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ABSTRACT

Aims. We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the
form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial
exoplanets can be determined from observations of mass, radius, and stellar elemental abundances.
Methods. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain
confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated
uncertainties.
Results. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent
estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii, and to exoplanet
Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision required
to characterize the interior of exoplanets.
Conclusions. Our main conclusions are (1) observations of mass and radius are sufficient to constrain core size; (2) stellar elemental
abundances (Fe, Si, Mg) are principal constraints to reduce degeneracy in interior structure models and to constrain mantle com-
position; (3) the inherent degeneracy in determining interior structure from mass and radius observations does not only depend on
measurement accuracies, but also on the actual size and density of the exoplanet. We argue that precise observations of stellar el-
emental abundances are central in order to place constraints on planetary bulk composition and to reduce model degeneracy. We
provide a general methodology of analyzing interior structures of exoplanets that may help to understand how interior models are
distributed among star systems. The methodology we propose is sufficiently general to allow its future extension to more complex
internal structures including hydrogen- and water-rich exoplanets.
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1. Introduction

Major advances in the detection and characterization of exoplan-
ets have been achieved over the past decade. To date, several
hundred have been characterized in terms of mass and radius by
space-based or ground-based observations. Continued improve-
ments in observational techniques allow more precise inference
of mass and radius. To date, even a few small-mass exoplanets
(<10 Earth masses (ME)) with uncertainties in mass and radius
below 20% and 10%, respectively, have been discovered (e.g.,
Kepler-36b, CoRot-7b) (e.g., Pepe et al. 2013). Space-based
missions, like Kepler (Borucki et al. 2010) and CoRoT (Bordé
et al. 2003), have been able to measure the transits of these ob-
jects and infer the radius. Within the first 16 months of the Kepler
mission alone, 207 planetary candidates of radius R < 1.25 Earth
radii (RE) and 680 super-Earth-sized (1.25RE < R < 2RE) plane-
tary candidates were reported by Batalha et al. (2013).

From the knowledge of mass and radius we are able to derive
constraints on the interior structure of exoplanets. Previous stud-
ies concerned with rocky exoplanets (e.g., Valencia et al. 2006;
Sotin et al. 2007; Seager et al. 2007; Fortney et al. 2007; Wagner
et al. 2011; Mocquet et al. 2014) have generally concentrated

? Appendices are available in electronic form at
http://www.aanda.org

on computing mass-radius relations based on terrestrial-type in-
terior structures and compositions. These studies show that dif-
ferent interior models are capable of explaining the observations
within their uncertainties. Such “forward” approaches, however,
do not quantify the inherent degeneracy of interior structure
models. For example, in Valencia et al. (2006, 2007b), Sotin
et al. (2007), Wagner et al. (2011) it has been shown that different
core sizes and mantle compositions affect the mass-radius rela-
tionship, but to our knowledge no comprehensive study of the
degeneracy of these model parameters has been performed. As a
consequence, it is not fully understood which interior-structure
parameters can be estimated from the data and which structure
parameters tend to be strongly correlated.

In the light of the inherent ambiguity in determining inte-
rior structure from mass and radius (e.g., Howe et al. 2014;
Rogers & Seager 2010), analysis is most sensibly conducted
in an inverse sense (Mosegaard & Tarantola 2002). We there-
fore propose a complete Bayesian inverse analysis by employ-
ing a Markov chain Monte Carlo (MCMC) method to provide
full probability distributions for the model parameters of interest
(mantle composition and core size).

Early studies of mass-radius relations (Zapolsky & Salpeter
1969) considered only homogeneous and simple monoatomic
bulk compositions (H, He, C, Fe, Mg, and H/He mixtures). More
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recent studies assume differentiated terrestrial-like compositions
(e.g., Valencia et al. 2006; Sotin et al. 2007; Seager et al. 2007;
Fortney et al. 2007). Based on solar system observations and
planet formation and differentiation models, terrestrial planets
are generally thought to be differentiated in an iron-rich core, a
silicate mantle and a crust (see Howe et al. 2014, for a review of
previous and current work). In this work, we focus on terrestrial-
type rocky planets and assume that these consist of a pure iron
core, a silicate mantle comprising the oxides Na2O-CaO-FeO-
MgO-Al2O3-SiO2, and that volatiles have a negligible effect on
mass and radius.

In order to be able to compute the radius for a planet of a
given mass and composition (the “forward” model) we solve
the hydrostatic equilibrium equation coupled with a thermody-
namic approach based on Gibbs free-energy minimization and
Equation-of-State (EoS) modeling. In this regard, our work is
similar to earlier studies (Valencia et al. 2007a; Sotin et al. 2007;
Seager et al. 2007; Fortney et al. 2007), except for the use of ther-
modynamic modeling. This addition allows us to compute the
density profile of the planet for an arbitrary bulk silicate mantle
composition from first principles of thermodynamics. Moreover,
given that cosmochemically derived elemental abundances (e.g.,
Fe, Mg, and Si) have proved important as constraints on the
composition of the terrestrial planets (e.g., Grasset et al. 2009;
Rogers & Seager 2010), we investigate the effect of including
abundance constraints in determining interior structure.

Although similarities between the present work and the
Bayesian analysis of Rogers & Seager (2010) exist, our approach
nonetheless differs in several respects:

– our inversion method is applicable to planets of any mantle
composition and core structure;

– our inversion method is general in that it can be easily
adapted to more complex planetary models that include
oceans and atmospheres;

– we infer probability distributions on interior-structure pa-
rameters (core radius and mantle composition) for a wide
range of masses (0.1ME < M < 10ME) and radii (0.5RE <
R < 1.7RE);

– we demonstrate how observations of a few key elemen-
tal abundances (e.g., Fe, Mg, Si) of the host star’s photo-
sphere significantly reduces the degeneracy of interior struc-
ture models;

– we quantify the influence of measurement uncertainties on
the determination of interior structure models.

The outline of this study is as follows: in Sect. 2 we introduce the
physical model that links data and model parameters, and out-
line the inversion strategy. In Sect. 3, we first test our method on
Earth using Earth bulk elemental abundances derived from geo-
chemical analysis of mantle rocks. Next, we apply the method to
all terrestrial solar system planets. In Sect. 4, we present results
for synthetic exoplanets and Kepler-36b followed by discussion
and conclusions.

2. Methodology

2.1. Abundance constraints

In summary, the importance of additional constraints in the form
of chemical abundances of the elements Fe, Mg, Si are investi-
gated in detail. Arguments from planet formation favor certain
interior compositions as discussed by e.g., Grasset et al. (2009),
Rogers & Seager (2010), Madhusudhan et al. (2012).

Observations and theoretical considerations suggest that ex-
oplanet bulk composition is dictated by stellar composition:
first, relative elemental abundances of Fe, Mg, and Si are sim-
ilar among the Sun, Earth, Mars, the Moon as well as mete-
orites (Lodders 2003; Drake & Righter 2002; McDonough &
Sun 1995). Meteorites are believed to be chemically similar to
the building blocks of planets (Morgan & Anders 1980), both
being condensates from the solar nebula that experienced the
same fractionation processes. Second, it has been demonstrated
that during planet formation, planetary bulk and stellar ratios of
Fe/Si and Mg/Si are very similar (e.g., Bond et al. 2010; Elser
et al. 2012; Johnson et al. 2012; Thiabaud et al. 2013) since the
refractory elements Fe, Si, and Mg condense at similar tempera-
tures corresponding to small distances to the host star (∼1 AU).

