Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling

A. Khan,1,2 A. Zunino,3 and F. Deschamps4

Received 9 January 2013; revised 5 June 2013; accepted 22 July 2013.

1] Here we discuss the nature of velocity heterogeneities seen in seismic tomography images of Earth’s mantle whose origins and relation to thermochemical variations are yet to be understood. We illustrate this by inverting fundamental-mode and higher-order surface-wave phase velocities for radial models of the thermochemical and anisotropic structure of the mantle to 450 km depth. Dispersion data are linked to thermochemical parameters through a thermodynamic formalism for computing mantle mineral phase equilibria and physical properties. The inverse problem is solved using a probabilistic inference approach whereby robust uncertainty estimates are obtained. We find that both compositional and thermal anomalies are required if observations are to be satisfied. Mantle thermochemical variations extend to 250 km depth beneath western and central Australia and are characterized by increased Mg/Fe and Mg/Si values relative to surrounding mantle. Correlated herewith are thermal variations that closely follow surface tectonics. We also observe a strong contribution to lateral variations in structure and topography across the “410 km” seismic discontinuity from thermochemically induced phase transformations that appear much stronger than lateral variations immediately above and below. Inside the transition zone, a general decoupling of structure relative to that of the upper mantle occurs driven by a reversal in Mg/Si, while thermal anomalies are smoothed out. Comparison of presently derived shear-wave tomography models with other regional models is encouraging. Radial anisotropy is strongest at 150/200 km depth beneath oceanic/continental areas, respectively, and appears weak and homogeneous below. Finally, geoid anomalies are computed for a subset of sampled model and compared to observations.

Citation: Khan, A., A. Zunino, and F. Deschamps (2013), Mantle thermochemical and anisotropic variations imaged beneath Australia from Bayesian inversion of surface-wave phase velocities, J. Geophys. Res. Solid Earth, 118, doi:10.1002/jgrb.50304.

1. Introduction

[2] The ubiquitous velocity anomalies seen in seismic tomography images of the upper mantle at global and regional scales are observed to correlate strongly with surface tectonic features that extend well into the upper mantle linking tectonically old and stable lithosphere with fast seismic velocities and seismically slow parts with regions that have undergone relatively recent tectonic activity. There is ample evidence that the processes responsible for these features involve thermochemical variations, but, because separating thermal and chemical effects from seismic wave speeds alone is complicated, a lot of details even at the long-wavelength scale remain perfunctory. Ultimately, and in spite of a mineral physics database that has steadfastly improved over the years in quantity and quality, the use of seismic tomography images for the purpose of understanding the underlying thermochemical variations is nonunique. [3] Several studies have tried to explain the observed variations in seismic wave speeds purely in terms of thermal variations [e.g., Röhm et al., 2000; Shapiro and Ritzwoller, 2004; Goes et al., 2005; McKenzie et al., 2005; Cammarano and Romanowicz, 2007; Cammarano et al., 2009; Schubert et al., 2009, 2012]. However, ability to fit data by thermal variations alone does not exclude the presence of compositional variations. While these studies have given preference to thermal variations based on observations of the limited range of seismic velocities of plausible lithologies, the latter derives from shallow mantle sources (~150 km depth) [e.g., Schutt and Lesher, 2006; James et al., 2004; Afonso et al., 2010; Hieronymous and Goes, 2010] that may not be representative of the mantle in general. Thus, stepping beyond the “xenolith hypothesis” in order to quantify the role played
by chemical heterogeneity may be important for understanding the structure of the lower part of the upper mantle and transition zone.

[4] In an attempt to overcome the problems associated with model construction followed by model interpretation, we present a model of the thermochemical structure of the mantle to 450 km depth beneath Australia, including its radially anisotropic shear-wave velocity structure derived directly from geophysical data. The link between geophysical observables and thermochemical state, which governs material and physical properties, is provided by thermodynamics. This ensures that temperature, composition, physical properties, and discontinuities associated with mineral phase transformations are anchored in laboratory-measured data of mantle minerals while permitting the use of inverse methods to sample a range of profiles of physical properties matching geophysical data. Relying, therefore, on a self-consistent thermodynamic formalism for computing mantle mineral phase equilibria and physical properties [e.g., Stixrude and Lithgow-Bertelloni, 2005; Connolly, 2005], quantitative inferences about the underlying processes that produce the observed variations in seismic wave speeds can be drawn.

[5] Tectonically, the Australian continent can be divided into several main provinces (Figure 1) with a westward age progression from Phanerozoic (<500 Ma) over Proterozoic (500–2500 Ma) to Archean (>2500 Ma). The Proterozoic shield regions located in the center and to the west, which are divided into three main cratons to the west, north, and south, are separated by either orogenic belts or Phanerozoic sedimentary cover [e.g., Betts et al., 2002]. The relation of these features to seismic velocity variations have been documented in several earlier studies of the region [e.g., Simons et al., 1999; Debayle and Kennett, 2003; Yoshizawa and Kennett, 2004; Fishwick et al., 2005, 2008; Fichtner et al., 2010; Arroucau et al., 2010; Fishwick and Rawlinson, 2012; Kennett et al., 2013]. Although the models qualitatively agree, with western and central parts of the continent showing up as fast seismic velocity regions and the eastern and oceanic areas as seismically slow regions, the patterns of isotropic and anisotropic velocity anomalies and average velocities obtained in these studies nonetheless differ significantly from one another. As a result, and to the detriment of the interpreter, any geophysical implications to be drawn from these models will also differ. Model discrepancies result from differences in data, modeling aspects (forward and inverse problem), parameterization, regularization, and choice of reference model.

[6] In order to investigate the relative importance of thermochemical variations, we invert Love- and Rayleigh-wave phase velocities directly for regional models of upper mantle and transition zone thermochemistry and radial anisotropy to a depth of 450 km beneath the Australian continent following our previous approach [e.g., Khan et al., 2011a]. In line with our earlier analysis, we employ a Bayesian probabilistic inference analysis [e.g., Mosegaard and Tarantola,
[1995] to invert the regional surface-wave dispersion data following the methodology of Shapiro and Ritzwoller [2002] in their global-scale statistical tomographic study. In spite of advantages of Bayesian and Markov chain Monte Carlo (MCMC) methods for solving inverse problems of which rigorous uncertainty, resolution and accuracy analysis have to be cited as the single most important set of items, they are, mainly because of the large computational demand involved, yet to become a mainstay of seismic tomography and currently applications are few [e.g., Bosch, 1999; Shapiro and Ritzwoller, 2002; Bodin et al., 2012a; Khan et al., 2011a, 2011b]. Other geophysical applications of McMC methods include the studies of Voss et al. [2006]; Verhoeven et al. [2009]; Fullea et al. [2012]; and Afonso et al. [2013a, 2013b], to name but some. Emphasis here is not on providing an estimator (e.g., mean, median, or maximum likelihood), i.e., a new tomographic model for purposes of interpretation but to provide uncertainty estimates of the relevant parameters. To assess results, we compare our thermodynamically derived seismic shear-wave tomography models with purely geophysically derived regional tomography models and find good agreement providing evidence in support of the approach taken here.

