Phobos orbits Mars, the moon causes a gravitational pull on the planet which responds to this external forcing 
by deforming. The amount of deformation of Mars depends on its internal structure and on the tidal potential of 
Phobos, which can be expressed as a sum of Legendre polynomials (Kaula, 1964):

𝑉𝑉 (𝑟𝑟) =
𝐺𝐺𝐺𝐺

∗

𝑑𝑑

∞
∑

𝓁𝓁=2

(

𝑟𝑟

𝑑𝑑

)𝓁𝓁

𝑃𝑃𝓁𝓁 (cos𝑆𝑆) , (1)

where G is the gravitational constant, m* is the mass of Phobos, d is the distance between Phobos and the center 
of Mars, and Pℓ is the Legendre polynomial of degree ℓ. r is the distance between the center of Mars and the point 
where the tidal potential V is calculated, and S is the solid angle between the axis linking the center of Mars to the 
aforementioned point and the sub-Phobos point on the Martian surface. Because of the 𝐴𝐴

𝑟𝑟

𝑑𝑑
 term, the tidal potential 

is usually restricted to degree 2. For the solar tides on Mars, the value of 𝐴𝐴
𝑟𝑟

𝑑𝑑
 is around 10 −5; however, for the Phobos 

tides on Mars this term is roughly equal to 0.36 (Jacobson & Lainey, 2014; Seidelmann et al., 2007). Given the 
large contribution of the 𝐴𝐴

𝑟𝑟

𝑑𝑑
 term, higher degree tides need to be considered (Bills et al., 2005).

The tidal forcing from Phobos distorts the shape of Mars and creates displacements, changes in gravitational 
potential, and variations of surface gravity. These are quantified by the Love numbers h, k, and l (Love, 1911; 
Shida, 1912), which depend on the internal structure and rheology of the planet and are frequency-dependent 
(e.g., Efroimsky & Lainey, 2007). Changes in the gravitational potential can be measured by tracking the position 
of an orbiter. The most recent determination of the Love number 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 of Mars for the degree-2 solar tide based 

on Mars Odyssey, Mars Reconnaissance Orbiter, and Mars Global Surveyor observations is given in Table 1. 
Because Love numbers are frequency-dependent, it is important to keep track of their related tidal degree, order, 
and forcing origin. In the remainder of this paper, Love numbers related to the solar tides are annotated with an 
s exponent, while Phobos-tide related Love numbers are designated by degree ℓ, order m , and eccentricity and 
inclination indexes p and q (see Section 3.2) such as k2200 for instance.

If Mars was purely elastic, the tidal bulge of Mars would be perfectly aligned with the position of Phobos along its 
orbit. However, anelastic dissipation occurring in the Martian interior causes the tidal bulge to be misaligned by 
an angle called the lunitidal interval (Redmond & Fish, 1964) or geometric lag angle (MacDonald, 1964). This is 
expressed as a phase lag ϵ to be added to the solid angle S in Equation 1 (Kaula, 1964). This angle depends on the 
internal structure of Mars and more particularly on internal dissipation, characterized by a frequency-dependent 
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quality factor Q (e.g., Efroimsky & Lainey, 2007; Efroimsky & Makarov, 2013; Murray & Dermott, 2000; P. A. 
Taylor & Margot, 2010). Since Phobos' orbit lies below the areostationary orbit, the misaligned tidal bulge of 
Mars lags behind the position of Phobos and creates a braking effect on it, causing a deceleration in longitude 
on the Martian satellite. Observations of Phobos using ground-based telescopes, imaging from spacecraft, and 
spacecraft tracking during flybys can be combined to determine the ephemerides of Phobos to great accuracy 
from which its secular acceleration s can be obtained. The value of Phobos' secular acceleration value used here 
is given in Table 1.

To be able to accurately fit our models to the secular acceleration of Phobos, we need to expand the relation 
between the secular acceleration, the geometric lag angle, and the tidal potential of Mars and its quality factor to 
an accuracy of the order of magnitude of the error bars given in Table 1. The greatest harmonic degree ℓ of the 
tides considered will be used to match the aforementioned error bars.

3.2. Derivation of the Secular Acceleration of Phobos

Typically, tidal response models only consider degree-2 tides and assume that higher degrees can be neglected. 
Given the measured secular acceleration of Phobos and the Love number 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 , this assumption allows derivation 

of the tidal bulk Q2 of Mars (Jacobson, 2010; Jacobson & Lainey, 2014). However, in the case of Phobos and 
Mars, the contribution of higher degree terms cannot be neglected due to the proximity of the two planetary 
bodies. Here, we develop the expression for the secular acceleration of Phobos by taking higher degree terms 
into account.

The expression for the tidal potential of Mars given by Equation 1 can be expanded in terms of colatitude and 
longitude of the Martian point (θ, ϕ) where the potential is calculated and in terms of Keplerian elements of 
Phobos' orbit with inclination i*, eccentricity e*, argument of the periapsis ω*, argument of the ascending node 
Ω*, and mean anomaly M* (Kaula, 1964):

� = ��∗

�∗
∞
∑

�=2

( �
�∗

)� �
∑

m=0

(� − m)!
(� +m)!

(2 − �0m)��m (cos �)
∑

�,�
��m� (�∗)���� (�∗)

⎛

⎜

⎜

⎜

⎝

cosm�

⎧

⎪

⎨

⎪

⎩

cos

sin

⎫

⎪

⎬

⎪

⎭

�−m even

�−m odd

((� − 2�)�∗ + (� − 2� + �)�∗ +m(Ω∗)) +

sinm�

⎧

⎪

⎨

⎪

⎩

sin

− cos

⎫

⎪

⎬

⎪

⎭

�−m even

�−m odd

((� − 2�)�∗ + (� − 2� + �)�∗ +m(Ω∗))

⎞

⎟

⎟

⎟

⎠

.

 (2)

Tidal parameter Value Article source

Main solar tide Love number 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
0.174 ± 0.008 Konopliv et al. (2020)

Phobos secular acceleration s 1.273 ± 0.003 mdeg.yr −2 Jacobson and Lainey (2014)

Mass of Phobos m* 1.0596 ± 0.0019 10 16 kg Pätzold et al. (2014)

Phobos semi-major axis a* 9,376 km Seidelmann et al. (2007)

Phobos eccentricity e* 0.0151 Seidelmann et al. (2007)

Phobos inclination i* 0.046° Seidelmann et al. (2007)

Phobos mean motion n 1128.8 deg.day −1 Jacobson and Lainey (2014)

Mass of Mars m 6.4172 10 23 kg Konopliv et al. (2011)

Mean radius of Mars r 3389.5 km Seidelmann et al. (2007)

Period of Chandler Wobble PCW 206.9 ± 0.5 days Konopliv et al. (2020)

Note. This work focuses on the second degree tidal Love number 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 value for the main solar tide on Mars and Phobos secular 

acceleration s. Parameters uncertainties are given when they are not negligible for our fits and calculations.

Table 1 
Reference Table for the Physical and Orbital Parameters of the Mars-Phobos System
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Here, a* is the semimajor axis of Phobos, ℓ and m are the degree and order of the tide, respectively, and p and 
q are indexes related to the polynomial functions of the inclination and eccentricity of Phobos ��m� (�∗) and 
Gℓpq(e*), respectively. Because of the small inclination (i* = 0.046°) and eccentricity (e* = 0.0151) of Phobos 
(Jacobson & Lainey, 2014), we will for now consider only the order 0 terms in inclination and eccentricity in 
Equation 2 for the polynomials ��m� and Gℓpq. The neglected terms (orders 1 in e* and i*) impact the secular 
acceleration for around 0.1% of the order 0 terms related to eccentricity and around 0.001% of the order 0 terms 
related to inclination (Boué & Efroimsky, 2019).

