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SUMMARY

We present a new model of the radial (1-D) conductivity structure of Earth’s mantle. This model
is derived from more than 10 yr of magnetic measurements from the satellites Orsted, CHAMP,
SAC-C and the Swarm trio as well as the global network of geomagnetic observatories. After
removal of core and crustal field as predicted by a recent field model, we fit the magnetic data
with spherical harmonic coefficients describing ring current activity and associated induction
effects and estimate global C-responses at periods between 1.5 and 150 d. The C-responses
are corrected for 3-D effects due to induction in the oceans and inverted for a 1-D model of
mantle conductivity using both probabilistic and deterministic methods. Very similar results
are obtained, consisting of a highly resistive upper mantle, an increase in conductivity in
and beneath the transition zone and a conductive lower mantle. Analysis of the Hessian of
the cost function reveals that the data are most sensitive to structures at depths between
800 and 1200 km, in agreement with the results obtained from the probabilistic approach.
Preliminary interpretation of the inverted conductivity structure based on laboratory-based
conductivity profiles shows that the recovered structure in the lower mantle either requires
higher temperatures or the presence of material of high conductivity related to ponding of
carbonate melts below the transition zone.
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ties; Composition of the mantle.

1 INTRODUCTION

The recovery of 1-D conductivity-depth profiles of Earth’s mantle
is an old geophysical problem that has been revisited many times
over the past century, for example, by Chapman & Price (1930),
Lahiri & Price (1939), Banks (1969), Schultz & Larsen (1987) and
Olsen (1998). All of these studies were based on data from conti-
nental geomagnetic observatories. While this practice is expected
to yield reliable results in local and regional studies, the results
of global studies that aim at deriving laterally averaged conduc-
tivity profiles are inevitably biased towards continental regions. In
contrast, low-Earth-orbit platforms provide high-quality magnetic
data with almost uniform spatial coverage. However, the analysis
of satellite data is challenging due to the difficulty in distinguish-
ing between temporal and spatial variations in the records. Satel-
lite data have been used to derive global 1-D conductivity models
of Earth’s mantle within the last three decades, for example, by
Didwall (1984), Olsen (1999), Constable & Constable (2004),
Velimsky et al. (2006), Kuvshinov & Olsen (2006), Civet & Tarits
(2013) and Civet et al. (2015).

In preparation for the Swarm multisatellite mission (Friis-
Christensen et al. 2006), we developed a new method to recover
the 1-D conductivity structure of Earth’s mantle, which takes 3-D
effects arising from the known distribution of oceans and continents
into account (Piithe & Kuvshinov 2013). The elaborated concepts
have now been applied to 10 yr (September 2000 to August 2010) of
magnetic measurements of the satellites Orsted, CHAMP and SAC-
C, as well as the global network of geomagnetic observatories, in
addition to eight months (December 2013 to July 2014) of data
from the three Swarm satellites and the geomagnetic observatories.
This is the largest data set ever used for a 1-D mantle conductivity
study, and use of both satellite and observatory data combines the
strengths of both data sources.

Geophysical inverse problems suffer from non-uniqueness. As a
consequence, analysis of model resolution and accuracy is crucial,
but difficult to address properly within the deterministic frame-
work. Probabilistic inversion provides the foundation for such an
analysis, but is computationally more expensive. In this study,
we derive 1-D mantle conductivity models using both determin-
istic (Section 3) and probabilistic (Section 4) methods and show
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Figure 1. Availability of observatory and satellite data for the CHAMP
phase (a) and the Swarm phase (b). The small amount of observatory data
during the Swarm phase is due to the fact that many observatories had not
yet published their measurements when this study was started.
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that both approaches can be used to gain knowledge about model
uncertainties.

2 DATA PROCESSING

2.1 Selection of the data

In total, we processed more than 10 yr of magnetic satellite and
observatory data. The period from September 2000 to August 2010
will hereinafter be denoted as ‘CHAMP phase’, while that from
December 2013 to July 2014 will be denoted as ‘Swarm phase’.
Both names refer to the satellites providing vector data for the
indicated period.