For the Sun and our solar system planets, bulk Fe/Si and
Mg/Si (henceforth Fe/Si© and Mg/Si©) have been inferred from
photospheric analysis and from geochemical analysis of mete-
oritic and cosmochemical material, respectively. For extrasolar
systems, we shall assume that Fe/Si© and Mg/Si© equal to their
stellar counterparts Fe/Si? Mg/Si?.

2.2. Data

The aim of our study is to characterize the interior structure of
terrestrial exoplanets based on inferred mass and radius from ra-
dial velocity and transit observations and constraints on bulk Fe,
Mg, and Si abundances (Fe/Si© and Mg/Si©) inferred from stel-
lar photospheric analysis. Mass, radius and bulk abundance con-
straints constitute our data d. For the purpose of illustrating the
relative importance of data on inverted model parameters, we
consider the following two cases:

Case A Data are mass M and radius R.
Case B Data are mass M, radius R, and compositional con-

straints (Fe/Si© and Mg/Si©) obtained from stellar
spectroscopic observations of the host star.

Fe/Si© expresses the mass ratio between the mass of iron to
silicate for the entire planet (core and mantle). Given that we
assumed a pure iron core, this ratio is equal to the mass of iron
in core and mantle divided by the mass of silicate in the mantle
Msi,mantle. This can be written as

Fe/Si© = Fe/Si} + Mcore/MSi,mantle, (1)

where Mcore is mass of iron in the core, and Fe/Si} denotes the
mass ratio of Fe/Si in the mantle. Mantle Mg/Si is referred to
as Mg/Si}. Since all Si and Mg is assumed to be in the mantle,
Mg/Si© = Mg/Si}.

2.3. Model parameterization

Our exoplanet interior model consists of a layered sphere with
an iron core surrounded by a silicate mantle (see Fig. 1). Model
parameters include core size Rc and mantle silicate composi-
tion using the NCFMAS model chemical system that comprises
the oxides Na2O-CaO-FeO-MgO-Al2O3-SiO2 and accounts for
more than 98% of the mass of Earth’s mantle (Irifune et al. 1994)
(see Appendix C). We parameterize mantle composition by man-
tle Si-content defined as MSi,mantle/Mmantle, (referred to as Si}),
Fe/Si} and Mg/Si}. Na2O, CaO, and Al2O3 are minor com-
ponents and their relative abundance can be constrained from
stellar photospheric observations (e.g., Elser et al. 2012). In this
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Table 1. Prior ranges of model parameters for case A (Beirao et al. 2005; Gilli et al. 2006; Thiabaud et al. 2013) and case B (Lodders 2003).

Model parameter of m Case A Case B

Si} 8–34 (non-uniform† ) 14–30 (non-uniform† )
Fe/Si} 0–4.15 0–2.23
Mg/Si} 0.61–2.32 0.89 ± 0.08 (Gaussian)
Core radius Rc 0–R 0–R

Notes. Uniform distributions unless stated otherwise. Si, Fe, and Mg are in wt% (weight percentage). Minor components of Na2O, CaO, and Al2O3
are fixed to chondritic abundances of 2 wt%, 2 wt% and 4.8 wt%, respectively (Lodders 2003). (†) See Appendix A.

Rc 

c 

T 

Tsurf, Psurf 
 .	
  

Fig. 1. Illustration of model parameterization. Parameters are core ra-
dius Rc and mantle composition c comprising the oxides Na2O-CaO-
FeO-MgO-Al2O3-SiO2. Mantle temperature profile T , surface temper-
ature Tsurf and pressure Psurf are fixed input parameters. In the iron core
an adiabatic temperature profile is used.

study, we assume chondritic abundances (see Table 1). The set
of parameters that constitutes our model parameter m is thus

– core radius Rc,
– mantle Si-content Si},
– mantle Fe/Si},
– mantle Mg/Si}.

The mantle composition parameters Si}, Fe/Si}, and Mg/Si}
depend on each other, i.e., the fractions of oxides in the
NCFMAS system must sum up to one. All parameters are as-
sumed to be uniformly distributed unless stated otherwise (see
Table 1).

2.4. Prior information

For case A, prior bounds have been chosen based on (1) the as-
sumption that the bulk metallic composition of a planet is similar
to the abundance of the host star (Thiabaud et al. 2013) and (2)
the fact that chemical abundances of observed stars with plane-
tary companions seem to fall within certain ranges (e.g., Beirao
et al. 2005; Gilli et al. 2006). Thus, the variability of observed el-
emental abundances in stars defines the prior bounds on Fe/Si}
and Mg/Si}.

For case B, prior bounds on Fe/Si} and Mg/Si} are derived
from Fe/Si© and Mg/Si© inferred from the host star’s photo-
spheric abundance: (1) Since all Si and Mg is assumed to be in
the mantle, Mg/Si© defines the prior bounds on Mg/Si}; (2) Fe,
on the other hand, is distributed between core and mantle. Thus,
the bulk constraint Fe/Si© defines only the upper bound of the
prior on Fe/Si}. For exoplanets, Fe/Si© and Mg/Si© are de-
fined by the host star’s photospheric elemental abundance since
we assume that Fe/Si© = Fe/Si? and Mg/Si© = Mg/Si?.
Mg/Si? is Gaussian-distributed. We consider solar estimates
for Fe, Si, and Mg (Lodders 2003) and associated uncertainties
as representative of Fe/Si© and Mg/Si© throughout this study
unless stated otherwise.

In both cases, the prior bounds on Si} depend on the prior
bounds of Fe/Si} and Mg/Si}, since the fractions of oxides in
the NCFMAS chemical system must sum to one. This implies a
non-uniform prior of Si} (see Appendix A).

Additional input parameters that are fixed in this study are
(1) surface pressure and temperature, (2) thermal gradient in the
mantle based on adiabatic gradient of Earth’s mantle, and (3)
absolute amount of minor components (Na2O, CaO, and Al2O3)
in the mantle.

Using a fixed temperature profile for the mantle is demon-
strably not a limitation of our model. Many authors have shown
that the variations due to temperature for rocky planets are small
compared to uncertainties of material properties of silicate or
iron compositions (e.g., Sotin et al. 2007; Seager et al. 2007;
Grasset et al. 2009; Valencia et al. 2010). This is demonstrated
in Appendix B where it is shown that varying mantle tempera-
tures introduces little variation in computed densities. As a con-
sequence, we fix temperature profiles by using Earth’s surface
temperature, lithosphere and mantle temperature gradient.

2.5. Interior structure model

Data and model parameters are linked by a physical model em-
bodied by the forward operator g(·)

d = g(m). (2)

For a given model m, interior structure (density profile), the to-
tal mass, and Fe/Si© are computed for the purpose of compar-
ing with observed data d. Equation (2) represents the forward
problem, which is computed using thermodynamic method and
Equation-of-State (EoS) modeling. The complete solution of the
forward problem is summarized as

{c,Rc,T }
g1
→M

g2
→ ρ

g3
→ {M,R}, (3)

where c denotes the NCFMAS mantle composition, T temper-
ature,M equilibrium mantle mineralogy, and ρ density (all pa-
rameters are functions of radius). The forward operator g1 em-
bodies Gibbs free-energy minimization that computes stable
mineral modes as a function of P (pressure), T , and composi-
tion, g2 calculates density, g3 integrates ρ over R to compute M.
We assume subsolidus conditions throughout.