For degree 2, only the terms �m��  = 2200 and �m��  = 2010 are nonzero at order 0 in terms of either inclination 
or eccentricity:

��m�=220 = 3

����=220 = 1

��m�=201 = −1
2

����=210 = 1

 (3)

resulting in the following degree-2 tidal potential terms:

𝑉𝑉2200 =
3

4

𝐺𝐺𝐺𝐺
∗
𝑟𝑟
2

𝑎𝑎∗3

(

1 − cos2𝜃𝜃
) [

cos (2𝜔𝜔∗ + 2𝑀𝑀∗ + 2Ω∗ − 2𝜙𝜙)
]

, (4)

𝑉𝑉2010 = −
𝐺𝐺𝐺𝐺

∗
𝑟𝑟
2

𝑎𝑎∗3

1

4

(

3cos2𝜃𝜃 − 1
)

. (5)

Adding V2200 and V2010 yields the resultant degree-2 tidal potential:

�2(�) = �2200 + �2010

= ��∗

�∗
( �
�∗

)2 1
4
(

3
(

1 − cos2�
)

cos (2�∗ + 2�∗ + 2Ω∗ − 2�) − 3cos2� + 1
)

= ��∗

�∗
( �
�∗

)2 1
4
(

3sin2�
[

2 cos2 (�∗ +�∗ + Ω∗ − �) − 1
]

− 3cos2� + 1
)

= ��∗

�∗
( �
�∗

)2 1
4
(

3sin2�2 cos2 (�∗ +�∗ + Ω∗ − �) − 3 + 1
)

= ��∗

�∗
( �
�∗

)2 1
4
(

3
[

2 sin2 � cos2 (�∗ +�∗ + Ω∗ − �) − 1
]

+ 1
)

.

 
(6)

Note here that in this general case, the second to last constant term −1 has contributions from both V2200 and V2010, 
making the first term of the right side of the last line of Equation 6 a combination of these two potentials. We can 
rewrite Equation 6 in terms of the solid angle S between a point at the surface of Mars with colatitude and longi-
tude (θ, ϕ) and the sub-Phobos point with longitude (ω* + M* + Ω*). Making use of the fact that cos S = sin θ 
cos(ϕ − ω* − M* − Ω*), we have the following equation:

�2(�) =
��∗

�∗
( �
�∗

)2 1
4
(

3
(

2cos2(�) − 1
)

+ 1
)

= ��∗

�∗
( �
�∗

)2 1
4
(3 cos(2�) + 1)

= ��∗

�∗
( �
�∗

)2
�2 (cos�) ,

 (7)

which is the same as Equation 1 for degree ℓ = 2 but with d = a*, as expected since we neglected eccentricity. As 
mentioned before, the identification of the cos(2S) term with V2200 and the constant term +1 of Equation 7 with 
V2010 is only strictly true when the tidal potential is studied close to the equator, that is, for θ = 90°. This is due to 
the fact that V2010 depends on the colatitude where the tidal potential is calculated as illustrated in Equation 5 and 
therefore can contribute to the cos(2S) term, especially in polar regions. Since we are neglecting the inclination 
of Phobos with Mars and are studying the tidal bulge of Mars raised by its largest moon, this identification is 
nevertheless possible.
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The spatial distribution of the tidal forcing due to the different degrees can hence be expressed using the Legendre 
polynomial Pℓ(cos(S)) of the corresponding degree ℓ, with S being the angular distance between the considered 
Martian location and the sub-Phobos point:

�3(cos(�)) =
1
8
(5 cos(3�) + 3 cos(�)) ,

�4(cos(�)) =
1
64

(35 cos(4�) + 20 cos(2�) + 9) ,

�5(cos(�)) =
1

128
(63 cos(5�) + 35 cos(3�) + 30 cos(�)) ,

 (8)

corresponding to tides �m��  = 3300, 3110, 4400, 4210, 4020, 5500, 5310, and 5120 in accordance with the foot-
note 9 in P. A. Taylor and Margot (2010). The order m of the tide-raising potential corresponds to the argument of 
the cosine in the Legendre polynomial of degree ℓ and indicates the frequency dependence of the separate terms 
for a given degree. For order m = 1 , the corresponding period is Phobos' synodic period T1 = 11 hr 06 min, while 
higher orders periods are given by �m = �1∕m .

The link between secular acceleration and the geometric lag angle or LTI (lunitidal interval) when neglecting 
eccentricity is (Bills et al., 2005; Redmond & Fish, 1964) as follows:

1
�
��
��

= −3���
∑

�=2
��m��F�(�)

( �
�∗

)2�+1
, (9)

where n is the mean motion, ��m�� are the Love numbers related to the potentials ��m�� seen before, γ is the 
geometric lag angle, and 𝐴𝐴 𝓁𝓁 and αm are defined as follows:

�(�) =
���(�)
��

,

�� = �∗

�
,

 (10)

where Pℓ is the Legendre polynomial of degree ℓ and m* and m are the mass of Phobos and Mars, respectively. 
By convention, the secular acceleration s is defined as (Bills et  al.,  2005; Jacobson & Lainey,  2014; Lainey 
et al., 2007) follows:

𝑠𝑠 =
1

2

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. (11)

Using the identification of the different degrees and orders of the tides in the tidal potential mentioned in Equa-
tions 7 and 8, we can calculate the different values of 𝐴𝐴 𝓁𝓁 for ℓ = 2 to ℓ = 5:

2(�) = −3
2
sin (2�2200) ,

3(�) = −3
8
(sin (�3110) + 5 sin (3�3300)) ,

4(�) = − 5
16

(2 sin (2�4210) + 7 sin (4�4400)) ,

5(�) = − 15
128

(2 sin (�5120) + 7 sin (3�5310) + 21 sin (5�5500)) ,

 (12)

Note that no m = 0 terms appear as expected because they denote an axisymmetric gravity field component, 
which generates deformation not affected by any phase lag. We can relate the geometric lag angle γ of Redmond 
and Fish (1964) (also called geometric lag angle ��m�� in MacDonald [1964]) to the tidal quality factor ��m�� 
([P. A. Taylor & Margot, 2010]):

�−1
�m�� = m��m�� = m��m�� (13)

which is related to the phase lag ��m�� defined by Kaula (1964) for large Q values:

|��m��| =
1

��m��
 (14)
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The expression for the secular acceleration up to degree 5 thus becomes

1
�
��
��

= 3���
[

�2200
3
2
sin (2�2200)

( �
�∗

)5

+ 3
8
(�3110 sin (�3110) + 5�3300 sin (3�3300))

( �
�∗

)7

+ 5
16

(2�4210 sin (2�4210) + 7�4400 sin (4�4400))
( �
�∗

)9

+ 15
128

(2�5120 sin (�5120) + 7�5310 sin (3�5310) + 21�5500 sin (5�5500))
( �
�∗

)11
]

,

 (15)

or if changing the geometric lag angle into Q factors:

1
�
��
��

= 3���
[

3
2
�2200

�2200

( �
�∗

)5

+ 3
8

(

�3110

�3110
+ 5 �3300

�3300

)

( �
�∗

)7

+ 5
16

(

2 �4210

�4210
+ 7 �4400

�4400

)

( �
�∗

)9

+ 15
128

(

2 �5120

�5120
+ 7 �5310

�5310
+ 21 �5500

�5500

)

( �
�∗

)11
]

.

 
(16)

Compared to degree ℓ = 2, the terms for degree ℓ = 5 are smaller by a factor of 𝐴𝐴 (𝑟𝑟∕𝑎𝑎∗)
6 , which is approximately 

0.2%. This is the order of magnitude of the error bar on the secular acceleration thus the inclusion of this term. 
While this is significantly higher than the inclination terms mentioned in Equation 2, this is also the order of 
magnitude of the larger eccentricity terms in Equation 2 and therefore they must be taken into account for ℓ = 2. 
Details of the calculations for these terms are given in Appendix A. The secular acceleration thus becomes

1
�
��
��

= 3���
[(

3
2
�2200

�2200
+ �∗2

(

9
8
�2011

�2011
+ 3

16
�220−1

�220−1
+ 441

16
�2201

�2201
− 15

2
�2200

�2200

))

( �
�∗

)5

+ 3
8

(

�3110

�3110
+ 5 �3300

�3300

)

( �
�∗

)7

+ 5
16

(

2 �4210

�4210
+ 7 �4400

�4400

)

( �
�∗

)9

+ 15
128

(

2 �5120

�5120
+ 7 �5310

�5310
+ 21 �5500

�5500

)

( �
�∗

)11
]

.