[7] Mapping anisotropy (radial and azimuthal) has been a sought-after attribute of fundamental interest because of the constraints that it provides on mantle flow. Anisotropy is believed to reflect present-day mantle strain field or past deformation frozen in the lithosphere providing a link between large-scale dynamical evolution and seismic tomography [e.g., Becker et al., 2008]. While regional and global anisotropic tomographic models based on surface-wave observations have detected what appears to be large-scale layering of azimuthal anisotropy within continental lithosphere and asthenosphere [e.g., Simons and van der Helst, 2002; Debayle et al., 2005; Yuan and Romanowicz, 2010] consensus is yet to emerge. The difficulty of uniquely assessing location and amplitude of anisotropic features is exemplified in several regional studies of the North American and Australian continents that appear to share few similarities [e.g., Nettles and Dziewonski, 2008; Yuan et al., 2011; Khan et al., 2011a; Fichtner et al., 2010; Yoshizawa and Kennett, 2004].

[8] Finally, as thermal and chemical state of Earth’s interior directly influence processes that determine the dynamical behavior and evolution of our planet, we employ gravity anomalies as a further means of refinement. The basic assumption being that mantle flow is driven by density anomalies that are determined by variations in the fundamental properties of interest [e.g., Perry et al., 2003; Nakagawa et al., 2009; Cammarano et al., 2011; Khan et al., 2011a].

2. Data

[9] Our data set consists of the azimuthally averaged isotropic part of the global azimuthally anisotropic phase-velocity maps of fundamental and higher-mode Love (to fifth overtone) and Rayleigh (to sixth overtone) waves of Visser et al. [2008] quoted at a lateral resolution of 5°×5°. In an approach similar to the one employed by Shapiro and Ritzwoller [2002] in their McMC inversion of fundamental-mode surface-wave data for a global-scale shear-wave velocity model, we extract from Visser et al.’s global maps dispersion curves at the center of each lateral grid node (henceforth abbreviated pixel) for the study area of interest, i.e., the Australian continent and surrounding ocean (see Figure 2). In total, this amounts to 13 dispersion curves consisting of a total of 149 distinct Love- and Rayleigh-wave phase velocities as a function of frequency for each 5°×5° pixel, which are inverted for radial profiles of composition, temperature, and radially anisotropic structure. Examples of dispersion curves, including frequency ranges studied, are shown later (see section 5.1, Figure 4). As previously, only a regional-scale study is undertaken due to the high computational requirements of McMC methods.

[10] There are inherent limitations in using surface-wave phase-velocity maps as data in place of the phase-velocity data from which the former are constructed. The range of models that will be mapped out here will be controlled by the phase-velocity maps and their nominal uncertainties. Whether these uncertainties are equivalent or similar to the uncertainties of the original data is difficult to ascertain. However, it has to be pointed out that the phase-velocity maps of Visser et al. [2008] were constructed from phase-velocity measurements obtained using a model-space search technique, which provides uncertainties on phase-velocity measurements as well as on phase-velocity maps. This means that the present inversion is not a tomographic inversion in the narrow sense, but an inversion for a set of (local) radial profiles of thermochemical and physical structure that result in a range of tomographic models that are consistent with Visser et al.’s phase-velocity maps and uncertainties. Regarding the latter, uncertainties are dominated by the smoothness-constraints employed in the construction of the maps, and therefore, only an average uncertainty per mode is given in Visser et al. Note that uncertainty varies with mode and frequency. For further details, we refer the reader to the work of Visser et al. [2008].

3. Computational Aspects

3.1. Parameterization

[11] Lateral and radial model parameterization is shown in Figure 2. Surface-wave dispersion data are strongly affected by the velocity structure and thickness of the crust [e.g., Boschi and Ekström, 2002; Bozdag and Trampert, 2008]. As Nettles and Dziewonski [2008], we use global crustal model CRUST2.0 [Bassin et al., 2000] as initial model to derive a regional crustal model that has many features in common with recent models obtained from crustal-specific studies [e.g., Kennett et al., 2011; Bodin et al., 2012b]. The crust is parameterized using purely physical properties within layers: P, S wave velocity (V_P, V_S), density (\rho), and depth to crust-mantle interface (d_{Moho}). As in our previous work, we employ the crustal model CRUST2.0 (http://maih.ucsd.edu/Gabi/rem.html) as initial model for the crust and change properties in top and bottom layers only while interpolating linearly for the remainder. Mantle layers (10) are described in terms of composition c, temperature T, anisotropy parameters \varepsilon, \phi, \eta (to be defined below), and seismic wave attenuation Q. As only the mantle is of interest here, this results in a total of 97 parameters for each pixel. Parameters and prior information are summarized further in Table 1.
Figure 2. (a) Lateral and (b–d) radial model parameterization. (Figure 2a) Dots at the center of each pixel denote the locations at which properties are defined laterally with a grid spacing of $5^\circ \times 5^\circ$. Letters a–e refer to locations for which radial shear-wave velocity profiles are displayed in Figure 11. Radially (Figures 2b–2d), the model is parameterized in terms of layers. The primary (fundamental) parameters are as follows: (Figure 2b) crust is delineated by density (ρ), P and S wave velocity (V_p, V_s), and depth to crust-mantle interface (d_{Moho}) while mantle layers (Figure 2c) are described by the main parameters: composition (c), temperature (T), anisotropy (ξ, ϕ, η), and attenuation (Q). (Figure 2d) Secondary parameters (physical properties: V_{SH}, V_{SV}, V_{PH}, V_{PV}) are computed on the basis of the primary parameters on a grid, which is finely spaced around locations of major mantle mineral phase transitions. Circles in both plots denote location of a set of prefixed depth nodes, except in the crust where depth to crust-mantle interface is variable.

3.2. Forward Problem

[12] The forward problem is summarized in Figure 3 and will be briefly discussed here.

[13] Step 1: $\{c, T\} \xrightarrow{\text{Eq.}} \{M\} \xrightarrow{\text{Gibbs}} \{V_p, V_s, \rho\}$. Equilibrium mineralogy M and isotropic V_p and V_s, and ρ beneath each pixel are computed using the thermodynamic code Perple_X developed by Connolly [2005]. Assuming thermodynamic equilibrium Perple_X computes mantle mineralogy by Gibbs free energy minimization as a function of composition, pressure, and temperature. The thermodynamic formalism of Stixrude and Lithgow-Bertelloni [2005] as parameterized by Xu et al. [2008] for mantle minerals in the model chemical system Na$_2$O-CaO-FeO-MgO-Al$_2$O$_3$-SiO$_2$ (abbreviated NCFMAS) is employed. The Gibbs energy minimization procedure yields the amounts, compositions, and physical properties, including elastic moduli, of the stable minerals in the model chemical system, while bulk rock elastic moduli are estimated by Voigt-Reuss-Hill averaging.

The pressure profile is obtained by integrating the load from the surface (boundary condition $p = 10^5$ Pa).

[14] As an alternative to our assumption of thermodynamic equilibrium, Xu et al. [2008] have proposed that the mantle consists of a nonequilibrium mechanical mixture. In this model, the mantle has undergone complete differentiation into end-members, and bulk properties are computed by averaging the properties of the minerals in these end-members. However, from the point of view of geophysics, there is no argument for or against either model as discussed in Khan et al. [2009], whereas from a petrological viewpoint, it can be argued that while the mechanical mixture model plausibly depicts the influence of chemical segregation on the equilibrium model, it cannot be argued to be a more realistic end-member for the Earth’s mantle because it is inconsistent with mid-ocean ridge volcanism.