2.5.1. Thermodynamic modeling

Possible mantle compositions are explored within the Na2O-
CaO-FeO-MgO-Al2O3-SiO2 model system. To compute the
mantle density profile, we employ a self-consistent thermody-
namic method. For this purpose we assume: thermodynamic
equilibrium; mantle mineral phases of large exoplanets are those
that potentially occur in the deep mantle of the Earth; and, when
required, the thermodynamic properties of the mineralogy can
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FIG. 1.— Inversion scheme

Fig. 2. Inversion scheme. The bulk compositional constraints from the host star (case B) used both in prior and data are independent. The iterative
scheme is repeated until the output converges to the posterior distribution. See Sect. 2 for more details.

be extrapolated to more extreme conditions than realized on
Earth. The equilibrium mineralogy and, consequently its den-
sity, is computed as a function of pressure, temperature, and bulk
composition by Gibbs energy minimization (Connolly 2009).
For these calculations the pressure is obtained by integrating
the load from the surface boundary and temperature is obtained
by integrating an Earth-like temperature gradient from an arbi-
trarily assumed surface temperature. Mineral equations of state
and parameters are as given by Stixrude & Lithgow-Bertelloni
(2005, 2011). Because the equilibrium assumption is dubious at
low temperature (e.g., Wood & Holloway 1984), for models that
require rock properties at temperatures below 800 K, the stable
mineralogy is first calculated at 800 K and its physical properties
are then computed at the temperature of interest.

2.5.2. EoS for iron core

In order to compute the core density profile, we use the EoS for
pure iron derived by Belonoshko (2010), which is similar to the
Mie-Grüneisen-Debye EoS (Jackson & Rigden 1996), except for
a different thermal pressure term. This EoS for iron is preferred,
as it allows us to closely reproduce high-precision volumetric
experiments of iron under high-pressure and high-temperature
conditions.

The adiabatic gradient in the core is computed as

dT
dP

=
γT
KS

, (4)

where KS is adiabatic bulk modulus, which is related to the
isothermal bulk modulus KT through KS = (1 + γαT ) KT . The

parameters of the Mie-Grüneisen-Debye equation γ = γ0

(
ρ
ρ0

)−q

for iron are ρ0 = 8.334 g/cm3, q = 0.489, and γ0 = 2.434.
Density ρ and thermal expansion coefficient α are then directly
computed from Belonoshko’s EoS.

2.6. Inversion method

Probabilistic inversion methods are suitable when data are
sparse, the physical model (Eq. (2)) is highly non-linear
and/or it is expected that very different models are consis-
tent with information and data (e.g., Mosegaard & Tarantola
1995). While stochastic sampling-based approaches for high-
dimensional problems are computationally expensive, numer-
ous global search methods exist. These include MCMC meth-
ods, simulated annealing or genetic algorithms. MCMC has the
advantage that parameter uncertainties are formally assessed.
Furthermore, the MCMC method generates samples whose dis-
tribution converges to a stationary distribution coinciding with
the posterior probability density function (PDF) (e.g., Hastings
1970). Although the dimensionality of the presented inverse
problem is low (4 parameters), offering the possibility of per-
forming grid-search, we nonetheless employ MCMC because
we intend to expand the complexity of the problem to higher
dimensions, in the future. For consistency, we have also used the
grid-search method to verify our results.

2.6.1. Bayesian analysis

We employ a Bayesian method to compute the posterior PDF
for each model parameter (Rc, Si}, Fe/Si}, Mg/Si}) from
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data (M, R and Fe/Si©) and prior information. According to
Bayes’ theorem, the posterior distribution for a fixed model
parameterization m, conditional on data d, is given by (Tarantola
& Valette 1982)

p(m|d) ∝ p(m) L(m|d), (5)

where p(m) represents prior information on model parameter m.
L(m|d) is the likelihood function and can be interpreted in prob-
abilistic terms as a measure of how well a model m fits data d.

Assuming uncorrelated and normally-distributed residuals
(see Eq. (7)), the likelihood defines a “measure” between d and
m and can be written as

L(m|d) =
1

(2π)N/2(
∏N

i=1 σ
2
i )1/2

exp

−1
2

N∑
i=1

Qi

σ2
i

 , (6)

where N is total number of data points, σi is the estimated er-
ror in the ith datum, and Qi is data misfit, or squared residual,
given by

Qi = (gi(m) − di)T (gi(m) − di), (7)

where g(m) is the forward model discussed in Sect. 2.5.

2.6.2. Markov chain Monte Carlo (MCMC)

For high-dimensional and non-linear inverse problems or sparse
data, it is in practice impossible to derive the posterior distribu-
tion analytically. MCMC techniques offer an efficient method of
performing Bayesian analysis (Eq. (5)). MCMC sampling meth-
ods iteratively search the space of feasible solutions. The itera-
tion scheme used is based on the Metropolis algorithm, which
proceeds as follows:

1. An initial starting model mold is drawn at random by sam-
pling from the prior distribution.

2. The posterior density of mold is calculated by evaluating
the product of the likelihood of the corresponding forward
model and prior density.

3. The current model parameter is perturbed to obtain mnew,
which is subsequently created from a proposal distribution.
Here, the proposal distribution is uniformly bounded and
centered around mold. Generally, it is chosen such that the
size of the model perturbation allows for a reasonable rate
of accepted transitions in the MCMC procedure, typically
around 30% (Gilks et al. 1996).

4. The proposal mnew is accepted with probability (Mosegaard
& Tarantola 1995):
Paccept = min{1, exp(l(mnew|d) − l(mold|d))}.

5. If the proposal is accepted the Markov chain moves to mnew,
otherwise the chain remains at mold.

6. Steps 2 to 5 are repeated.

After many iterations, the accepted samples that are generated
with this approach are (1) independent of the starting model
and (2) distributed according to the posterior distribution. The
efficiency of sampling is strongly dependent on the proposal dis-
tribution. If this distribution is badly chosen, the acceptance rate
of solutions might be unacceptably low, resulting in very poor
efficiency regarding convergence (Hastings 1970). On the con-
trary, if the proposal distribution is well chosen, the MCMC
sampler will rapidly explore the posterior target distribution.
Here, the posterior information is gathered from a large num-
ber of sampled models (∼104). Only the statistical nature of

sampled model features are of interest. Presently, we will con-
centrate on computing marginal posterior distributions in order
to provide the reader with a notion of model parameter uncer-
tainties. Information on single parameters are obtained by one-
dimensional (1D) marginals; higher dimensional marginal PDFs
reveal the correlation that exists among several parameters. If
the data are able to constrain the model (i.e., informative), dif-
ferences between prior and posterior PDFs are expected.

Given the large number of models that have to be computed,
the calculation of the forward model must be computationally
very efficient. In our work, generating the planet’s internal struc-
ture takes on average 0.8 s of CPU time on a four quad-core
AMD Opteron 8380 CPU node with 32 GB of RAM. In all, we
sampled about 107 models and retained around 104 models for
further analysis.