 
(17)

The periods at which the four eccentricity terms ��m�� and ��m�� are calculated are no longer related to the 
synodic period T1 of Phobos, making Equation 13 invalid. Instead, these terms must be calculated at the following 
periods (Efroimsky & Williams, 2009; Kaula, 1964):

��m�� =
2�

|(� − 2� + �)� −m�̇| (18)

where 𝐴𝐴 �̇�𝜙 is the spin rate of Mars. This general expression of the period ��m�� is also valid for the potentials with 
neglected eccentricity, but as these potentials follow � − 2� + � = m , their respective periods relate directly to 
the synodic period (i.e., 𝐴𝐴 𝐴𝐴 − �̇�𝜙 ) of Phobos rather than the orbital period (with n) and the sidereal period of Mars 
(with 𝐴𝐴 �̇�𝜙 ) separately.

A common assumption in some previous works is to neglect the frequency dependence of the Love number 
k by using only the kℓℓ00 values. However, as indicated in Equation 8, a single degree has contributions from 
multiple frequencies based on the order of the tides as displayed by the different coefficients in the cosine func-
tions. Therefore, considering only a single frequency for computing the Love numbers can create an estimated 
difference in the final secular acceleration between 0.1% and 0.2% depending on the Martian model, which is of 
the order of magnitude of the error bars on the secular acceleration of Phobos. For comparison, the main solar 
tide 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 is between 0.5% and 1% larger than the main Phobos tide k2200 (also referred as k22 or k2 in other works 

[e.g., Yoder et  al.,  2003]). Our derivation of the secular acceleration is consistent with the works of Renaud 
et al. (2021), Boué and Efroimsky (2019), and Bagheri et al. (2021); however, Renaud et al. (2021) and Boué 
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and Efroimsky (2019) truncated their calculations at degree 2, while Bagheri 
et al. (2021) truncated at degree 3.

Since Q is also frequency dependent, there are also several frequencies 
that should be considered for a given degree (Bagheri et  al.,  2019,  2021; 
Efroimsky & Lainey, 2007). Just like the various ��m�� , the degree 5 Q5500 for 
instance should be calculated at T5 = 2 hr 13 min, but Q5310 should be calcu-
lated at T3 = 3 hr 42 min and Q5120 should be calculated at T1 = 11 hr 06 min, 
that is, Phobos' synodic period. Taking only the main order for each tidal 
degree can decrease the resulting secular acceleration by several percent, 
exceeding the current error bars. In our calculations of the Love numbers 
and the secular acceleration, all ��m�� and ��m�� are frequency-dependent 
according to the degrees ℓ and orders m indicated in the previous equations 
as the first indices �m�� of the tides considered.

The contribution of each degree to the secular acceleration of Phobos is 
mainly governed by the ratio 𝐴𝐴

𝑟𝑟

𝑎𝑎∗
 of the Martian radius to the semimajor axis 

of Phobos. In terms of the orders of magnitude, this means that the contribu-
tion of degree 4 is about 0.34% of the total secular acceleration for ℓ from 2 
to 4. Since the most recent relative error bars on the secular acceleration are 
closer to 0.24% (Table 1), degree 5 also needs to be taken into account. Its 
terms have a relative contribution of 0.02% to the final secular acceleration 
of Phobos.

The four degree-2 terms dependent on the eccentricity e* are also frequency 
dependent and must be calculated at their respective period given by Equa-

tion 18. As such, the first term �m��  = 2011 must be calculated at T2011 = 7 hr 39 min, which is the orbital period 
of Phobos, while T220−1 = 20 hr 14 min, T2201 = 3 hr 13 min, and T2200 = T2 = 5 hr 33 min as seen before. Taking 
these terms in consideration increase the secular acceleration between 0.27% and 0.3% depending on the rheolog-
ical model used and frequency dependence of the terms, justifying their inclusion. However, we note that taking 
into account the frequency dependence of the Q and k of these terms with the different �m�� generate a change 
in value of the secular acceleration less than 0.04% compared to a constant phase lag model, much lower than the 
error bar on s. Thus, calculating them at T2 = 5 hr 33 min instead of their respective Tlmpq does not significantly 
impact the calculations of s.

4. Mars Interior Modeling
In this work, we compare several Martian interior models and study the sensitivity of the predicted tidal Love 
number k2200 and the secular acceleration of Phobos s to variations in the assumed fluid core size and the shear 
attenuation profile of Qμ. This wide comparison aims at providing a reliable range of possible core sizes and 
attenuation profiles. All models considered for this study with their respective assumptions are briefly described 
below, and a few distinct key parameters are summarized in Table 2.

The FN models are based on Nimmo and Faul (2013) for two different mantle potential temperatures (cold and 
hot). The AB models are based on Khan et al. (2018) and Bagheri et al. (2019) using either the Andrade rheo-
logical model or the Burgers rheological model. The HS models are based on Samuel et al.  (2019, 2021) for 
three different selected models of varying mantle and core properties (labeled hereafter HS1, HS2, and HS3). 
The TG model is based on Zharkov et al. (2017). The AR models are based on Rivoldini et al. (2011), using 
the bulk composition models of Mars from either G. J. Taylor (2013) (labeled hereafter TAY) or Yoshizaki and 
McDonough (2020) (labeled hereafter YO), with the temperature profiles from Plesa et al. (2018) (cases 85 and 
111). Further details for each set of models are given in Text S1–S5 of Supporting Information S1.

The tidal Love numbers ��m�� and tidal dissipation factor ��m�� (also referred as global Qℓ or tidal bulk Q in other 
works (e.g., Bagheri et al., 2019; Jacobson & Lainey, 2014; Nimmo & Faul, 2013)) are calculated from integrat-
ing the equations of motion when calculating the deformation of a self-gravitating planet to an external potential 
such as tides (e.g., Alterman et al., 1959; Takeuchi & Saito, 1972). These are integral parameters, where ��m�� is 
obtained from the real part of the gravity perturbation at the surface of the planet and ��m�� from its imaginary 

Model name

Core 
radius 
(km)

Elastic 
lithospheric 

thickness 
(km)

CMB 
temperature 

(K)

Frequency 
dependence 

α

Love 
number 

k2200

FN cold 1,790 125 1,694 0.3 0.167

FN hot 1,820 275 1,759 0.3 0.168

AB Andrade 1,800 270 1,880 0.32 0.168

AB Burgers 1,800 260 1,860 0.33 0.167

HS1 1,850 290 2,060 0.2 0.171

HS2 1,830 260 2,020 0.15 0.169

HS3 1,855 320 2,020 0.33 0.170

TG 1,828 244 2,075 0.1 0.168

AR - TA 85 1,770 262 2,095 0.3 0.170

AR - TA 111 1,770 333 2,175 0.3 0.170

AR - YO 85 1,780 262 2,095 0.3 0.168

AR - YO 111 1,760 333 2,175 0.3 0.169

Note. k2200 is the Love number for the main Phobos tide at 5.55 hr.

Table 2 
Nominal Parameters for Models Used in This Work

 21699100, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007291 by E
th Z

ürich E
th-B

ibliothek, W
iley O

nline L
ibrary on [27/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Planets

POU ET AL.

10.1029/2022JE007291

9 of 23

part. The viscoelastic properties of each model depend on the rheological model used, based on the Earth's atten-
uation profile (e.g., Zharkov & Gudkova, 2005) and laboratory experiments (e.g., Jackson & Faul, 2010). The 
rheological model chosen governs the dependence of the rigidity modulus μ to depth with pressure, temperature, 
and forcing period. At any given depth, the local intrinsic attenuation Qμ due to internal friction is modeled by 
assuming the rigidity modulus as a complex quantity where its imaginary part depends on Qμ. More details on the 
general rheological models can be seen in Jackson and Faul (2010) and how they are applied to Mars in Bagheri 
et al. (2019).