[15] Step 2: $\{V_p, V_s, \rho, Q\} \xrightarrow{\text{Est.}} \{v_p, v_s, \rho\}$. Anelastic wave speeds due to attenuation Q and dispersion are estimated
from the expression [e.g., Anderson, 1989]

\[v_{sp}(p, T, c) = v_{sp}(p, T, c) \left[1 - \frac{2Q_{sp}^2}{\tan(\alpha\pi/2)} \right], \]

while shear-wave attenuation \(Q_s \) is computed from

\[Q_s = Q_0 \exp \left(\frac{\alpha(E_a + pV_a)}{RT} \right), \]

where \(Q_0 \) is a constant, \(E_a \) the activation energy, \(V_a \) the activation volume, \(p \) pressure, \(T \) temperature, \(R \) the gas constant, and \(\alpha \) an exponent, which has been determined experimentally to be between 0.15 and 0.25 [e.g., Jackson and Faul, 2002]. Parameter values are tabulated in Table 1. The compositional quality factor is obtained from \(Q_p = \frac{4V_p^2}{3V_s^2}Q_s^{-1} \). We should note that the anelastic correction of seismic wave speeds (equation (1)) only applies for an anelastic absorption band within which attenuation has a power law dependence upon period. Any dissipation peak, associated with elastically accommodated grain-boundary sliding or melt squirt, results in dispersion that is more strongly localized in frequency [e.g., Jackson and Faul, 2010].

\[V_{sy} = \left(\frac{3v_s^2}{2} \right)^{1/3}, \quad V_{sh} = \left(\frac{v_s^2}{2} \right)^{1/3}, \quad V_{ph} = \left(\frac{5v_p^2}{4\phi} \right)^{1/3}, \quad V_{pv} = \left(\frac{5v_p^2}{4\phi} \right)^{1/3}. \]

Table 1. Prior Model Parameter Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Layers</th>
<th>Parameter</th>
<th>Value</th>
<th>Reference/Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crust</td>
<td>2</td>
<td>(V_p)</td>
<td>CRUST2.0±10%</td>
<td>Top and bottom crustal layer</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(V_s)</td>
<td>CRUST2.0±10%</td>
<td>Top and bottom crustal layer</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(\rho)</td>
<td>CRUST2.0±10%</td>
<td>Top and bottom crustal layer</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(d_{oh})</td>
<td>CRUST2.0±20 km</td>
<td>Beneath continents</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>(d_{oh})</td>
<td>CRUST2.0±5 km</td>
<td>Beneath oceans</td>
</tr>
<tr>
<td>Composition</td>
<td>10</td>
<td>(c_1) (CaO)</td>
<td>3.5–4.1</td>
<td>LK07</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>(c_2) (MgO)</td>
<td>2.92–4.87</td>
<td>LK07</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>(c_3) (Al2O3)</td>
<td>0.157–0.439</td>
<td>LK07</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>(c_4) (SiO2)</td>
<td>100–250</td>
<td>LK07</td>
</tr>
<tr>
<td>Temperature</td>
<td>10</td>
<td>(T)</td>
<td>Tc ≤ T ≤ Tm</td>
<td>Temperature cannot decrease with depth.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>(\xi)</td>
<td>0.97–1.15</td>
<td>PR06,KU08</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>(\eta)</td>
<td>0.97–1.15</td>
<td>PR06,KU08</td>
</tr>
<tr>
<td>Attenuation</td>
<td>10</td>
<td>(Q)</td>
<td>Ea=500 kJ/mol</td>
<td>SB96</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>(\alpha)</td>
<td>0.2</td>
<td>JA02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>(\phi)</td>
<td>0.97–1.15</td>
<td>PR06,KU08</td>
</tr>
</tbody>
</table>

\[\text{Step 3:} \quad \{V_p, V_s, \rho, \xi, \phi, \eta\} \rightarrow \{V_{sy}, V_{sh}, V_{ph}, V_{pv}, \phi, \eta\}, \]

As in our previous work and elsewhere [e.g., Panning and Romanowicz, 2006; Kustowski et al., 2008], we assume transverse isotropy (vertical symmetry axis) and \(\eta \sim 1 \), i.e., small anisotropy, in which case anisotropic Voigt-averaged velocities can be computed from the above isotropic (anelasticity corrected) \(P \) and \(S \) wave velocities [Babuska and Cara, 1991] using

\[\left| \begin{array}{c} V_{sy} \cr V_{sh} \cr V_{ph} \cr V_{pv} \end{array} \right| = \left| \begin{array}{c} 3v_s^2/2 \cr 3v_s^2/2 \cr 5v_p^2/4\phi \cr 5v_p^2/4\phi \end{array} \right|. \]

\[\text{Step 4:} \quad \{V_{sy}, V_{sh}, V_{ph}, V_{pv}, \phi, \eta\} \rightarrow \{C_{R}(\omega), C_{L}(\omega)\}. \]

The final step, which involves computing fundamental-mode and higher-order Rayleigh- and Love-wave dispersion curves as a function of frequency \(\omega \), is performed using the minor-based code of Nolet [2008]. Finally, we would like to recall that relative sensitivity of higher modes to compressional velocity (for Rayleigh waves) and density grows with increasing overtone number

\[\{c, T, \xi, \phi, \eta\} \rightarrow \{M\} \rightarrow \{V_p, V_s, \rho\} \rightarrow \{V_{sy}, V_{sh}, V_{ph}, V_{pv}, \phi, \eta\} \rightarrow \{C_{R}, C_{L}\}. \]

Figure 3. A schematic illustration of the forward problem and the different model parameters (\(c, T, \xi, \phi, \ldots \)), physical theories (\(g_1, g_2, \ldots \)), and data (\(C_{R}, C_{L} \)) used to describe it. Symbols are described in section 3.2.
[see Anderson and Dziewonski, 1982]. Note also the complete absence of preassigned scaling factors between \(V_p, V_s \), and \(\rho \) in contrast to common practice in surface-wave and waveform tomography [e.g., Nettles and Dziewonski, 2008; Yuan et al., 2011; Fichtner et al., 2010].

4. Inverse Problem

[18] We employ the probabilistic approach of Tarantola and Valette [1982] to solve the nonlinear inverse problem. A detailed treatment is given in, e.g., Khan et al. [2007] and what follows is a very brief outline. Within a Bayesian framework, the solution to the general inverse problem \(d = g(m) \), where \(d \) is a data vector containing observations and \(g \) is a typically nonlinear operator that maps a model parameter vector \(m \) into data, is given by [e.g., Tarantola and Valette, 1982; Moségaard and Tarantola, 1995]

\[
\Omega(m) = k f(m) \mathcal{L}(m),
\]

where \(k \) is a normalization constant, \(f(m) \) is the prior probability distribution on model parameters (see Table 1), i.e., information about model parameters obtained independently of the data under consideration, \(\mathcal{L}(m) \) is the likelihood function, which can be interpreted as a measure of misfit between the observations and the predictions from model \(m \), and \(\Omega(m) \) is the posterior model parameter distribution containing the solution to the inverse problem. The particular form of \(\mathcal{L}(m) \) is determined by the observations, their uncertainties, and how these are employed to model data noise (to be enunciated below).

[19] To sample the posterior distribution (equation (4)) in the model space, we employ the Metropolis algorithm. Although this algorithm is based on random sampling of the model space, only models that result in a good data fit and are consistent with prior information are frequently sampled (importance sampling). The Metropolis algorithm is capable of sampling the model space with a sampling density proportional to the target posterior probability density without excessively sampling low-probability areas. This is particularly important in the case of high-dimensional model spaces in which a large proportion of the volume may have near-zero probability density.