3. Method validation

3.1. Synthetic case

We apply our method to a synthetic planet that ultimately serves
as a benchmark test. Structure and composition of the synthetic
model are defined as:

– Si} = 23.4 wt%;
– Fe/Si} = 0.5; Fe/Si© = 1.69;
– Mg/Si} = Mg/Si© = 0.89;
– Rc = 0.47 R.

Using the interior structure model (Sect. 2.5) we calculate the
synthetic data to be M = 1ME and R = 1RE. For the in-
version we consider the following data uncertainties: σR = 0,
σM = 0.001M, together with Fe/Si? = 1.69 ± 0.18 and
Fe/Si? = 0.89 ± 0.08. Results are shown in Fig. 3 and demon-
strate the ability of the method to retrieve the internal structure
of the synthetic planet. As expected, the most likely posterior
model overlaps with the true model. The inherent degeneracy in
interior structure is apparent from the spread of the posterior.

3.2. Solar system planets

We test our method on the terrestrial solar system planets Earth,
Moon, Mars, Venus, and Mercury, for which a series of inde-
pendent model parameter estimates are available from a host of
geophysical, geo-, and cosmochemical data gathered in situ as
well as from orbiting spacecraft (see Table 2). These tests are
important inasmuch as they allow us to benchmark our method.
For simplicity, Table 2 only summarizes a single best estimate of
independent interior models. Associated uncertainties are very
different depending on data and model assumptions. For exam-
ple, core radius Rc of the Moon, Mars and Mercury, is estimated
to be 310−320 km (Kuskov & Kronrod 2001), 1680 ± 150 km
(Khan & Connolly 2008), and 2020± 100 (Padovan et al. 2014),
respectively.

In the following, we extensively test different scenarios for
the Earth: case A and B. Input for cases A and B is defined
in Sect. 2. These cases show that the compositional constraints
Fe/Si© and Mg/Si© are crucial for determining interior struc-
ture and that Fe/Si? and Mg/Si? are good proxies for them.
How well data for case B allow us to recover the interior struc-
ture is demonstrated for the Moon, Venus, Mars, and Mercury.
For all terrestrial planets we use 1% and 0% uncertainties on
observed M and R, respectively, and Fe/Si? = 1.69 ± 0.18
(Lodders 2003). Minor components of Na2O, CaO, and Al2O3
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Fig. 3. Sampled 1D marginal posterior distributions for the synthetic test where model parameters are inverted for an Earth-sized planet: prior (red),
posterior (blue) and independent estimates (green) of model parameters: a) mantle Si-content Si}; b) mantle Fe/Si}; c) mantle Mg/Si}, and
d) core radius Rc.

Table 2. Independent best estimates of model parameters for terrestrial solar system planets.

Planet Si} [wt%] Fe/Si} Mg/Si} Rc [km] Reference

Earth 22 0.17 0.83 3400 PREM
Moon 23 0.4–0.47 0.8 310–320 Kuskov & Kronrod (2001)
Mars 21 0.64 0.97 1680 Khan & Connolly (2008)
Venus – – – 3100 Aitta et al. (2012)
Mercury – – – 2020 Padovan et al. (2014), Hauck et al. (2013)

Notes. The preliminary reference Earth model (PREM) refers to Dziewonski & Anderson (1981).

Fig. 4. Sampled 1D marginal posterior distributions for Earth, a)−d) case A, e)−h) case B: prior (red), posterior (blue) and independent estimates
(green) of model parameters: a), e) mantle Si-content Si}, b), f) mantle Fe/Si}, c), g) mantle Mg/Si}, and d), h) core radius Rc. Independent
estimates are listed in Table 2. Prior ranges are different for the two cases, but axis ranges are kept the same to ease comparison.

are fixed to chondritic values (Lodders 2003). Prior ranges for
the various parameters are listed in Table 1.

Earth. Results for the Earth for cases A and B are shown
in Fig. 4. Independent estimates of mantle composition and
core size (Table 2) are shown as green bars. Inversion of only
mass and radius (case A) provides little information on mantle

composition, but some constraints on Rc. In contrast, addi-
tion of Fe/Si© and Mg/Si© (case B) enables us, as expected,
to constrain mantle composition and thereby obtain improved
estimates of core size. Moreover, better agreement with the in-
dependent estimates is also observed.

There is an underestimation of the core radius because of our
assumed core composition. In the PREM model (Dziewonski
& Anderson 1981), the core is less dense which reflects the
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presence of lighter elements (e.g., S, Si, C, O) in addition
to Fe-Ni. Since we consider pure iron, we systematically
overestimate core density and therefore underestimate core size.
For both cases A and B, core sizes are 0 ≤ Rc ≤ 2930 km and
1470 ≤ Rc ≤ 3300 km (95% credible intervals), respectively.
Furthermore, we observe that Mg/Si} is not well constrained
by data.

Figure 5 shows the correlation between individual model pa-
rameters for cases A and B. In contrast to case A, strong cor-
relations in case B are evident between model parameters: Si},
Fe/Si}, and Rc. This is due to the constraint provided by Fe/Si©
that couples core and mantle, i.e., a larger core must be com-
pensated by a lower Fe/Si} or a larger Si}. No significant cor-
relation of Mg/Si} to the other model parameters is observed
because data are not able to constrain Mg/Si} well.

Moon. Results for the Moon are shown in Fig. 6. As for Earth,
we see that Si}, Fe/Si}, and Rc are well-constrained, i.e.,
prior and posterior PDF significantly differ, except for Mg/Si}.
Predicted core size matches the independent estimate (Table 2)
reasonably well with 0 ≤ Rc ≤ 380 km (95% credible inter-
val), which also assumes a pure iron core. The mantle com-
position appears not to be fully retrieved here. This is because
the Moon has the lowest Fe/Si© among the terrestrial plan-
ets, including chondrites and satellites of the outer solar sys-
tem (Kuskov & Kronrod 2001). Therefore, the assumption that
Fe/Si© = Fe/Si? leads us to overestimate Fe/Si} and under-
estimate Si}. The independent estimate of mantle compositions
nonetheless lies within the range of inferred posterior models.

Mars. Results for Mars are shown in Fig. 7. Apart from
Mg/Si}, mantle composition (Si} and Fe/Si}) and core ra-
dius (Rc) appear to be well-constrained. Although independent
geophysical estimates of Khan & Connolly (2008) lie within
the posterior distribution, there is discrepancy that relates to the
assumption of sulfur in the core model of Khan & Connolly
(2008). As a consequence, we underestimate core size to 0 ≤
Rc ≤ 1330 km (95% credible interval), which leads to an over-
estimate of Fe/Si} and an underestimate of Si}. Comparing our
results to models with pure iron cores (Rivoldini et al. 2011;
Khan & Connolly 2008), reduces discrepancy.

Venus. Detailed independent analyses of the mantle composi-
tion of Venus are not yet available. Aitta et al. (2012), e.g., im-
pose an Earth-like mantle composition and find that the com-
position of Venus’ core is likely enriched in lighter elements
above that of Earth’s core to fit mass and radius. Consequently,
as shown in Fig. 8, we underestimate core radius to 0 ≤ Rc ≤

2810 km (95% credible interval) compared to the independent
estimates of Aitta et al. (2012). Generally, Rc is well constrained,
while the mantle composition (Si}, Fe/Si} and Mg/Si}) is only
moderately to weakly constrained.