5. Results
5.1.  Values

Matching the tidal Love number 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 gives us a strong constraint on the deep interior of Mars, particularly its 

core size. Here, we chose to construct models that are consistent with the most recent value of 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 from Table 1 

(see Figure 1a). While the AB models were obtained by inverting for models that fit the data, that is, the same 
𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 value for both Andrade and Burgers rheologies, for the other models, we adjusted several parameters such as 

the core radius or temperature profile to recreate Martian models that yield 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 consistent with the observations. 

For the core radius, this is done by varying the core radius while adjusting the core density so that the models 
are self-consistent in terms of the bulk density, moment of inertia, and selected bulk composition and keeping 
only models with a derived 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 consistent with its measured value. The choice of bulk composition between TA 

models and YO models only slightly impacts the range of possible core radii by about 10 km, as does the differ-
ence between the hot and cold thermal end-member profiles. The choice of rheology has a significant impact 
on the attenuation profiles with the greatest variations coming from changes in the mantle grain size (Bagheri 

Figure 1. Top left (a): Nominal solar tide Love number 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 values for all models, fitting the latest value from Table 1 of 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
  = 0.174 ± 0.008 (green line indicating 

the mean value and dotted lines representing the uncertainty). Previous values of 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 from Konopliv et al. (2011) (black lines) and Konopliv et al. (2016) (blue lines) 

are shown for comparison, as existing models were based on them. Top right (b): Nominal s values for all models, fitting the latest measurements in Table 1 of 
s = 1.273 ± 0.003 mdeg.yr −2. Bottom (c): Range of core sizes giving 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 and s values matching the observations given in Table 1. Vertical lines are Mars core radius 

estimation from Stähler et al. (2021) (red, 1,830 ± 40 km) and Khan et al. (2022) (blue, 1,830 ± 30 km).
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et al., 2019). The range of possible core sizes from fitting 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 is summarized in 

Table 3. For most models, the core radius ranges are consistent with seismic 
observations of the core made by Stähler et al. (2021) and the updated study 
of Khan et al. (2022).

5.2. Phobos Secular Acceleration s Values

The secular acceleration of Phobos is sensitive to the core size of Mars 
through the Love numbers ��m�� (Equation  9). However, since the tidal 
dissipation factor ��m�� also intervenes in Equation  16, the secular accel-
eration is also sensitive to mantle temperature and grain size (in the case 
of grain-size sensitive rheologies). The nominal secular acceleration values 
used for this study (Jacobson & Lainey, 2014) are shown in Figure 1b, as are 
the values for the models that also match the 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 constraint (Figure 1a). Similar 

to Section 5.1, core sizes around 1,820 km are compatible with the seismic 
observations of Stähler et al. (2021) and Khan et al. (2022).

The corresponding temperature profiles for each model are shown in 
Figure 2. For a given model, the very small error bars on the secular accelera-
tion s strongly constrain the mantle potential temperature and its temperature 
profile by a few degrees if they are the only parameters changed. However, 
the differences between different model temperature profiles are much 
larger than this due to the assumptions used when building or inverting the 
models such as assumed lithospheric thickness or grain size. This highlights 

the trade-off between temperature structure and other model assumptions such as mineralogy or grain size for 
instance.

5.3. Dissipation Profiles

The shear attenuation Qμ profiles at the main Phobos tide (5.55 hr) are shown in Figure 3, with an average value 
in the mantle a bit lower than 100 in accordance with previous works (e.g., Jacobson & Lainey, 2014; Khan 
et al., 2018; Nimmo & Faul, 2013; Smrekar et al., 2018). All models show similar Qμ profiles due to the require-
ment to fit the secular acceleration; this was expected as the error bars are very small and degree 2 contributes 
more than 90% to the total acceleration. All models predict attenuation to be at its strongest just below the 
lithospheric lid and to decrease in the rest of the mantle toward the core-mantle boundary, although it remains 

Martian interior model Core radius range from 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 (km)

FN cold 1,825 ± 50

FN hot 1,840 ± 45

AB Andrade 1,840 ± 44

AB Burgers 1,820 ± 45

HS 1,850 ± 30

TG 1,860 ± 40

AR - TA 85 1,810 ± 48

AR - TA 111 1,800 ± 48

AR - YO 85 1,810 ± 50

AR - YO 111 1,790 ± 50

This study's summary 1,820 ± 80

Stähler et al. (2021) estimation 1,830 ± 40

Khan et al. (2022) estimation 1,830 ± 30

Table 3 
Possible Core Sizes for All Martian Models Satisfying the Latest 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 

Measurements in Table 1, Displayed on Figure 1c, With the Core Size 
Estimates Based on Seismic Observations by Stähler et al. (2021) and Khan 
et al. (2022)

Figure 2. Temperature profiles in the Martian mantle obtained from fitting the latest measurements of the secular 
acceleration of Phobos in Table 1 of s = 1.273 ± 0.003 mdeg.yr −2.
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relatively significant throughout the mantle. Different bulk compositions (AR YO and AR TAY) have a negligible 
effect on the attenuation profiles as observed earlier (Khan et al., 2018). As a result, the profiles related to these 
models have been grouped by temperature profile.

6. Constraining the Attenuation of the Martian Mantle
Using Equation 16, it is possible to estimate the tidal bulk Q of Mars. As there is currently no measurement of 
higher degree Love numbers for Mars, we will be limiting our study to tidal degree ℓ = 2 and neglecting the 
eccentricity terms. The truncated expression for the secular acceleration is as follows:

d𝑛𝑛

d𝑡𝑡
= 3𝑛𝑛

2
𝛼𝛼𝑚𝑚

3

2

𝑘𝑘2200

𝑄𝑄2200

(

𝑟𝑟

𝑎𝑎

)5

, (19)

with Q2200 the tidal bulk Q of Mars for the tidal degree ℓ = 2 and order m = 2, that is, the main Phobos tide. 
The error on 𝐴𝐴

d𝑛𝑛

d𝑡𝑡
 is around 0.24% based on Jacobson and Lainey (2014); the error on 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 is 4.5% from Konopliv 

et al. (2020), while the error on αm (mainly on the mass of Phobos) is 0.18% from Pätzold et al. (2014). As k2200 
is not directly measured and the difference between k2200 and 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 is significantly lower than the error on 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 , we 

will assume the uncertainty on k2200 is of the same magnitude as the error on 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 . As indicated in Section 3.2, for 

a given interior model of Mars the value of 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 differs from k2200 by about 0.5%–1%. Because this dispersion is 

significantly lower than the error on 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 (contrary to when calculating the secular acceleration, where this disper-

sion is much larger than the error on s) and as the considered models in this study do not yield a unique 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 value, 

for the purpose of estimating Q2200 only will we take 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 and k2200 to be equal. Because we truncated the secular 

acceleration of Phobos at degree 2, we must also take into account the higher degree terms as error terms for 
our calculations. However, our models were constructed to fit the whole secular acceleration. Therefore, if only 
fitting the secular acceleration up to degree 2 with the contribution for the Q2200 value used, the actual error on 
Q2200 will only be due to the dispersion in the value of the degree-2 term for all our models. As the contribution 
of the degree-2 terms to the secular acceleration varies by only ±1% between the different models, we will add 
this ±1% value to the error budget for Q2200. For a mean value of k2200 = 0.174, this gives us an estimation of 
Q2200 = 93.0 ± 8.40 with a relative error ΔQ2200 of about 9%, compatible with previous estimations of Jacobson 
and Lainey (2014) and Khan et al. (2018) who found Q2 = 99.5 ± 4.9 and Q2 = 95 ± 10, respectively. This error 
bar is significantly larger than the amplitude of the eccentricity terms (less than 0.3% total contribution on s), 
justifying our assumptions.