4.1. Sampling the Posterior Distribution

[20] We assume that data noise can be modeled using a Gaussian distribution and that observational uncertainties and calculation errors between Rayleigh and Love waves are independent as a result of which the likelihood function can be written as

\[
\mathcal{L}(m) \propto \exp \left(- \sum_{\text{mode frequency}} \frac{[d_{\text{obs}}^R - d_{\text{cal}}(m)]^2}{2\sigma_{d}^R} - \sum_{\text{mode frequency}} \frac{[d_{\text{obs}}^S - d_{\text{cal}}(m)]^2}{2\sigma_{d}^S} \right),
\]

where \(d_{\text{obs}} \) denotes the observed data, \(d_{\text{cal}}(m) \) denotes the calculated data, superscripts \(R \) and \(L \) are the shorthand notations for Rayleigh and Love waves, respectively, and \(\sigma \) uncertainty on either of these.

[21] Of importance when running Monte Carlo simulations are questions of convergence and sample independence, in addition to how many samples are required to adequately approximate the posterior distribution. The number of iterations needed for the algorithm to converge to a high-probability region (burn-in time), i.e., the number of iterations before samples can be retained from the posterior distribution, was found to be around \(5 \times 10^3 \). In total, one million models were sampled with an overall acceptance rate of about 40%. To ensure convergence of the McMC algorithm in practice, time series of all output parameters were checked for stationarity throughout the entire sampling stage. Adequate sampling of the model space was ensured by sampling until no palpable changes to the characteristics of the posterior probability distributions were observed, in addition to recomputing the algorithm at a number of different random places in the model space. To further ensure near-independent models, only every hundredth sample was retained. This was found by analyzing the autocorrelation function of the fluctuations of the likelihood function.

[22] As mentioned earlier, the main purpose of using a probabilistic inference approach to solving nonlinear inverse problems is not to present a single realization from the posterior distribution, but rather the information gathered from a whole series of sampled models. This implies that only the statistical nature of model features is of interest. To quantitatively summarize information from such a necessarily complex probability density function (PDF) standard resolution measures involving means and covariances are inadequate, and we have to resort to a more general approach, which will typically depend on the questions that we are trying to address. There are several different strategies that can be employed to analyze the posterior distribution, e.g., through the use of marginal posterior distributions, resolution measures, Bayesian hypothesis testing, computation of credible or highest posterior density regions, and not least the movie strategy [e.g., Box and Tiao, 1982; Bernardo and Smith, 1994; Moségaard and Tarantola, 2002; Tarantola, 2005]. Here we will concentrate on computing highest probability density intervals in order to provide the reader with a quantitative notion of model parameter uncertainties.

[23] Bayesian highest probability density intervals of marginal distributions were computed with the method of Chen and Shao [1999], which provides lower and upper bound given a confidence level (here 95%). As estimators, we use the maximum likelihood model and the mean, i.e., the simple average of all samples. While the maximum likelihood model provides the best fit to data in probabilistic terms, it should be clear that this particular model is not more credible than any other model taken randomly from the posterior PDF. This results directly from the observation that posterior models, although different (e.g., with and without upper mantle low-velocity zones, shallow and deep-lying “410 km” seismic discontinuities, etc.), are nonetheless models with high likelihood values that predict observed data within uncertainties (see Figure 4). Moreover, it is also the reason why the mean of such a collection of models, which itself is necessarily smooth, has a lower posterior probability of being sampled as it is less likely to fit data to the extent required. That said, if the PDF is Gaussian-like one often encounters instances where the mean resembles single samples such as the maximum likelihood model; where this is not the case the PDF is non-Gaussian and any single estimator will have to be interpreted carefully.
Finally, on a more technical note, our models are parametrized on an unstructured grid subdivided in cells of approximately $5\degree \times 5\degree$ of latitude and longitude at a set of fixed depth nodes. Values at selected depth locations of 100, 150, 200, 250, 300, 350, 400, and 450 km have been obtained by linear interpolation along the vertical axis for each pixel. In order to plot our results, we constructed a series of depth slices of our models interpolating in longitude and latitude on a finer grid of 120×60 nodes. The interpolation has been carried out employing radial basis functions (cubic) for unstructured grids as provided by the Python “Matplotlib” package [Hunter, 2007]. We utilize this method for all plots with the only exception of Bodin et al.’s [2012a] Moho depth model (see Figure 5), where a two-dimensional spline interpolation method was employed. The limiting polygon shown in the plots represents the outer border of our $5\degree \times 5\degree$ grid.

4.2. Modeling Uncertainties

The dominant source of uncertainty in the calculations performed here is related to the paucity of experimental constraints on the parameters of relevance for employing the thermodynamic formalism of Stixrude and Lithgow-Bertelloni [2005] and parametrized by Xu et al. [2008]. Assessment of the error is further complicated by the correlations existing between the various parameters such as bulk modulus and its pressure derivative, which are known to trade off strongly. However, as the covariance matrix is not available for the published thermodynamic parameters employed here, we have to abstain from modeling uncertainties. Where data are available, Bass [1995] has reported, based on current experimental precision, minimum errors of 1–2% in computed velocities. As a consequence, estimates on sampled thermochemical parameters appear to be better constrained than they are in reality.

There is currently only limited information on attenuation structure, which arises from an absence of experimental data and large uncertainties associated with attenuation-related parameters (see equation (2)) and anelastic effects. To circumvent this several tests were conducted, where relevant parameters were varied by as much as 10–20% to ascertain sensitivity of data to attenuation structure and to ensure that results did not significantly change as a result.

Of additional importance for the computations performed here are prior constraints. If based on physical theory, experimental evidence, or other observational arguments, prior information ($f(m)$ in equation (4)) can provide strong constraints on the main parameters of interest. Given the essentially unknown thermochemical state of Earth’s mantle, we employ very wide prior parameter probability distributions as indicated in Table 1. This will be shown in the following.

Finally, we disregard potentially important contributions arising from the presence of melt and/or water [e.g., Karato and Jung, 1998; Chen et al., 2002; Smyth and Frost, 2002]. Although there is geophysical evidence for the presence of either component or phase [e.g., Toffelmier and Tyburczy, 2007; Tazin et al., 2010; Khan and Shankland, 2010],
5. Results and Discussion

5.1. Data Fit

[29] Differences in data between the various locations are shown in Figure 4 displaying significant tectonic variations as expected. For oceanic/continental differences, higher-order Rayleigh-wave data are clearly distinct, while for fundamental-mode data, this is most strongly the case for Love waves and short-period Rayleigh waves. In the case of local continent/continent differences, data are distinguishable across most of the branches. Also shown in Figure 4 is our fit to data where sampled models are seen to fit observations within uncertainties.

5.2. Crustal Structure

[30] To exemplify our inversion for crustal structure, we focus on Moho depth. Maps of Moho depth obtained here are shown in Figure 5. Also included here, for comparison, is Moho depth across the Australian continent from the study of Bodin et al. [2012a]. The latter is obtained from probabilistic surface reconstruction that incorporates data from different active and passive seismic source surveys. Setting the comparatively low resolution of our model aside, both maps generally show the same pattern, with the thickest crust appearing beneath central Australia and eastern highlands reaching Moho depths between 40 and 50 km. Regions showing shallow crustal thicknesses include almost the entire western edge as well as the easternmost parts with Moho depths in the range 20–30 km. Relatively thin crust is also observed to underlie the Pilbara craton. We find uncertainties in Moho depth to be about 10 km beneath most of continental Australia. These estimates are higher than Bodin et al.’s, but reflect the low-resolution nature of our model as well as the fact that the uncertainty measure (one standard deviation) quoted for Bodin et al. is generally narrower than the 95% credible interval used here. Given the relatively low sensitivity of our surface-wave data to crustal structure in comparison to the high-resolution data of Bodin et al. that were acquisitioned for the purpose of crustal structure determination, more quantitative comparison is not warranted here. The level of agreement between the models shown here as well as others, e.g., Australian seismological reference model (AusREM) [Kennett et al., 2011] is nonetheless encouraging.