Mercury. Mercury has a high bulk density and is thought to have
experienced a different accretion scenario or undergone a differ-
ent post-formation process in comparison to the other terrestrial
planets (Cameron 1988; Strom & Sprague 2003). An early giant
impact is likely to have stripped off a large part of its silicate
crust and mantle (Benz et al. 1988), leaving behind a planet with
a large iron core. Hence, the constraint Fe/Si© = Fe/Si? is not
applicable to bulk Mercury as a consequence of which it is not

possible to match data. We nonetheless show the posterior model
parameter PDFs in Fig. 9, but emphasize that these models have
near-zero likelihoods. To improve fit to M a larger iron core is re-
quired. This, however, would imply a higher mantle Si-content
(Si}) in order to simultaneously match the Fe/Si© constraint,
but would move Si} outside the prior range.

In summary, the addition of Fe/Si© as constraint (case B) is
clearly the central parameter that allows us to: (1) constrain man-
tle composition; (2) obtain an improved estimate of core size;
and (3) significantly reduce model variability. This ultimately
arises because the compositional constraint (Fe/Si©) results in a
strong correlation of the model parameters Si}, Fe/Si} and Rc
in the inversion as clearly demonstrated in Fig. 5. The data are
not able to constrain Mg/Si}, since Mg/Si} appears not to be
significantly correlated to the other model parameters. We find
that independent estimates of Si}, Fe/Si} and Rc are relatively
well predicted by our method for Earth, Moon, Mars, and Venus.
This is not the case for Mercury, where no model is found that
fits data given our model assumptions.

4. Results

4.1. Application to synthetic exoplanets

In this section, we apply our method to a set of synthetic planets
where mass and radius uncertainties are considered to be arti-
ficially small in order to demonstrate its performance. We con-
sider a range of synthetic exoplanets between 0.1ME < M <
10ME and 0.5RE < R < 1.7RE for both cases A (inversion of
mass and radius) and B (inversion of mass, radius, and bulk
abundance constraints). Prior model ranges are listed in Table 1.
We employ the same standard deviations used in the case of the
terrestrial solar system planets, i.e., σM = 0.01M, σR = 0, and
Fe/Si© = Fe/Si? = 1.69± 0.18 (Lodders 2003), as well as fix-
ing the minor components (Na2O, CaO, and Al2O3) to chondritic
values (Lodders 2003).

Figure 10 shows the range of synthetic rocky planets that fit
data for cases A (left panels) and B (right panels). For every syn-
thetic planet we solved an inverse problem, i.e., for every point in
the M-R-plane in Fig. 10, a full inverse problem is solved yield-
ing separate PDFs for all parameters. When inverting only M and
R (case A), all planets are seen to fall within the extreme limits
of a pure iron and a pure silicate sphere (Fig. 10) as expected.
By adding the compositional constraint (Fe/Si©) inferred from
observations of the host star (here the Sun), the extreme case of
a pure iron sphere, for example, is clearly unable to satisfy this
constraint. As a consequence, for case B synthetic planets plot
within a smaller range than for case A. Mercury, for example,
lies outside the permissible region for reasons discussed above.

With our assumption that planets are composed of a pure
iron core surrounded by a rocky mantle of arbitrary size, it is not
surprising that internal structures could only be derived for plan-
ets with structures lying between a pure iron and a pure rocky
sphere. By adding a compositional constraint (Fe/Si©) the range
of possible internal structures is sharply reduced, leading to ex-
clusion of Mercury-type planets.

Between the limits of a pure iron and pure silicate sphere,
bulk densities decrease toward the silicate-sphere limit. Thus,
we also expect core size to decrease toward the silicate-sphere
limit. To verify that this trend is indeed obtained here, we plot
inverted core mass fraction Mc/M in Fig. 11 for all considered
synthetic exoplanet cases shown in Fig. 10. In the limit of a pure
iron (silicate) sphere Mc/M → 1 (0). For case B, models with
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Fig. 5. Sampled 2D marginal posterior distributions for the Earth (case A: plots a)–f) and case B: plots g)–l)) showing correlation between
parameters Si}, Fe/Si}, Mg/Si}, and core radius Rc (corresponding to Fig. 4). Independent estimates (Table 2) are marked in white.
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Fig. 6. Sampled 1D marginal posterior distributions for the Moon, case B: prior (red), posterior (blue) and independent estimates (green) of model
parameters: a) mantle Si-content Si}; b) mantle Fe/Si}; c) mantle Mg/Si}; and d) core radius Rc. Independent estimates are listed in Table 2.

Fig. 7. Sampled 1D marginal posterior distributions for Mars, case B: prior (red), posterior (blue) and independent estimates (green) of model
parameters: a) mantle Si-content Si}; b) mantle Fe/Si}; c) mantle Mg/Si}; and d) core radius Rc. Independent estimates are listed in Table 2.

Fig. 8. Sampled 1D marginal posterior distributions for Venus, case B: prior (red), posterior (blue) and independent estimates (green) of model
parameters: a) mantle Si-content Si}; b) mantle Fe/Si}; c) mantle Mg/Si}; and d) core radius Rc. Independent estimates are listed in Table 2.

Fig. 9. Sampled 1D marginal posterior distributions for Mercury, case B: prior (red), posterior (blue) and independent estimates (green) of model
parameters: a) mantle Si-content Si}; b) mantle Fe/Si}; c) mantle Mg/Si}; and d) core radius Rc. No interior model fits the data, i.e., likelihoods
are nearly zero. Independent estimates are listed in Table 2.

Mc/M ≥ 0.6, i.e., large iron cores, are evidently excluded as it
becomes difficult to increase mantle Si-content in order to satisfy
the compositional constraint (Fe/Si©).

In order to quantify the information content of data, i.e., the
degree to which data constrain internal structure, we compute
the Shannon entropy measure (Hposterior/Hprior) (Tarantola 2005),
which allows the comparison of prior and posterior PDFs. If

Hposterior/Hprior → 1, data are only weakly constraining models,
whereas if Hposterior/Hprior → 0, data pose strong constraints
on the models (see Appendix D for details). Figure 12 shows
Hposterior/Hprior for all inverted model parameters. For case A
terrestrial-type planets, we find that core radius Rc is generally
well-constrained, whereas mantle composition is weakly con-
strained. For Si}, Fe/Si}, and Mg/Si} the relative Shannon
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Fig. 10. Range of synthetic rocky planets that fit data (black dots) of a) M and R (case A), and b) M, R, and stellar abundance constraints (case B).
Mass-radius curves for pure iron (red) and pure silicate spheres (blue, zero amount of FeO) were calculated independently. In case A, all synthetic
planets that fit data (black dots) fall within the limits of a pure silicate (blue line) and pure iron sphere (red line). In case B, this region is reduced
to a smaller area indicating that chemical bulk ratio (Fe/Si©) introduces strong additional constraints on the internal structure. Synthetic planets
for which no internal structure could be derived within model assumptions (pure iron core surrounded by a rocky mantle) are indicated by gray
open circles. For every circle in the plots an inverse problem has been solved. See main text for further details.