This bulk Q2200 is the attenuation of Mars as a whole felt by Phobos. However, as shown in Figure 3, the atten-
uation in the Martian mantle is far from homogeneous and varies considerably with depth depending on the 
selected model. To illustrate these variations in the Martian interior, it is more relevant to consider the local Qμ, 

Figure 3. Qμ profile at the main Phobos tide period (5.55 hr). Since the tidal bulk Q2200 is strongly constrained through the 
secular acceleration of Phobos, all models show a similar Qμ profile at this frequency.
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hereafter denoted Qμ(i, ω), to highlight its depth and frequency dependence, where i is an index for the interior 
part considered (to be quantified in the following section) and ω the frequency at which this local Qμ is computed. 
Each layer of the Martian interior with local attenuation Qμ(i, ω) will contribute to the global bulk Q2200. This can 
be quantified so as to separate the contribution of each part of the Martian interior.

6.1. Contribution of the Different Parts of the Interior

The contribution to the tidal dissipation within Mars from the different parts of the Martian interior can be esti-
mated through the radial sensitivity function Hμ to shear modulus μ. This parameter can be directly linked to the 
ratio kℓ/Qℓ (cf., Equation 33 of Tobie et al. [2005]) as follows:

(2𝓁𝓁 + 1)𝑟𝑟

4𝜋𝜋𝜋𝜋

𝑘𝑘𝓁𝓁

𝑄𝑄𝓁𝓁

=
∫

𝑟𝑟

0

𝐻𝐻𝜇𝜇(𝑧𝑧)Im(𝜇𝜇(𝑧𝑧))dz, (20)

where r is the radius of Mars, ℓ the tidal degree, Im(μ(z)) is the imaginary part of the shear modulus μ, z the inte-
gration variable with respect to depth, and G the gravitational constant. This is particularly relevant to our study 
as these terms are directly used in the expression for the secular acceleration (Equation 16).

Equation 20 is similar to the works of Zharkov and Gudkova (2005) and Zharkov et al. (2017) where the authors 
estimated the contribution of each layer in the Martian interior to the bulk tidal dissipation factor Q2200. Rather 
than only comparing the contribution of each layer for all models to the bulk tidal dissipation factor, we prefer to 
compare the amount of dissipation occurring within each layer of the Martian mantle.

We divide the Martian interior into four parts: crust and lithosphere (A), the olivine-dominated upper mantle 
(B), and the lower mantle which is sub-divided into an olivine layer (C) and a bottom layer consisting of the 
high-pressure polymorphs of olivine, wadsleyite and ringwoodite (D). In Figure 4 the contribution to tidal dissi-
pation in these 4 parts of the Martian interior is shown for the FN hot model. We observe that for increasing 
spherical harmonic degree, tidal dissipation becomes more sensitive to shallower regions. While the relative 
contribution to the degree-2 terms is dominated by the lower mantle, degree-4 and -5 terms are mostly governed 

Figure 4. Sensitivity parameter Hμ multiplied by the imaginary part of the shear modulus Im(μ) (right-hand side term in Equation 20) in the Martian model for the 
FN hot model, for degree 2 up to 5. The surface area below each curve represents the dissipation in each layer of the Martian interior that contributes to the bulk tidal 
dissipation rate k2/Q. Mantle subdivisions are indicated with blue lines (details in text). This takes into account the actual value of Qμ in the mantle to show that for this 
model, dissipation is actually stronger in the upper layer of the lower mantle (C area) due to its lower Qμ compared to the lower layer of the lower mantle (D area), and it 
is clearly visible that the lithosphere has a very limited impact and almost none for the crust.
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by the dissipation in the upper mantle. The lithosphere and crust do not contribute significantly to the tidal dissi-
pation since dissipation is smaller there (i.e., higher Qμ) than in the deeper mantle.

Since tidal degree 2 represents more than 90% of the total secular acceleration of Phobos for all models, we focus 
our comparative efforts between our models on this single degree. Table 4 summarizes the relative contribution 
of each part of the Martian interior to the degree 2 tidal dissipation between the models for which the Hμ func-
tions could be computed, depending on how they were constructed. From Table 4, we can make the following 
observations:

•  Temperature appears to have the largest effect, as indicated by the models AR-TA/YO 85/111;
•  the role of composition is minor;
•  for all considered models, the relative contribution from the various layers is similar, with dissipation being 

concentrated in the lower mantle.

6.2. Linking Tidal and Seismic Constraints

As seen before, the tidal bulk Q2200 is strongly constrained by the secular acceleration of Phobos. Using the 
Qμ profile deduced at tidal frequencies, we can try to predict the possible Qμ profiles in the Martian interior at 
seismic frequencies depending on the rheological model and the frequency dependence of Qμ. Because of the 
different rheology and thermal models used for the Martian interior, we can expect differences to appear as they 
directly impact the shear attenuation Qμ. We reemphasize here that the local intrinsic attenuation is given by Qμ, 
with the layer i and its forcing frequency ω given as arguments. The integral parameter Q2200 is the tidal bulk 
dissipation factor, representing the attenuation of Mars as a whole with its forcing period given by Equation 18 
and being also sensitive to gravity and inertial effects (see also Bagheri et al. [2019]).

The seismic Qμ profiles at 1s are plotted in Figure 5. Several models are clipped at shallower depth, where the 
attenuation felt by seismic waves is not related to temperature or other material properties as in the rest of the 
Martian mantle. At seismic frequencies, some models have an average Qμ between 100 and 200 in the mantle 
while others tend more toward a Qμ of about 1,000. Almost all models still predict attenuation to be at its strongest 
just below the lithospheric lid, but attenuation at the core-mantle boundary is also strong and even stronger in a 
few cases.

As illustrated by Figure 5, the possibility of distinguishing the various models with seismic measurements also 
depends on the depth of these measurements. Because the lower mantle is more constrained from tidal measure-
ments than the shallower parts (as seen in Figure 4 and Table 4), a measurement of the seismic quality factor Qμ 
in the lower mantle would provide a stronger constraint as these parts of the mantle contribute more to the bulk 
tidal Q values than shallower layers.

Martian interior model

Relative contribution of Martian interior model subdivisions

(A) (B) (C) (D)

AR - TA 85 3.79% 26.84% 33.87% 35.5%

AR - TA 111 1.65% 17.32% 37.98% 44.05%

AR - YO 85 2.79% 25.57% 36.19% 35.45%

AR - YO 111 1.69% 17.73% 38.17% 42.41%

FN hot 1.40% 24.23% 40.81% 33.56%

TG 1.26% 18.9% 55.37% 24.47%

Mean 1.99 ± 0.33% 21.74 ± 1.41% 41.49 ± 2.85% 34.78 ± 2.43%

Note. (A) is crust + lithosphere, (B) is upper mantle, (C) is top of the lower mantle, and (D) is bottom of the lower mantle. 
Error bars in the mean values are estimated from the dispersion between all models. Only large core sizes were kept for the 
AR models. As the AB models were constructed by inversion to fit observations and because of the parametrization used for 
computing the HS models, the Hμ could not be calculated for them.