5.3. Upper Mantle Thermochemical Structure

[31] As indicators of chemical variations in the mantle beneath the Australian continent and surrounding oceans, we limit ourselves to showing the following elemental ratios, Mg/Fe and Mg/Si, as these are the best resolved compositional parameters. Maps of Mg/Fe, Mg/Si, and temperature variations in the mantle are shown in Figures 6–8. A striking feature of these maps is a clear correlation between surface tectonics and thermochemical structure that seems to persist, within the uncertainties of the maps (upper and lower bounds in Figures 6–8), to a depth of ~250 km. In particular, we find that the old central and western Archean and Proterozoic regions are relatively “cold” and characterized by high Mg/Fe and Mg/Si values relative to the eastern Phanerozoic and oceanic regions. The observed compositional variations are in general agreement with what is expected for depleted peridotite. While diminishing in amplitude and areal extent (becoming centered on the Australian continent), the thermochemical signature appears robust to a depth of 200–250 km. Comparison of these maps indicates that mantle temperature is better resolved than composition as the tectonic division, for example, is clearly resolved in both upper and lower bounds. Although this appears less distinct in the compositional maps, it should be noted that high Mg/Si values across the western and central parts appear resolvable to ~200 km depth. Also, the maps do strongly suggest a geographically resolvable structure in the retrieved compositional pattern inasmuch as areas with relative high/low values in the lower bound
reappear with the same relative high/low values in the upper bound. While some of these features have been observed elsewhere based on purely thermal parameterizations (to be discussed in the following section), the important point here is that both compositional and temperature variations are required for the surface-wave data to be fit as illustrated in the following.

[32] As in our previous studies, we verified the robustness of the lateral compositional variations by inverting the data set using a single fixed composition throughout. As compositional model, we employed the pyrolite composition of, e.g., Ringwood [1962]. Performing the same inversion, but only varying mantle temperature, in addition to crustal parameters, anisotropy, and attenuation, we found that data could not be fit. In particular, we observed that throughout most of the overtone branches were fit, while fundamental-mode and short-period part of the first overtone branch were consistently “misfit.” An example of such a “misfit” at three locations is displayed in Figure 9. The figure shows how both fundamental-mode Rayleigh and Love waves, which are sensitive to upper mantle structure (to ~250–300 km depth), do not fit observations within uncertainties (compare with data fit shown in Figure 4). Only fundamental-mode branches are shown here as these are most severely affected. Also affected, albeit to a lesser extent, are the first overtone branches at short periods (not shown for clarity). Although fundamental-mode branches were observed to fit data within uncertainties in some locations, this was not generally the case. No systematic effects could be observed though.
Overall, this test serves to highlight the relative importance of chemical variations in the upper mantle. Since overtone branches (of order >1) are generally fit within uncertainties, this suggests that chemical variations in the deeper mantle are likely to be smaller in line with the general observation that lateral velocity variations below the transition zone (>660 km depth) appear to be relatively homogeneous [e.g., Becker and Boschi, 2002; Panning and Romanowicz, 2006; Kustowski et al., 2008]. Thus, chemical variations appear to be strongest in the uppermost mantle and affecting those branches most sensitive to its structure, i.e., fundamental-modes. As a final test, we also investigated the correlation between the fundamental thermochemical parameters inverted for here. As in our previous work, no large trade-offs were found signaling that temperature and composition are independently resolvable.

5.4. Comparison With Miscellaneous Studies

In support of our results, we compare briefly with results from field (xenolith), regional seismic tomography, mineral physics-related studies, and experimental observations. The latter include temperatures derived from petrological experiments on mineral phase transitions in the system (Mg,Fe)$_2$SiO$_4$. Ito and Takahashi [1989], for example, found that the olivine→wadsleyite reaction (the “410 km” discontinuity) occurred at a temperature of \(1750 \pm 100\) K, while in similar experiments undertaken by Katsura et al. [2004] temperatures of \(1760 \pm 45\) K were obtained. These observations are in agreement with temperatures determined here that lie in the range \(1723 \pm 100\) K across the entire continent.

Relying on mineral physics and a parameterized phase-diagram approach, data thermal anomaly maps of the

Figure 7. Maps of mantle composition showing variations in elemental Mg/Si (wt %) at various depths underneath the Australian continent and surrounding oceans. (plots 9–16) Maximum likelihood model, (plots 17–24) mean model, (plots 1–8) lower bounds, and (plots 25–32) upper bounds, respectively, in the form of 95% highest probability density regions.
upper mantle of Australia were obtained by Goes et al. [2005] from thermal mapping (see Goes et al. [2000] for details) of the regional shear-wave tomography model of Yoshizawa and Kennett [2004]. Their thermal maps (see Figure 8) qualitatively agree with ours with temperatures in the ranges 800°C–1100°C and 1300°C–1500°C for “cold” and “hot” provinces, respectively. In line with what is observed here, Goes et al. also find a thermal division that closely follows surface-tectonic provinces and that qualitatively agrees with the regional surface heat flow measurements compiled by Pollack et al. [1993]. The latter indicates elevated heat flow underneath the western and eastern Phanerozoic provinces, and diminished heat flow beneath the western Archean and Proterozoic regions [Pearson et al., 1991]. An additional model of the thermal structure of the continental lithosphere (TC1) has been developed by Artemieva [2006] based on analysis of various thermal, seismic, and petrologic data. In TC1, temperatures
around 1000°C–1100°C are found for the major cratons at a depth of 150 km (with uncertainties estimated to be around 150°C). Additional information on thermal conditions of the lithosphere derive from geothermobarometry data at a couple of locations. The temperature profiles derived from these data indicate that the lithosphere underneath Proterozoic domains is relatively cool, while non-steady state thermal conditions beneath southeastern Australia are associated with Cenozoic volcanism (e.g., O’Reilly et al., 1997; Pearson et al., 1991).

The agreement between Goes et al. and the present study are purely qualitative given the fundamental difference in approach: thermal mapping of a seismic tomographic model versus inversion of dispersion data directly for thermochemistry. Although temperature appears relatively more well determined than composition providing an explanation for why “thermal-only” studies to a large extent can explain the observed velocity variations and obtain larger thermal variations than obtained here. Nonetheless, our results show that compositional contributions are separable and cannot be disregarded if dispersion data are to be fit (cf., Figures 4 and 9).

Resolving temperatures and lithospheric depths within the various tectonic terranes is more difficult, although it appears, within model resolution, that Phanerozoic terranes are “hotter” than the older Australian Archean and Proterozoic cratonic blocks.

Compositional parameters derived from garnet xenocrysts, where available, show a decreasing degree of depletion in the lithospheric mantle from the Proterozoic cratonic sections to Phanerozoic sections [e.g., Gaul et al., 2000, 2003]. Moreover, the geochemical parameters further indicate a decrease in magnesium number (Mg#) with depth within the cratonic lithospheric sections from relatively depleted values (92–93) to values approaching those of the asthenosphere (89–90). This variation of Mg# with depth has also been observed beneath the Kimberley area in South Africa [Griffin et al., 2008]. This change in composition with depth is not observed in the Phanerozoic sections as these are generally characterized by lower Mg#'s overall. Also observed in these field studies is the lithospheric thickening of the continent from east to west, increasing from ~100 to 150 km depth beneath Phanerozoic localities in the east to ~150–200 and ~200 km underneath Proterozoic regions and margins, respectively, to ~250 km depth in the west beneath the Archean craton.