Fig. 11. Mean posterior core mass fraction Mc/M plotted for the range of synthetic rocky planets that fit a) M and R (case A), and b) M, R, and
stellar abundance constraints (case B). See also Fig. 10.

entropy measures are larger than 0.8 throughout the tested range
of synthetic planets. There are few planets that have bulk den-
sities that are very close to the pure silicate sphere for which
Fe/Si} appears to be better constrained. Generally for case A,
the inversion scheme is not sensitive to variations in mantle com-
position but mostly sensitive to variations in core radius Rc.
Stated differently, any variations in mantle composition can be
compensated by tiny variations in core radius, while variations
in core radius must be compensated by large changes in mantle
composition in order that data (M and R) be matched.

From Fig. 12 we observe the following trend for case A:
Rc appears to be better constrained for smaller and denser plan-
ets. The denser a rocky planet is, the more it is dominated by

its core, and so less mantle material is available whose compo-
sitional changes could compensate for variations in core radius.
Similarly, when the planet is smaller, there is less absolute man-
tle mass available to compensate for a higher variability in core
radius. Therefore, the precision with which core radius can be
determined rests ultimately on the available mantle mass.

For case B, the addition of Fe/Si© significantly reduces
model variability, i.e., correlation between model parameters is
increased. For this case Rc, Si}, and Fe/Si} are better con-
strained compared with case A, while Mg/Si} is only weakly
constrained as for case A. We note, however, that the prior
bounds Mg/Si} are significantly narrower for case B than for
case A because of the stellar abundance constraint. The relative
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Fig. 12. Relative Shannon entropy measure Hposterior/Hprior of model parameters plotted for the range of synthetic rocky planets that fit a given M
and R (case A, left panels), and M, R, and Fe/Si© (case B, right panels). Model parameters are well constrained for Hposterior/Hprior → 0 (blue
colors) and not constrained for Hposterior/Hprior → 1 (red colors). For case B, variations of Hposterior/Hprior along the grid appear not to be smooth
which is due to the poor grid resolution. See also Fig. 10.
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Fig. 13. Confirmed exoplanets plotted against Fig. 10: a) case A and b) case B.

Table 3. Masses and radii of observed exoplanets.

Planet Radius R/RE Mass M/ME Reference Mean bulk density g/cm3

CoRoT-7b 1.55 ± 0.10 7.31 ± 1.21 Moutou et al. (2013) 10.82
Kepler-10b 1.416 ± 0.033 4.56+1.17

−1.29 Batalha et al. (2013) 8.89
Kepler-36b 1.486 ± 0.035 4.45+0.33

−0.27 Carter et al. (2012) 7.48
Kepler-57c 1.55 ± 0.04 5.4 ± 3.7 Steffen et al. (2013) 8.00
Kepler-68c 0.953+0.037

−0.042 4.8+2.5
−3.6 Gilliland et al. (2013) 30.58

Kepler-78b 1.173+0.159
−0.089 1.86+0.38

−0.25 Pepe et al. (2013) 6.35
Kepler-93b 1.50 ± 0.03 2.59 ± 2.00 Weiss & Marcy (2014) 4.23
Kepler-97b 1.48 ± 0.13 3.51 ± 1.90 Weiss & Marcy (2014) 5.97
Kepler-99b 1.48 ± 0.08 6.15 ± 1.30 Weiss & Marcy (2014) 10.46
Kepler-100b 1.32 ± 0.04 7.34 ± 3.20 Weiss & Marcy (2014) 17.60
Kepler-102b 1.18 ± 0.04 3.8 ± 1.8 Weiss & Marcy (2014) 12.75
Kepler-131c 0.84 ± 0.07 8.25 ± 5.90 Weiss & Marcy (2014) 76.74
Kepler-406b 1.43 ± 0.03 6.35 ± 1.40 Weiss & Marcy (2014) 11.97
Kepler-406c 0.85 ± 0.03 2.71 ± 0.80 Weiss & Marcy (2014) 24.33

Shannon entropy measures for core radius Rc in case B are sim-
ilar but slightly smaller than for case A.

As discussed for the terrestrial solar system planets, only the
core size can be constrained in the case of exoplanets for which
only mass and radius are known (case A). In case B, the compo-
sitional constraint (Fe/Si©) introduces a strong correlation be-
tween the model parameters Si}, Fe/Si} and Rc. This enables
us to constrain mantle composition.

4.2. Application to confirmed exoplanets

In this section we apply our methodology to actual exoplanet
measurements in order to derive models of the internal structure.
At this point in the development of our approach we are still lim-
ited by the assumptions made for the overall structure (iron core
and rocky mantle with no ice and no atmosphere) and hence this
application serves more as an illustration of the overall capabil-
ities of our method. In Fig. 13 we plot all confirmed exoplan-
ets in the mass-radius range of interest on top of our synthetic
exoplanet calculations (Fig. 10). Masses, radii, and uncertainty
ranges of the observed exoplanets are listed in Table 3. Kepler-
68c, Kepler-131c and Kepler-406c have estimated mean densi-
ties above that of pure iron and clearly present special exotic

cases. Kepler-36b has been chosen to demonstrate the applica-
tion of our method to actual observations because of small un-
certainties on mass and radius. To our knowledge, no stellar ele-
mental abundances of Fe/Si? and Mg/Si? of its host star other
than for the Sun are available. Hence, we test case B assuming
solar elemental abundances. Since the Kepler mission has been
targeting Sun-like stars (Borucki et al. 2010), this is a permissi-
ble assumption.

Figure 14 shows the results for Kepler-36b. For case A, we
see that the mantle ratios Fe/Si} and Mg/Si} are not con-
strained at all, while Si} and Rc are moderately and well con-
strained, respectively. By adding Fe/Si© to the data (case B),
Si} and Fe/Si} are significantly better constrained. Thus, incor-
porating observations of stellar elemental abundances has a big
impact on our ability to constrain model parameters. The pos-
terior range of Rc is very large in both cases ranging from zero
to about half the planet radius. We argue that mass and radius
uncertainties of 7% and 2%, respectively, are the reason for such
a large spread.

The example of Kepler-36b illustrates the necessity of hav-
ing well-measured masses and radii in order to derive constraints
on the interior structure. Furthermore, it exemplifies the large
impact of elemental abundance ratios in order to constrain plan-
etary interior structure. Since it will be impossible to directly
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Fig. 14. Sampled 1D marginal posterior distributions for Kepler-36b, case A a)–d) and B e)–h): prior (red) and posterior (blue) of model param-
eters: a), e) mantle Si-content Si}, b), f) mantle Fe/Si}, c), g) mantle Mg/Si}, and d), h) core radius Rc. Data uncertainties are σFe/Si© = 10%,
σR = 2%, and σM = 7%.

Fig. 15. Summary of information content for Kepler 36-b (M = 4.45ME, R = 1.486RE): relative Shannon measure as a function of a) σM while
fixing σR at 0.5%, b) σFe/Si© while fixing σM at 0.5%, c) σR while fixing σFe/Si© at 0.5%.

measure these, spectroscopically-determined values measured
from the photosphere of the host star should serve as proxies.

4.2.1. Information content of the data

The limiting factor on our ability to constrain interior structure
is measurement precision. In this section, we study in more de-
tail the link between measurement precision and resulting con-
straints on internal structure.