Table 4 
Contribution to the Tidal Dissipation Rate of the 4 Parts of the Martian Interior Models for Degree 2
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One can attempt to estimate how much such seismic measurements would be able to constrain our knowledge of 
the interior of Mars using the Hμ functions and contributions of the different parts of the Martian interior. If we 
assume that we have a measurement Qμ,meas from seismic observations of Qμ at a given depth i (simplified here by 
either area (A), (B), (C), or (D) as defined in Section 6.1):

𝑄𝑄𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 (𝑖𝑖𝜇 𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝑠𝑠) = 𝑄𝑄𝜇𝜇 (𝑖𝑖𝜇 𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝑠𝑠) (21)

where i and ω are used as a reminder that this is a local, frequency-dependent quality factor unlike the bulk tidal 
��m�� which is a global parameter only dependent on frequency. From laboratory experiments, the frequency 
dependence of Qμ can be quantified by the parameter α (e.g., Bagheri et al., 2019; Jackson & Faul, 2010; Nimmo 
& Faul, 2013):

𝑄𝑄𝜇𝜇(𝑖𝑖𝑖 𝑖𝑖) ∝ 𝑖𝑖
𝛼𝛼 (22)

with ω the forcing angular frequency. Using this relation, we can extrapolate the attenuation at the tidal periods 
of Phobos from the seismic measurements:

𝑄𝑄𝜇𝜇 (𝑖𝑖𝑖 𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡) =
[

𝑄𝑄𝜇𝜇 (𝑖𝑖𝑖 𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠)
]

(

𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠

)𝛼𝛼

 (23)

Note here that for simplification, we are assuming a single theoretical α value with no error bars. If using a 
measurement of α with uncertainties, this would create additional terms and would impact subsequent equations. 
From Equation 20, we know that the tidal bulk ��m�� can be rewritten as a sum of the contribution of the local Qμ 
in the different parts of the Martian interior. Hence, we can rewrite Equation 20 by introducing weights β such 
as the following:

1
��m��

=
∑

�=�,�,�,�

��
1

�� (�, ��m)
, (24)

Here, the βi are functions of the Hμ, which depend on the rheology. ��m is the tidal frequency corresponding to the 
degree ℓ and order m of the considered tide. By taking into account the seismic measurements with Equation 23, 
we can define a weighted average Qμ,unc. representing the weighted attenuation in the mantle unconstrained by the 
seismic measurements Qμ(i, ωseismic):

�−1
�,���. (�, ��m) =

1
∑

�≠� ��

(

�−1
�m�� − ��

(

�−1
� (�, ��m)

)

)

 (25)

Figure 5. Qμ profile at 1s. Most models predict the strongest attenuation to occur just below the lithosphere. Because of the 
different thermal structure and grain sizes assumed for the models, the predictions for the Qμ profiles show large differences 
between models, with some models having an average Qμ in the mantle in the hundreds while the others are near 1,000.
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Hence, from a seismic measurement of the attenuation in the interior of Mars Qμ,meas, it is possible to estimate 
what is the attenuation in the rest of the Martian interior Qμ,unc.. Depending on the error ΔQμ,meas(i, ωseismic) on 
Qμ,meas(i, ωseismic), this can be used to distinguish between the Martian interior structures and rheological models 
based on their expected attenuation profiles.

Details about the propagation of the error ΔQμ,meas(i, ωseismic) are given in Appendix B. If we apply this error prop-
agation to a notional measurement of Qμ,meas = 2,000 ± 500 in the lower mantle (D) of Mars at 1s for α = 0.33, 
we can estimate having 𝐴𝐴 𝐴𝐴𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

(

𝐷𝐷𝜇𝐷𝐷𝑇𝑇2

)

= 76 ± 19 in the lower mantle with Equation 22. Using Equation 25 
and Table 4, we derive 𝐴𝐴 𝐴𝐴𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

(

𝑟𝑟𝜇 𝑟𝑟𝑇𝑇2

)

= 107.2 ± 37.5 in the rest of the Martian mantle, translating into Qμ,unc(r, 
ω1s) = 2,820 ± 987 at seismic frequencies, which is enough to make all models with α = 0.33 and attenuation at 
seismic frequencies Qμ,unc(r, ω1s) lower than 1,000 in the rest of the Martian mantle (areas (B) and (C)) unlikely 
to be representative of Mars.

One must note that the actual value of the frequency dependence α directly impacts this estimation, while α can 
also be constrained if the seismic measurements are accurate enough to distinguish between the models as shown 
in Figure 5.

6.3. Other Nontidal Constraints

Besides seismic measurements and tidal constraints, there are other possible ways to distinguish between the 
models, which we will discuss in the following.

6.3.1. Elastic Lithospheric Thickness

The elastic lithosphere thickness is considered a proxy for the thermal state of the lithosphere and can be approx-
imated by the mechanical thickness, which is always greater or equal to the elastic thickness (Plesa et al., 2018). 
Given a rheological model, the latter can be used to estimate the depth below which rocks lose their mechanical 
strength and the corresponding temperature associated with ductile failure. The deflection of the surface below 
the north polar cap on Mars was used to estimate an elastic thickness of the lithosphere Te of values greater 
than 330 km (Broquet et al., 2020). At the south pole of Mars, Te is estimated to be larger than 200 km (Broquet 
et al., 2021). In comparison, thermal evolution modeling fitting these measurements with a strain rate between 
10 −14s −1 and 10 −17s −1 results in an average Te for the Martian lithosphere of about 275 ± 10 km, for a tempera-
ture at the base of the elastic layer, respectively, between 1,232 and 1,090 K (e.g., Grott & Breuer, 2008; Plesa 
et al., 2018).

Results of the comparison between the temperature profiles of our models and the temperature needed at the 
base of the elastic layer to match polar caps estimates of the elastic thickness of the lithosphere are plotted in 
Figure 6. We can see that some models are too hot, indicating a much thinner average elastic thickness that might 
be incompatible with the small deflection beneath the polar caps of Mars. The temperature gradients needed in 
the lithosphere to fit the elastic thickness of the lithosphere at both the north pole and south pole ranges show 
good compatibility with the inverted geotherms of the upper mantle of Mars constrained by seismic observations 
in Khan et al. (2021), favoring again colder models. One must, however, note that there are several complications 
associated with the elastic thickness estimates and the calculation from numerical thermal evolution models. 
First, strain rates are only estimations and may be in fact much smaller than the values of 10 −14s −1 and 10 −17s −1 
that were used here. This will lead to much thinner elastic thickness values from numerical thermal evolution 
models that seem at odds with the elastic thickness estimates. On the other hand, the polar cap load may not be yet 
at elastic equilibrium but rather in a transient state, in which case the elastic lithosphere thickness estimates would 
be smaller (Broquet et al., 2020). Whether these complications will lead to a larger number of models compatible 
with the elastic thickness estimates or whether only a small number of models will be able to fit the observations, 
remains to be investigated in future studies.

6.3.2. Chandler Wobble

The frequency of the Chandler wobble PCW for our models is calculated under the assumption of a triaxial body 
with a fluid core (Konopliv et al., 2020; Zharkov et al., 2009):
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𝑃𝑃𝐶𝐶𝐶𝐶 =

𝑃𝑃
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐶𝐶𝐶𝐶

(

1 −

(

𝐴𝐴𝑐𝑐𝐵𝐵𝑐𝑐

𝐴𝐴𝐵𝐵

)
1

2

)

1 −
𝑘𝑘2

𝑘𝑘0

,
 (26)

where A and B are the equatorial moments of Mars, Ac and Bc the equatorial moments of the core, 

𝐴𝐴 𝐴𝐴
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐶𝐶𝐶𝐶
=

2𝜋𝜋

𝜔𝜔𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠

(

𝐴𝐴𝐴𝐴

(𝐶𝐶−𝐴𝐴)(𝐶𝐶−𝐴𝐴)

)
1

2 , 𝐴𝐴 𝐴𝐴0 =
3𝐽𝐽2𝑔𝑔

𝜔𝜔
2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑟𝑟
 , g is the surface acceleration, J2 the oblateness coefficient, ωspin is the body 

spin rate, r the average radius of Mars, and C is the polar moment of inertia of Mars. For simplicity, we assume 
axisymmetry of the Martian core as triaxiality only has a small impact on the Chandler wobble period (Konopliv 
et al., 2020), and use the physical parameters representative of Mars provided in Konopliv et al. (2020).

Figure 7 shows the period PCW of the Chandler wobble for our models compared to the Konopliv et al. (2020) 
measurements, with for reference the dispersion of the Love number 𝐴𝐴 𝐴𝐴

𝑠𝑠

2
 from Figure 1. While all of our models 

fit the Love number 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 value, they do not exactly fit the Chandler wobble period estimate. The models with the 

closest values would suggest a frequency dependence of Q to be close to α = 0.15–0.4 (see Table 2) but some 
models within this range of α are still outside of the measured Chandler wobble period. This is because while the 
Chandler wobble period is sensitive to α, there are also other influences at play such as rheology models or grain 
size. Figure 7 therefore only indicates likely values rather than a direct determination of α which would require 
PCW to be inverted together with other tidal constraints to construct a more complete Martian model.