Joint inversions of regional gravity data and a seismic tomographic model have also shown that the upper mantle beneath Proterozoic domains is chemically different from that beneath Phanerozoic domains [van Gerven et al., 2004]. Based on the relative density-to-shear-wave velocity scaling (ξ) as a diagnostic for the presence of chemical variations [Deschamps et al., 2001] (thermal effects produce positive values of ξ, whereas depletion in dense elements result in a decrease of amplitude of density anomalies, implying that small and negative values of ξ are indicative of compositional effects), van Gerven et al.
Figure 10. Maps of mantle isotropic shear-wave velocities showing variations in shear-wave speeds at various depths underneath the Australian continent and surrounding oceans. Shear-wave speeds are given in percent deviations from the mean shear-wave velocities computed here (see profile labeled AUS in Figure 11) and are indicated on the right side of the figure. Maximum likelihood model (maps 9–16), mean model (maps 17–24), lower bounds (maps 1–8), and upper bounds (maps 25–32), respectively, in the form of 95% highest probability density regions. Plots a–e depict the regional seismic full waveform tomography model of Fichtner et al. [2010], whereas plots f–j show the surface-wave tomography model of Fishwick and Rawlinson [2012].

[2004] concluded that the continental roots beneath the mainly Proterozoic regions of central Australia appeared chemically distinct from those of the Phanerozoic regions. While radial variations in ζ beneath the latter regions could be explained without having to invoke significant compositional variations in the lithosphere, an observed sharp decrease in ζ beneath the former was only compatible with a significant compositional contribution [see also Forte and Perry, 2000; and Deschamps et al., 2001]. No robust conclusion could be reached for the mantle beneath Archean regions due to lack of resolution [see also Kaban et al., 2003].

5.5. Comparison With Regional Seismic Tomography Models

[40] Isotropic shear-wave velocity variations obtained here are shown in Figure 10. Shear-wave velocity maps reported elsewhere (the Australian upper mantle seismic tomography models of, e.g., Simmons et al. [2009], Debayle and Kennett [2003], Yoshizawa and Kennett [2004], Fishwick et al. [2005, 2008], Fichtner et al. [2010], Rawlinson and Fishwick [2012], and Fishwick and Rawlinson [2012] to name but a few) show much the same features as our models. Here we have singled out two recent models for comparison, which include the
fundamental-mode surface-wave tomography model of Fishwick and Rawlinson [2012, hereinafter FR12] and the full waveform radially anisotropic tomography model of Fichtner et al. [2010, hereinafter F10]. These models are sensitive to about 300 km depth and are also shown in Figure 11. Shear-wave velocity profiles beneath continental locations in different tectonic settings in the upper mantle and transition zone: Oceanic (pixels a and c) and continental (pixels b–d, with decreasing age progression from pixels b to d). Envelopes encompass all sampled models. Refer to Figure 2 for geographic location of pixels a–e. For reference, two mean radial models are also shown: AK135 [Kennett et al., 1995] and the average profile (AUS) of the Australian continent computed as the mean of all sampled models across all pixels.

Figure 11. Shear-wave velocity profiles beneath different tectonic settings in the upper mantle and transition zone: Oceanic (pixels a and c) and continental (pixels b–d, with decreasing age progression from pixels b to d). Envelopes encompass all sampled models. Refer to Figure 2 for geographic location of pixels a–e. For reference, two mean radial models are also shown: AK135 [Kennett et al., 1995] and the average profile (AUS) of the Australian continent computed as the mean of all sampled models across all pixels.

5.6. Lower Upper Mantle and Transition Zone Structure

[41] Toward the base of the upper mantle (regions not sampled by F10 and FR12), we generally observe a decrease in amplitude of shear-wave anomalies followed by a relatively strong increase at and around 400 km depth. The sudden increase in shear-wave amplitudes coincides with the mineral phase transformation of olivine to wadsleyite corresponding to the “410 km” seismic discontinuity marking the boundary between upper mantle and transition zone [e.g., Ito and Takahashi, 1989; Katsura et al., 2004]. Lateral velocity variations are clearly larger than those immediately above and below the transition, which serves to highlight the importance of considering phase-induced variations in addition to variations arising purely from thermochemical changes that determine the structure away from mineral phase transitions [Anderson, 1987]. This will be discussed further in section 5.7 below.

[42] In the transition zone at 450 km depth, a reversal is seen to occur such that subcontinental mantle has become slower than suboceanic mantle. Although this feature appears less well resolved, it is nonetheless present in both lower and upper bound; the continental regions consistently appear slower than the surrounding oceanic regions. This reversal between the base of the upper mantle and the transition zone is also observed in global seismic tomography models [e.g., Lebedev and van der Hilst, 2008; Schaeffer and Lebedev, 2013]. The interesting thing to note is that the reversal in mantle shear-wave velocity structure does not appear to be related to a similar change in temperature and Mg/Fe. Thus, the apparent correlation that we observed between Mg/Fe and Mg/Si in the upper mantle is no longer extant in the transition zone. What appears to control shear-wave velocity anomalies in the absence of strong temperature gradients are variations in Mg/Si as the latter determines the relative amount of majorite (Mj) garnet...
are discussed further below.

tional variations, while present, are of more subtle nature and elevated. Effects on topography arising from composition zone, we do also observe what appears to be a general decoupling of structure relative to that of the upper mantle apparently driven by a reversal in Mg/Si with depth in line with earlier suggestions of a chemically distinct transition zone [e.g., Anderson and Bass, 1986; Ita and Stixrude, 1992; Anderson, 2002].

5.7. Transition-Zone Topography

Another interesting feature is the lateral variation in transition zone topography, i.e., depth of the boundary between upper mantle and transition zone (the so-called “410 km” seismic discontinuity), which is shown in Figure 12. The topography of this discontinuity appears to reveal a distinct thermal signature in that regions that are “cold” are associated with elevated “410s”, whereas relatively “hot” regions have depressed “410s” in agreement with expectations across a subduction zone setting [e.g., Bina and Helffrich, 1994]. Generally, we find that the central part of the image from top to bottom, in addition to the region beneath the Indian Ocean (the NW of the image), shows elevated “410s” ranging from 380 to 400 km depth and decreased temperatures. Underneath much of the western and eastern coasts, and Pacific Ocean, the “410” appears depressed (~400–425 km depth) where temperatures are elevated. Effects on 410-topography arising from compositional variations, while present, are of more subtle nature and are discussed further below.

Comparison with results from global receiver function studies, e.g., Tauzin et al. [2008], shows reasonable agreement, although it should be borne in mind that depth to interface can trade off with velocity structure immediately above rendering the interpretation of travel time residuals in terms of transition zone depth nonunique. Tauzin et al. considered four stations across the Australian continent: two stations situated on the eastern coast over Paleozoic regions, one to the north situated over a Proterozoic locality, and a station to the southwest overlying the Archean craton. For the easternmost stations, Tauzin et al. find travel times of the phase converted at the “410” (P410S) to be delayed relative to those predicted by a reference velocity model suggesting a depressed “410,” whereas the station over the Proterozoic locality shows a faster-than-average P410S travel time indicating elevation of the “410.” The station overlying the Archean craton is anomalous in that a slower-than-average P410S travel time is observed, contrary to expectations. Curiously enough, results here are compatible with this, inasmuch as most models show a depressed “410.” We leave it for a future study to consider the nature of this anomaly in more detail.