For this, we compute the relative Shannon entropy measure
Hposterior/Hprior for each model parameter for a range of mea-
surement uncertainty. In these calculations, inversions were per-
formed using a grid-search method. The results are shown in

Fig. 15 for the example of Kepler-36b and in Fig. 16 for an Earth-
like planet. The results can be summarized as follows:

– Overall, a decrease in data uncertainty leads to a smaller
Hposterior/Hprior and thus better constrained parameters.
However, for large uncertainties Hposterior/Hprior is nearly
constant and relatively large.

– Uncertainties on M, R, and Fe/Si© appear equally important.
– The inherent degeneracy of the problem is limiting our abil-

ity to constrain interior structure even in the case of very
small data uncertainties. For the cases shown, Hposterior/Hprior
does not fall below 0.5.

– Our ability to constrain interior structure is significantly dif-
ferent for larger and denser exoplanets such as Kepler-36b
compared to Earth-like bodies. As shown for Kepler-36b,
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Fig. 16. Summary of information content for an Earth-sized body (M = 1ME, R = 1RE): relative Shannon measure as a function of a) σM while
fixing σR at 0.5%, b) σFe/Si© while fixing σM at 0.5%, c) σR while fixing σFe/Si© at 0.5%.

Hposterior/Hprior decreases only at extremely small data un-
certainties whereas for an Earth-like body, Hposterior/Hprior
decreases significantly earlier. Given their large difference
in mass, this indicates that measurements with a given pre-
cision are able to better constrain the internal structure of
small-mass planets than large-mass planets. Large planets
have more absolute mantle mass available whose composi-
tional changes are able to compensate for a higher variability
in core radius, ultimately reducing our ability to constrain in-
terior models.

– Over the entire tested range of uncertainties on Fe/Si©
(0−15%), significant improvements in our ability to con-
strain interior structure can be observed, whereas for mass
and radius this is only evident in the case of small uncer-
tainty ranges (<5%).

5. Discussion

The results presented here have to be interpreted in the light of
the assumptions made. Firstly, we consider terrestrial-like plan-
ets that consist only of silicate mantles and pure iron cores.
Sotin et al. (2007) showed that rocky planets can be described
with great accuracy by only using the four elements Si, Mg,
Fe, O. Secondly, we assume a pure iron composition for the core.
Volatiles (H, He, H2O, etc.) are currently neglected. Compared
to Earth, where the core include lighter elements (e.g., S, Si,
C, O), our method therefore systematically overestimates core
density and underestimates core radius. This introduces biases
in the estimates of mantle composition due to the strong cor-
relations between mantle composition and core radius. In the
future, lighter elements (e.g., Si) will be included in the core.
Thirdly, our approach assumes subsolidus conditions and per-
fectly known Equation-of-State parameters for all considered
compositions. For exoplanets that are larger than Earth, extrapo-
lations of parameters to pressures and temperatures beyond those
measured in the laboratory are required. This introduces uncer-
tainty in the EoS modeling that we will address in the future.

While the mean density of a terrestrial-like planets can be de-
rived from measurements of mass and radius, its internal struc-
ture is only relatively poorly constrained by these two quantities
as also shown by Rogers & Seager (e.g., 2010). We find that

adding Fe/Si© and Mg/Si© as compositional constraints sig-
nificantly improves this situation. These additional constraints
significantly narrow the prior range of mantle compositions (for
details on use of different priors see, e.g., Rogers & Seager
2010). In particular, Fe/Si© introduces a strong correlation be-
tween model parameters Si}, Fe/Si}, and Rc, which signif-
icantly reduces the range of possible models. Hence, Fe/Si©
plays a central role in constraining mantle composition and in-
ternal structure.

Our ability to constrain interior structure is directly limited
by data uncertainties. We have demonstrated that uncertainties
on mass, radius, and elemental abundances appear to be equally
important. While it is worth striving to increase the measure-
ment precision on all input data, the knowledge of Fe/Si? and
Mg/Si? is particularly important as it represents a relatively
powerful means of reducing the degeneracy of possible inte-
rior models. The level of inherent degeneracy in model solu-
tions actually depends on the specific values of M and R (as
discussed for Fig. 12) (Rogers & Seager 2010): for given mea-
surement accuracy of mass and radius, interior structure is better
constrained for an Earth-sized planet than for a larger body (e.g.,
Kepler-36b).

In an earlier study, Rogers & Seager (2010) employed
Bayesian analysis to study exoplanet GJ 581d in an attempt
to constrain core mass and silicate mantle mass fractions of
MgSiO3 and FeSiO3. Based on mass and radius alone, Rogers
& Seager (2010) also concluded that an exact interior solu-
tion cannot be inferred since the problem is highly underde-
termined. However, Rogers & Seager (2010) argue against the
use of bulk abundance constraints inferred from Fe/Si? and
Mg/Si? in order to remain as independent as possible of planet
formation models. It should be noted that if Rogers & Seager
(2010) were to use bulk abundance constraints core size and
mantle composition would be fixed since they use a parame-
terized phase-diagram approach and restrict the mantle miner-
alogy to Mg1−χFeχSiO3. Consequently, the problem would no
longer be degenerate. Clearly, our approach is more general be-
cause it allows for arbitrary elemental abundance ratios while
using stellar abundance constraints as a means of further reduc-
ing model variability.
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With regard to planet formation, these studies suggest that
some interior compositions are more likely than others. Recent
planet formation studies accounting for equilibrium condensa-
tion of material (e.g., Thiabaud et al. 2013) have shown that
most planets have a bulk refractory (Fe, Si, and Mg) composition
that appears to be indistinguishable from that of the host star be-
cause species of Fe, Si and Mg condense at similar temperatures
(∼1000 K). Hence, most planets will have similar refractory el-
emental ratios as those in the original disk which is assumed to
be well-represented by stellar ratios. Furthermore, O, Fe, Si, and
Mg are predicted to be among the most frequent solid species in
circumstellar disks (e.g., Elser et al. 2012; Gilli et al. 2006) as
a consequence of which models with large iron cores and small
silicate mantles are generally unlikely to form. Based on these
observations, Valencia et al. (2007a) also proposed the general
use of a minimum bulk value for Fe/Si. Here, we have followed
Grasset et al. (2009), who considered bulk Mg/Si and Fe/Si to
be dictated by their abundance in the host star’s photosphere and
adopt these as proxies for planet bulk composition.

For the terrestrial solar system planets, we showed that us-
ing solar photospheric abundances (Fe/Si? and Mg/Si?) yields
tighter constraints on the internal structure, except for Mercury.
Mercury’s interior is unique among the terrestrial planets and
is usually explained by the removal of a large fraction of its
silicate mantle by either a giant impact or by evaporation due
to the proximity of the planet to the Sun (Benz et al. 1988).
Consequently, our scheme is not able to find interior models that
fit data for Mercury. In spite of this, we argue for the use of stel-
lar abundance constraints because of the ability of our scheme to
predict for which planets alternative accretion scenarios or post-
formation processes must be envisaged. We also note that me-
teorites, which are assumed to be the building blocks of the ter-
restrial planets, have abundances of refractory elements within
10% of solar values (Lodders 2003).