7. Conclusion
Measurements of the Love number k2 of Mars and the secular acceleration of Phobos s provide strong constraints 
on the interior structure of Mars. While k2 is mostly sensitive to the rigidity structure of Mars and the size of its 
core, the secular acceleration s is strongly dependent on the thermal structure of the Martian mantle. When using 

Figure 6. Constraints from the elastic thickness on the temperature profiles, for strain rates between 10 −14s −1 and 10 −17s −1 
based on Grott and Breuer (2008) and Plesa et al. (2018) and comparison with the upper mantle inversions from seismic 
waves from Khan et al. (2021). The green area delimited by the vertical black segments highlights the possible temperatures 
at the base of the elastic layer from thermal modeling (e.g., Plesa et al., 2018) that are consistent with the observed 
lithospheric flexure from Broquet et al. (2020) and Broquet et al. (2021). The red band from Khan et al. (2021) are models 
with a thermal lithosphere thickness between 400 and 500 km from geophysical inversions, while the blue band are between 
500 and 600 km from seismic inversions. Hotter models do not fit the inferred elastic thickness. Colder models with a higher 
average elastic thickness are capable of fitting the polar elastic thickness.
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constraints on k2 and s together with a range of different models, we can place bounds on the Martian core size 
and temperature profiles in the Martian interior. Using an ensemble of models also makes our deductions more 
robust, as our results are less sensitive to assumptions (e.g., rheology and mineralogy) made by any individual 
model.

We also explored possible ways to distinguish between the constructed models, such as elastic thickness, labora-
tory experiments, Chandler wobble measurements, and more specifically a synergy with seismic wave measure-
ments and the InSight mission. From these constraints, we find that Martian models with larger core sizes and 
colder temperature profiles under the lithosphere are favored. We also determine how the attenuation of Mars at 
tidal periods is distributed in its interior and can use it to link local potential seismic measurements of the Martian 
attenuation to the attenuation in the rest of the Martian mantle.

A shortcoming of our approach is that we assumed that all of the secular acceleration of Phobos is due to tidal 
dissipation. This is not necessarily true, as other nontidal effects can also create a secular acceleration on the 
Martian moon. For instance, a time-dependent gravity field coefficient J2 would have a similar effect, similar to 
the glacial isostatic adjustment on Earth or seasonal polar cap melting.

The recent measurements of the Chandler wobble frequency could also be used directly as an additional fitting 
parameters in our models, as we have shown that it is effective at constraining the range of possible tidal dissipa-
tion Q through its frequency dependence α, as its frequency of hundreds of days is well-separated from the tidal 
measurements around tens of hours for the solar tides and the main Phobos tide frequency.

The results of this study are compatible with the direct detection of deep seismic waves Stähler et al., 2021) by the 
seismometer of the InSight mission (Banerdt et al., 2020; Lognonné et al., 2019, 2020) (see Table 3), and attenuation 
of seismic waves in the deep interior of Mars would help distinguish between our models. Additional constraints 
on the Martian core may also be provided from radio measurements by the RISE instrument (Rotation and Interior 
Structure Experiment, Folkner et al., 2018); the upcoming data together with the tidal constraints of this work will 
allow even more robust and accurate predictions of the thermal, rheological, and compositional state of Mars.

Figure 7. Comparison of the 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 (left side) and PCW values (right side) for our different models with the Martian 

measurements. Dotted lines indicate the error bars for their respective 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 and PCW measurements based on colors. All models 

fit the 𝐴𝐴 𝐴𝐴
𝑠𝑠

2
 measurements (Figure 1) but not all of them fit the Chandler Wobble frequency measured in Konopliv et al. (2020), 

providing an additional constraint on the rheology of the Martian interior. Dotted lines on the left indicates k2 values used 
in this study given in Table 1, while dotted lines on the right indicate the Chandler Wobble period range given in Konopliv 
et al. (2020).
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Appendix A: Eccentricity Terms for the Calculation of the Secular Acceleration
For degree 2, the terms in order 1 in eccentricity and order 0 in inclination correspond to �m��  = 2201, �m�� = 220-1, 
�m��  = 2011, and �m�� = 201-1, giving the same F(i*) functions but the additional G(e*) functions:

��m�=220 = 3

����=201 =
7�
2

����=20−1 = − �
2

��m�=201 = −1
2

����=211 =
3�
2

����=21−1 =
3�
2

 (A1)

resulting in the following tidal potential terms:

�2201 =
21�
8

��∗�2

�∗3
(

1 − cos2 �
)

cos (2�∗ +�∗ + 2Ω∗ − 2�) (A2)

�220−1 = −3�
8
��∗�2

�∗3
(

1 − cos2 �
)

cos (2�∗ + 3�∗ + 2Ω∗ − 2�) (A3)

�201−1 = −3�
8
��∗�2

�∗3
(

3 cos2 � − 1
)

cos�∗ (A4)

�2011 = −3�
8
��∗�2

�∗3
(

3 cos2 � − 1
)

cos−�∗ (A5)

As we are studying secular effects due to a phase lag, we must also consider higher eccentricity terms for 
�m�� = 2200 . This is not the case for �m�� = 2010 since this potential is not affected by the phase lag and 
therefore will not impact the secular acceleration of Phobos as seen in Equation 12. By including higher terms in 
eccentricity in F220, V2200 becomes

�2200 =
3
(

2 − 5�2
)

8
��∗�2

�∗3
(

1 − cos2 �
)

(cos (2�∗ + 2�∗ + 2Ω∗ − 2�)) , (A6)

These potentials can also be found in the work of Boué and Efroimsky  (2019) where the authors studied a 
two-body problem where the Keplerian elements evolution is governed by tides. In this case the evolution of the 
semimajor axis a* is given by the following equation:

(��∗

��

)

�=2
= −3 �∗ � ��

( �
�∗

)5
(�2200 �2200)

+ 15�∗2 �∗ � ��
( �
�∗

)5
(�2200 �2200)

− 9�∗2
8

�∗ � ��
( �
�∗

)5
(�201−1 �201−1)

− 9�∗2
8

�∗ � ��
( �
�∗

)5
(�2011 �2011)

− 3�∗2
8

�∗ � ��
( �
�∗

)5
(�220−1 �220−1)

− 441�∗2
8

�∗ � ��
( �
�∗

)5
(�2201 �2201)

 
(A7)

which is derived from Equation 193 of Boué and Efroimsky (2019). When taking into account eccentricity, two 
changes must be taken into account when calculating ��m�� and ��m�� . The period at which the last four ��m�� and 
��m�� are calculated is no longer related to the synodic period T1 of Phobos and instead must be calculated at the 
period given by Equation 18.

As we consider the potential terms with order 1 in eccentricity, their period ��m�� is not directly linked to the 
synodic period of Phobos; hence, their deformation pattern is also not directly linked to the geometric lag angle  
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��m�� , which we recall is the geometric angle between the tidal bulge and the position of Phobos on its orbit. This 
means that Equation 13 is no longer valid, thus our use in Equation A7 of the phase lag ��m�� instead as done in 
Kaula (1964) and Boué and Efroimsky (2019). When converting the ��m�� into ��m�� , one must pay close attention to 
the signs of each ��m�� . While all ��m�� are definite positive by convention, their corresponding ��m�� is the same sign 
as 𝐴𝐴 (𝓁𝓁 − 2𝑝𝑝 + 𝑞𝑞)𝑛𝑛 − �̇�𝜙 which is the denominator in Equation 18 (Boué & Efroimsky, 2019). The ��m�� can therefore  
be either positive or negative depending on the binary system considered. In the case of Phobos and Mars, for the 
studied potentials and respective �m�� values, this term is always positive; therefore all ��m�� are positive like all 
��m�� values. Taking this into consideration, Equation A7 can be expressed in terms of ��m�� using Equation 14:

�̇∗ =
(��∗

��

)

�=2
= −3 �∗ � ��
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�∗
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�2200
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( �
�∗