Another aspect of the “410” discontinuity, which has received attention concerns its nature, i.e., size and sharpness [e.g., Duffy et al., 1995; Frost, 2003; Helffrich and Wood, 1996; Helffrich, 2000; Katsura et al., 2004]. The strength of the discontinuity is essentially determined by the amount of olivine present and thus Mg/Si, whereas sharpness is controlled by size of the coexistence loop between olivine and wadsleyite. In order to match a preliminary reference Earth model-like “410,” a composition with a higher basaltic component is required to produce an olivine-depleted mantle and thus smaller jump [Duffy et al., 1995; Khan et al., 2009]. A purely basaltic composition, for example, completely lacks the olivine→wadsleyite transition. These features are clearly apparent in the maps at 400 km depth (see Figure 10) where the strength in shear-wave velocity has increased relative to shear-wave amplitudes at 300 km depth. A purely thermal origin of lateral structure would not be compatible with this. The extent to which these amplitudes are required will, however, have to be examined using data that are more sensitive to velocity discontinuities [e.g., Helffrich, 2000; Schmerr and Garnero, 2007]. The important point to note here is that much of the structure visible in the images at the base of the upper mantle derives from the lateral variations in phase transitions associated with the olivine→wadsleyite transformation. The corresponding lateral variations in velocity are clearly observed to be much larger than those associated with purely lateral variations in temperature and compositional immediately above and below the transition. Neglect of this contribution to lateral structure will likely result in lateral variations in temperature that vary too rapidly and probably also too strongly as apparent in some studies [e.g., Goes et al., 2005; Trampert et al., 2004].
5.8. Anisotropic Shear-Wave Velocity Variations

Changes in sign of anisotropy corresponding to $\xi < 1$ ($V_{SV} > V_{SH}$) or $\xi > 1$ ($V_{SH} > V_{SV}$), can be interpreted as indicating changes from vertical to horizontal flow ($\xi < 1$) under the assumption that anisotropy is the result of a preferred orientation of the crystal lattice of the anisotropic mantle minerals as these are subjected to strains due to mantle flow. For depths above 200 km, this is interpreted as a record of horizontal flow in the lithosphere dating from the time when the cratons where undergoing deformation, i.e., prior to their stabilization. This is termed “frozen-in” anisotropy in contrast to what is observed for depths below 200 km, which is typically associated with recent or present-day flow within the asthenosphere [Deschamps et al., 2008].

Variations in the shear-wave anisotropy parameter ξ are shown in Figure 13. For comparison, we are also showing the radial anisotropy variations found in the model of Fichtner et al. [2010]. From our models, we observe the following general features:

1. The strength of anisotropy follows the general trend of previous studies in that ξ increases from shallow depths to a maximum at around 150–200 km beneath which it steadily decreases.

2. The strongest signal at 100 and 150 km depth emanates from beneath oceanic regions with predominantly positive shear-wave anisotropy, i.e., $\xi > 1$ ($V_{SH} > V_{SV}$). Underneath continental regions, we observe anisotropy to peak at 200 km depth, being dominantly characterized by $\xi > 1$. This pattern has also been observed beneath the North American continent by Nettles and Dziewonski [2008]. Looking at evidence provided by other global- and regional-scale studies shows that in the upper mantle to 200 km depth, radial anisotropy beneath continental areas appears to be preferentially aligned such that $\xi > 1$, implying horizontally oriented anisotropic fabric [e.g., Gung et al., 2003; Sebai et al., 2006; Pedersen et al., 2006; Lebedev et al., 2009].

3. Radial anisotropy below 200 km depth is weak but seems to be smooth overall with little apparent heterogeneity as can be discerned from both upper and lower bound. Within the uncertainties of the maps, ξ can be either weakly positive or negative.

4. Agreement between the model reported here and F10 is fair but limited to 150 km depth, implying that the ocean-continent anisotropic division reported as extending beyond 150 km depth in model F10 is likely more ambiguous. Note also that there is a considerable amount of “ringing” present in the entire eastern part of model.
Figure 14. A selection of “best-fitting” (plots labeled “Model 4, 44, 52, 73, and 91”) and corresponding models of density anomalies in the upper mantle at depths of 100, 150, 200, and 250 km depth. For comparison, observed geoid anomaly is also shown (labeled “Observed”). Data fit is measured in terms of variance reduction and correlation to observed geoid anomalies (see Table 2 and main text for details).

F10 that results from lack of data and thus sensitivity in this region, which prevents Fichtner et al. from assessing a complete model. In the context of discrepancies between anisotropic models, we find that radial anisotropy can trade-off with isotropic structure such that a large part of the data signal can be explained by isotropic variations alone as also noted by, e.g., Fichtner et al. [2010] and Nettles and Dziewonski [2008].

5.9. Posterior Filtering of Tomographic Models Using Geoid Anomalies

To further refine the collection of sampled tomographic models, we propose to use additional geophysical data in the form of geoid anomalies as these are related directly to inverted density structure. For this purpose, we compute geoid anomalies for a set of sampled density distributions corresponding to a subset of thermochemical models discussed in the previous sections and compare these anomalies to the observed geoid anomalies obtained from Gravity Recovery and Climate Experiment (GRACE) [Tapley et al., 2005].

Geoid modeling is performed in a manner similar to our previous study [Khan et al., 2011a]. Briefly, geoid anomalies are computed by depth-integrating modeled density anomalies appropriately weighted by geoid kernels. Geoid kernels describe the response of the geoid to a density anomaly located at a given depth and take into account the dynamic contribution (the part related to mantle flow) to the geoid [e.g., Ricard et al., 1984; Hager and Richards, 1989]. Here we use local geoid kernels, which we calculate following the method described in van Gerven et al. [2004] by summing up radial kernels over a prescribed spherical harmonic filter fixed in the range 2°–20°.

Geoid kernels are sensitive to the viscosity structure. Here we impose a different radial viscosity profile for each tectonic province. In all provinces, we assume a viscosity jump of 30 between upper and lower mantle. The crust and lithospheric mantle are more viscous than the upper mantle by 3 and 2 orders of magnitude, respectively, and crustal and lithospheric thickness is modeled as varying with geological domain. The boundaries between crust and lithosphere, and lithosphere and upper mantle, respectively, are located at 35 and 80 km depth beneath oceanic regions, and 80 and 280 km depth beneath the Archean regions, respectively.

We would like to point out that the Australian cratons appear slightly denser than the surrounding areas.
Conditions for stability can be estimated in terms of a critical buoyancy ratio. However, indicates that negative buoyancy induced by cooling of a root does not need to be fully compensated by chemical density anomalies for the root to remain stable. Conditions for stability can be estimated in terms of a critical buoyancy ratio \(B_c \), the root being stable if the observed buoyancy ratio is larger than \(B_c \). Lenardic and Moresi [1999] showed that this buoyancy ratio depends on the dimension of the root. In particular, the stability of the root increases \(B_c \) decreases with increasing thickness and length of the chemical root. Furthermore, larger viscosity and lateral variations in viscosity (related to temperature anomalies for instance) strongly stabilize the root [Deschamps et al., 2002]. Practically, the critical buoyancy ratio may be rather low, 0.5 or less, i.e., the root may remain stable even if the thermal density contrast is twice the chemical density contrast or more.