6. Conclusions and outlook

We have presented a Bayesian inversion method in order to
constrain the interior structure of rocky exoplanets from mea-
surements of mass and radius. Since stellar refractory elemental
abundances are likely to be generally a good proxy for plane-
tary bulk compositions, they represent powerful additional con-
straints allowing us to significantly improve determination of
internal structure. Our proposed scheme is more general than
previous works on mass-radius relationship of rocky exoplan-
ets, in that we obtain confidence regions of interior structures
of general mantel composition and core structure. Furthermore,
we investigated how interior structure models depend on vari-
ous parameters in the form of prior information, data, and data
uncertainties.

We have applied the method to the terrestrial planets of
our solar system and compared the results to independent es-
timates and, except for Mercury, find generally good agreement.
Following this, we have applied our method to synthetic exo-
planets in a large mass and radius range as well as to exoplanet
Kepler-36b. We have investigated two different cases: case A
where we invert mass and radius, and case B where we addition-
ally consider stellar elemental abundances obtained from photo-
spheric observations of the host star. We summarize our findings
in the following:

– Photospheric elemental abundances of the host star (Fe/Si?
and Mg/Si?) are main parameters in reducing model

degeneracy through the introduction of correlations between
mantle composition and core size.

– How well mantle composition and core radius can be gen-
erally constrained depends on data and data uncertainties.
There is an inherent degeneracy that limits our ability to
constrain the interior structure even in the case of small data
uncertainties. Independently of these, it seems that model
variability depends on mass and density of a planet. Thus, it
is our contention that a case-by-case probabilistic inversion
that provides model parameter uncertainties is indispensable
in order to rigorously characterize interior structure.

– Measurement uncertainties on mass, radius, and stellar
abundance constraints appear to be equally important.

– For improved characterization of interior structure better
estimates of Fe/Si? and Mg/Si? are required. We have
shown for Kepler-36b and an Earth-sized planet that sig-
nificant improvements on model parameter estimation can
be achieved by reducing the uncertainty of Fe/Si? and
Mg/Si?.

Space missions that aim at characterizing exoplanets by means
of the transit method seek the most precise measurement of R
and hope for follow-up missions to provide precise measure-
ments for M. However, since data precision also depends on
characteristics of target star and observation time (integration
time, number of transits observed), a careful weighing of costs
and benefits is crucial for the success of a mission. We have
demonstrated how the relative Shannon entropy can be used
in future missions (e.g., CHEOPS, TESS, PLATO) as a means
of optimizing the scientific return. In particular, we are able
to quantitatively assess the improvement in interior structure-
determination of a specific exoplanet target as a result of an
increase in the measurement precision of mass and radius. To
illustrate this we consider the case (discussed in Fig. 15), where
the predominantly flat curves imply that smaller uncertainties
on mass and radius do not provide significantly better insights
on the interior structure. For an Earth-sized exoplanet, however,
smaller uncertainties on mass and radius can lead to an improved
understanding of interior structure (Fig. 16).

An increasing number of Super-Earths are being observed.
Super-Earths lie in the intermediate mass-range between terres-
trial planets and the gas/ice giants in the solar system with dif-
ferent scenarios for their interiors. Their interior structures (e.g.,
purely rocky composition or predominantly water/carbon com-
pounds) and formation histories are, however, a matter of debate,
as is the question of whether Super-Earths can harbor life (e.g.,
Valencia et al. 2007c; Howe et al. 2014). A potential way of
answering these questions is to invert for the physico-chemical
structure in order to narrow down the possible types of interior
models.

In future studies, we will extend the dimensionality of our
problem to include more elements, e.g., hydrogen and water,
so as to model also exoplanets with atmospheres and/or oceans.
This will eventually allow us to study how interior types are dis-
tributed among stars and what can be learned from such distri-
butions about planet formation. However, for a given data set,
increased model complexity is generally accompanied with a
larger degeneracy in model solutions. Additional data would
help to restrict model variability. For example, dynamic obser-
vations can constrain a planet’s tidal dissipation and thereby
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provide constraints on the distribution of rigidity and density
(through the Love number, e.g., Delisle et al. 2014).
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Appendix A: Prior of mantle Si-content

The prior bounds on Si} depend on the prior bounds of Fe/Si}
and Mg/Si}, since the mass fractions of all oxides in the
NCFMAS chemical system must sum to one. The mass fraction
of Si can be expressed as

Si} =
(1 − χNa2O,CaO,Al2O3 )(

µSiO2
µSi

+ Fe/Si}
µFeO
µFe

+ Mg/Si}
µMgO

µMg

) ,
where µ are respective molar weights and the mass fraction

of minor oxides are combined in χNa2O,CaO,Al2O3 . Transforming
from a uniform prior in Fe/Si} and Mg/Si} to the variable Si}
we find the prior of Si} being

p(Si}) ∝

∣∣∣∣∣∣∂Fe/Si}
∂Si}

∣∣∣∣∣∣ =
(1 − χNa2O,CaO,Al2O3 )

Si2}
µFeO
µFe

·

This implies a non-uniform prior for Si}. Outside the given
interval in Table 1 the prior distribution of Si} is essentially zero.

Appendix B: Temperature profile

We assume a fixed mantle temperature profile that is based on
the Earth model. A variable temperature profile for the man-
tle only introduces negligible variations in the density profile
(<1%). This is demonstrated in Fig. B.1. Surface temperature is
fixed at 1000 K and although temperature varies between 2100 K
to 3500 K at the core mantle boundary, resultant changes in den-
sity are relatively small (Fig. B.1).

Fig. B.1. Sampled profiles of density profiles for Earth. A variable man-
tle temperature (gray profiles) only introduces little additional variation
in density compared to profiles with fixed mantle temperature (green
colors).
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a) b) c) d)

Fig. C.1. Sampled 1D marginal posterior distributions for Earth using the FMS system: prior (red), posterior (blue) and independent estimates
(green) of model parameters: a) mantle Si-content Si}; b) mantle Fe/Si}; c) mantle Mg/Si}; and d) core radius Rc. Independent estimates are
listed in Table 2.

Appendix C: Silicate model chemical system

To illustrate the influence of the chosen model chemical sys-
tem, we solve the inverse problem for the case of the Earth as
in Sect. 3.2, but using the simpler FMS system. Sampled model
parameter PDFs are shown in Fig. C.1 and relative to NCFMAS
(Fig. 4), we observe that with the FMS system mantle compo-
sition and core radius are less well predicted, although poste-
rior model parameter variability is, as expected, smaller (fewer
chemical components). In addition, future use of stellar deter-
minations of Ca, Na, and Al abundances support the use of the
NCFMAS system.

Appendix D: Shannon entropy measure

The Shannon entropy measure of a discrete variable X of possi-
ble states {x1, x2, .., xN}, with N being the number of bins, can be
written as

H = −

N∑
i=1

p(xi) ∗ log2 p(xi),

where the xi states represent the distribution histogram bins in
which the probability of occurrence is given by

p(xi) =
number of realizations in the bin

total number of realizations
·

The Shannon entropy H has a maximum Hmax = log2(N) when
all N states are equally likely (e.g., a uniform distribution) and a
minimum Hmin = 0 when all realizations xi fall into a single his-
togram bin. Clearly, H is bin-size dependent. Here, the bin size
used is defined such that the prior range of each model parameter
is divided in ≈20 different bins.
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