)5
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�2200

�2200

)

− 9�∗2
8

�∗ � ��
( �
�∗

)5
(

�201−1

�201−1

)

− 9�∗2
8

�∗ � ��
( �
�∗

)5
(
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�2011

)

− 3�∗2
8

�∗ � ��
( �
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�∗ � ��
( �
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)

 
(A8)

Assuming that all of the secular acceleration of Phobos is due to tides, we can use Kepler's laws as follows:

1

𝑛𝑛

𝑑𝑑𝑛𝑛

𝑑𝑑𝑑𝑑
= −

3

2

�̇�𝑎∗

𝑎𝑎∗
 (A9)

Therefore, the second-degree terms for the secular acceleration of Phobos when taking eccentricity into account 
are as follows:
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(A10)

From Equation 18, the periods of k201−1 and k2011 are the same, leading to a further simplification:
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(A11)

from which Equation 17 is derived.
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Appendix B: Error Calculations for Section 6.2
One can attempt to estimate how much seismic measurements would be able to constrain our knowledge of the 
interior of Mars using the Hμ functions and contributions of the different parts of the Martian interior. If we 
assume that we have a measurement from seismic observations of Qμ at a given depth i (simplified here by either 
area (A), (B), (C), or (D) as defined in Section 6.1) with an uncertainty on the measurement ΔQμ,meas:

𝑄𝑄𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 (𝑖𝑖𝜇 𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝑠𝑠) = 𝑄𝑄𝜇𝜇 (𝑖𝑖𝜇 𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝑠𝑠) ± Δ𝑄𝑄𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇 (𝑖𝑖𝜇 𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝜇𝜇𝜇𝜇𝑖𝑖𝑠𝑠) (B1)

where i and ω are used as a reminder that this is a local, frequency-dependent quality factor unlike the bulk 
tidal ��m�� which is a global parameter only dependent on frequency. Assuming the frequency dependence of 
Qμ to α given by Equation 22, we can extrapolate the attenuation at the tidal periods of Phobos from the seismic 
measurements:

�� (�, ������) =
[

�� (�, ��������)
]

(

������

��������

)�

±
[

Δ��,���� (�, ��������)
]

(

������

��������

)� (B2)

As before, we are here assuming a single theoretical α value with no error bars. If using a measurement of α with 
uncertainties, this would create additional terms and would impact subsequent equations.

The error Δ��,���. (�, ��m) on the weighted unconstrained average ��,���. (�, ��m) , expressed in Equation 25, can 
be derived using Equation 24:

Δ�−1
�,���. (�, ��m) =

1
Γ
Δ
(

∑

�≠�
��
)

+ 1
Γ2

(

Δ�−1
�m�� − ��Δ

(

�−1
� (�, ��m)

)

−
(

�−1
� (�, ��m��)

)

Δ��
)

,
 (B3)

where Γ =
(

�−1
�m�� − ���−1

� (�, ��m)
)

 is the attenuation in the Martian interior unconstrained by the seismic meas-

urements and Δ
(

�−1
� (�, ��m)

)

 is the second term in the right member of Equation B2.

Depending on the depth of the seismic measurements, the error Δ��,���. (�, ��m) might be ill-defined. If the 
measured Qμ(i, ωseismic) and hence the extrapolated �� (�, ��m) is too small (meaning strong dissipation), the Γ 
term becomes very large as this means too much dissipation is concentrated in this local area, hence requiring 
extremely high Qμ,j≠i in the other parts of the Martian interior. If the relative weight βi is small (meaning the meas-
urements are sensitive to only the crust or the lithosphere), the error ΔQμ,meas(i, ωseismic) does not really matter as 
the seismic measurements fails to constrain a significant contribution of the dissipation in the Martian interior. In 
that case, the best estimator for the attenuation in the Martian is from the tidal bulk ��m�� , except if Qμ(i, ωseismic) 
is extremely small as mentioned above.

If the previous cases are avoided, then we can estimate how strong the impact of the seismic measurements is on 
the error bars Δ��,���. (�, ��m) of the unconstrained Martian attenuation ��,���. (�, ��m) . Because only the degree 
2 Love number k has been measured, we will limit our analysis to ℓ = 2. From Table 4, the term Δβi is limited 

to around 4% between our models. The term Δ
(

�−1
�,����� (�, ��m)

)

 is directly linked to the error on the seismic 

measurement ΔQμ,meas(i, ωseismic) using Equation B2:

Δ
(

�−1
� (�, ��m)

)

=
Δ��,���� (�, ��������)
�2

�,���� (�, ��������)

(

��m

��������

)−�

 (B4)

Finally, the term Δ
(

�−1
�m��

)

 was estimated at the beginning of Section 6, with 𝐴𝐴 Δ𝑄𝑄−1

2200
 being about 9%.

Therefore, the total error on ��,���. (�, ��m) is dominated by the error of the seismic measurements if 
Δ��,���� (�, ��m) is greater than 13%. This is assuming physically realistic values for Qμ,meas (its value not being 
too small) and seismic observations being sensitive to deep parts of the mantle (seismic measurements limited to 
the crust or lithosphere would then barely impact Qμ,unc.).
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To illustrate the error propagation and how the determination of seismic attenuation helps distinguishing between 
our models, we can (as in Section 6.2) assume having a measurement of Qμ,meas = 2,000 ± 500 in the lower mantle 
of Mars at 1s for α = 0.33 can be converted at tidal frequencies as 𝐴𝐴 𝐴𝐴𝜇𝜇

(

𝐷𝐷𝐷𝐷𝐷𝑇𝑇2

)

= 76 ± 19 . From Table 4, the 
contribution of the lower mantle is on average 35% the total attenuation of the Martian mantle, so 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢

(

𝑟𝑟𝑟 𝑟𝑟𝑇𝑇2

)

 
from Equation 25 will refer to the remaining 65% of the average bulk Q2200 = 93.0 ± 8.40 from Equation 19. This 
would give us for our averaged model 𝐴𝐴 𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢

(

𝑟𝑟𝑟 𝑟𝑟𝑇𝑇2

)

= 107.2 , which is well defined since 𝐴𝐴 𝐴𝐴𝜇𝜇

(

𝐷𝐷𝐷𝐷𝐷𝑇𝑇2

)

= 76 ± 19 
is close to our model values in Figure  3. From Equation  B4, since Qμ,unc (hence Γ) is well-defined and the 
relative error on the seismic measurement ΔQμ,meas is 25%, the middle term will dominate the error on our 
estimate and reach 35% when taking into account the error on the bulk Q2200. Therefore, if we have a meas-
urement of Qμ,meas  =  2,000  ±  500 in the lower mantle of Mars at 1s for α  =  0.33, we can estimate having 

𝐴𝐴 𝐴𝐴𝜇𝜇

(

𝐷𝐷𝐷𝐷𝐷𝑇𝑇2

)

= 76 ± 19 in the lower mantle and 𝐴𝐴 𝐴𝐴𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

(

𝑟𝑟𝜇 𝑟𝑟𝑇𝑇2

)

= 107.2 ± 37.5 in the rest of the Martian mantle, 
translating into Qμ,unc(r, ω1s) = 2,820 ± 987 at seismic frequencies as given at the end of Section 6.2.

Once again, we note that the actual value of the frequency dependence α directly impact this estimation, while α 
can also be constrained if the seismic measurements are accurate enough to distinguish the models as shown in 
Figure 5.

Data Availability Statement
All Martian interior models used in this paper are published in previous papers quoted in Section 4 and Support-
ing Information S1 for more details on their construction. As indicated there, the FN models are based on Nimmo 
and Faul (2013), the AB models are based on Khan et al. (2018) and Bagheri et al. (2019), the HS models are 
based on Samuel et al. (2019, 2021), the TG model is based on Zharkov et al. (2017), and the AR models are 
based on Rivoldini et al. (2011) and Plesa et al. (2018). No new data were used in this work. The values of physi-
cal and orbital parameters of the Martian system used are from previous studies given in Table 1, and results were 
obtained following the same methods as their original publications.
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