Computed geoids for the five “best-fitting” models including the density anomaly maps employed are displayed in Figure 14. For comparison, the observed geoid is also shown. On average, sampled density models explain the observed anomalies with a variance reduction in the range 0.2–0.3, whereas for the “best-fitting” models, correlations and variance reductions >0.6 and >0.4 (up to 0.75 and 0.46), respectively, are achieved (see Table 2). Overall, the modeled geoid is smaller in amplitude than the observed geoid. For the spherical harmonic filter employed, RMS of the observed geoid is around 50 m, while that of the modeled geoid is smaller in amplitude than the observed geoid.

The relatively low temperature observed in these regions (Figure 8) is not fully compensated by the depletion in iron (Figure 6). Overall, this results in positive density anomalies (Figure 14), which may induce negative buoyancy and contradict the tectosphere hypothesis [Jordan, 1975]. Stability analysis of continental roots [Lenardic and Moresi, 1999; Deschamps et al., 2002; Jaupart et al., 2007], however, indicates that negative buoyancy induced by cooling of a root does not need to be fully compensated by chemical density anomalies for the root to remain stable. Conditions for stability can be estimated in terms of a critical buoyancy ratio \(B_c \), the root being stable if the observed buoyancy ratio is larger than \(B_c \). Lenardic and Moresi [1999] showed that this buoyancy ratio depends on the dimension of the root. In particular, the stability of the root increases \(B_c \) decreases with increasing thickness and length of the chemical root. Furthermore, larger viscosity and lateral variations in viscosity (related to temperature anomalies for instance) strongly stabilize the root [Deschamps et al., 2002]. Practically, the critical buoyancy ratio may be rather low, 0.5 or less, i.e., the root may remain stable even if the thermal density contrast is twice the chemical density contrast or more.

Table 2. Summary of Data Fits for the Five “Best-Fitting” Computed Geoid Maps

<table>
<thead>
<tr>
<th>Model #</th>
<th>(dN_{obs})</th>
<th>(dN_{obs})</th>
<th>(dN_{obs})</th>
<th>(dN_{obs})</th>
<th>Variance Reduction</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>30.452</td>
<td>50.079</td>
<td>6.739</td>
<td>21.371</td>
<td>0.466</td>
<td>0.753</td>
</tr>
<tr>
<td>44</td>
<td>30.452</td>
<td>50.079</td>
<td>7.146</td>
<td>19.615</td>
<td>0.449</td>
<td>0.740</td>
</tr>
<tr>
<td>52</td>
<td>30.452</td>
<td>50.079</td>
<td>6.955</td>
<td>20.360</td>
<td>0.477</td>
<td>0.781</td>
</tr>
<tr>
<td>73</td>
<td>30.452</td>
<td>50.079</td>
<td>7.927</td>
<td>24.481</td>
<td>0.465</td>
<td>0.697</td>
</tr>
<tr>
<td>91</td>
<td>30.452</td>
<td>50.079</td>
<td>1.980</td>
<td>28.103</td>
<td>0.459</td>
<td>0.816</td>
</tr>
</tbody>
</table>

The geoid anomaly maps are shown in Figure 14. \(dN_{obs} \), \(dN_{obs} \), \(dN_{obs} \), and \(dN_{obs} \) are the average observed geoid anomaly, the RMS observed geoid anomaly, the average modeled geoid anomaly, and the RMS modeled geoid anomaly, respectively. See main text for further details.

6. Summary and Conclusion

In this study, we have employed a combined geophysical-thermodynamical approach to estimating mantle composition (major element chemistry) and thermal state beneath the Australian continent by inverting fundamental-mode and higher-order surface-wave phase velocities for a regional tomographic model of the upper mantle. Geophysical data are linked to physical rock properties (density, P and S wave speed) and thermochemistry through the use of thermodynamics providing a scheme for computing mantle mineral phase equilibria that depend only on composition, temperature, and pressure. The advantage of this approach lies in the combination of geophysical, mineral physics, and petrological information to constrain, for example, location, size, and sharpness of mantle discontinuities that would otherwise not be resolvable. With this method, we thus obtain models of mantle conditions that simultaneously combine features of both laboratory and geophysical data. Moreover, and unlike more traditional approaches, the statistical nature of the inverse method allows us to compute rigorous uncertainty estimates on all inverted parameters. Emphasis here is on drawing inferences from an assembly of models rather than a single image.

Main findings and conclusions revealed by our study are as follows:

1. To fit geophysical data, we find that both compositional and thermal anomalies appear to be required in the upper mantle and upper part of the transition zone to 450 km depth.
2. Tests have shown that models relying solely on thermal variations appear not to fit fundamental-mode Rayleigh- and Love-wave data within uncertainties that are sensitive to upper mantle structure.
3. The thermochemical structure of the upper mantle follows the surface-tectonic age division closely to depths of 200–250 km. In particular, we observe the older western and central parts of the continent to be relatively cold, with high Mg/Fe and Mg/Si values, whereas the younger eastern and oceanic regions are comparatively hot with low Mg/Fe and Mg/Si.
4. Across the “410 km” seismic discontinuity, we observed a strong contribution to lateral variations in structure from thermochemically induced phase transformations that appear to be much stronger than those arising from lateral variations in composition and temperature only.
5. In the transition zone, we observe a general decoupling of the structure relative to that of the upper mantle apparently driven by an increase in Mg/Si with depth, which appears uncorrelated to Mg/Fe.
6. The strongest anisotropic signal occurs in the shallow upper mantle at 150 km depth. It is strongest beneath oceanic regions being preferentially horizontally oriented,
whereas underneath continental regions radial anisotropy peaks at 200 km depth.

[65] 7. Radial anisotropy below 200 km depth is less resolved but appears to be weak and laterally uniform across the Australian region.

[69] 8. The geoid anomalies computed on the basis of the obtained density models are largely compatible with the observed geoid anomalies of GRACE.

[70] 9. Finally, comparison of our laboratory-based tomographic shear-wave speed models with purely geophysically derived models shows good agreement and supports the methodology adopted here.

[71] We consider the present approach a step toward resolving the seismic tomography problem using fully nonlinear inverse strategies. In this respect, it is far superior to the standard techniques, centered on linearized methods, that are employed in present-day seismic tomography because of its ability to provide rigorous estimates of uncertainty and resolution. However, in exchange for this, sampling-based strategies suffer from the limitations imposed by their immense computational requirements. To overcome these limitations and to render the problem tractable modeling simplifications are required. In the present case, this limitation is reflected in the use of surface-wave phase-velocity maps rather than the original phase-velocity data from which the former are constructed. Future application of the present strategy should consider the original phase-velocity data in order that the fundamental tomographic problem be solved from the outset. As an alternative, stochastic waveform inversion as initiated by Käfl et al. [2013] presents another interesting avenue. This, however, will likely necessitate, even on a regional-scale level, diminishing lateral resolution further. However, it should be emphasized that with the use of sampling-based strategies comes the ability to perform uncertainty analysis, which, ultimately determines the reliability of results from inverse calculations and thereby our confidence in these.

[72] Acknowledgments. We would like to extend our gratitude to Ian Jackson and an anonymous reviewer for their constructive comments that helped improve the manuscript considerably. Comments on an earlier version of this manuscript by Brian Kennett are also highly appreciated. We thank Stewart Fishwick and Andreas Fichtner for providing us with their recent seismic tomography models of Australia, Bill Griffin for pointing us to published geothermobarometer data for the Australian continent, and Saskia Goes for her thermal maps of the region. Finally, we would like to thank Lapo Boschi and Jamie Connolly for informed discussions. This work was supported by Swiss National Science Foundation grant 200021-130411. Numerical computations were performed on the ETH cluster Brutus.

References