Hourly mean vector data from observatories were available for
the entire CHAMP phase; the number of observatories for which
data are available ranged between 111 and 132. Qrsted vector data
were only available from September 2000 to December 2005, while
scalar data could be retrieved (with considerable gaps) until the
end of the CHAMP phase. SAC-C provided scalar data from Jan-
uary 2001 to December 2004. All satellite data used presently have
minute resolution. Due to the different sampling rates, the amount
of observatory data and satellite data are comparable. This is also
the case for the Swarm phase, although the number of observatories
providing data (dropping over time from 80 to a minimum of 43)
is considerably smaller than for the CHAMP phase. Fig. 1 displays
data availability during both phases.

The raw data were processed as follows. First, we removed core
and crustal field as predicted by an extension of the CHAOS-4 mag-
netic field model (Olsen et al. 2014), which covers the entire time
span relevant for this study. Obvious outliers and baseline jumps
were, after careful inspection, removed manually. If necessary, re-
maining slow variations in the observatory data were removed by
fitting low-degree polynomials to the time series. No such correction
was applied to satellite data.

In order to reduce the influence of ionospheric currents (Sq system
and polar electrojets), we only used night-time data (defined here by
local-time between 19:00 and 05:00) and avoided latitudes >55°.
The remaining magnetic field variations are assumed to be due to
a large-scale magnetospheric source that consists mainly of a ring
current around the geomagnetic equator. The spatial structure of
the magnetic field due to such a source can be described by the

A new model of Earth’s radial conductivity ~ 1865

single spherical harmonic Y = cos @, with # denoting colatitude.
Its temporal evolution is characterized by the external coefficient
&) and its induced counterpart ¢} (for details of the mathematical
description, we refer to, for example, Schmucker 1985a,b). We fit the
magnetic field variations with these coefficients in the time-domain
in bins of 1 hr. Allowing for more coefficients, using longer bins or
parametrizing the time-dependency with cubic splines (as done by
Kuvshinov & Olsen 2006) did not change the results significantly.

2.2 Estimation and correction of transfer functions

From time series of &) and (J, we estimated scalar O-responses
and transformed them to C-responses, as described in Piithe &
Kuvshinov (2013). That study relied on coefficient time series pro-
vided by the Comprehensive Inversion (Sabaka ef al. 2013). In
this study, we estimated the coefficients from raw magnetic data
as described above. The processing tools elaborated by Piithe &
Kuvshinov (2013), however, are applicable in any case.

Transfer functions were first estimated separately for each of
the two phases. For the CHAMP phase, we obtained C-responses
at 27 periods between 1.5 and 150 d. This is the period range in
which ring-current activity is known to be the dominant source of
magnetic variations (e.g. Schmucker 1985b). Outside this range, the
assumption of a source field described by Y7 is not valid, which is
why extensions to shorter and longer periods were avoided. For the
Swarm phase, we were restricted to periods up to 25 d due to the
shortness of the available time series. The results are presented in
Fig. 2(a).

C-responses estimated for the CHAMP and Swarm phase agree
fairly well for all frequencies. This is remarkable, considering the
limited amount of data available in the Swarm phase. Even if uncer-
tainties are clearly larger for the Swarm phase than for the CHAMP
phase, reliable estimates of C-responses at periods up to 25 d are at-
tainable from only 8 months of satellite and observatory data. When
data from both phases are combined, the resulting C-responses only
differ insignificantly from those obtained for the CHAMP phase.
Squared coherencies exceed 0.9 throughout, justifying our assump-
tions about the source. The real part of C, which is a measure of
the penetration depth (Weidelt 1972), increases monotonically from
700 to 1600 km.

We compare our results to those of Kuvshinov & Olsen (2006),
who conducted a similar study based on 5 yr (2001-2005) of satel-
lite magnetic data. Overall, results from the two studies are observed
to agree fairly well. Our C-responses, however, are smoother, show
smaller uncertainties and higher coherencies. This is most prob-
ably due to the larger data set used in this study. Additionally,
Re C is consistently found to be larger than that determined by
Kuvshinov & Olsen (2006). This is explained as follows: When
fitting the magnetic data with coefficients &? and (%, Kuvshinov &
Olsen (2006) added a small damping parameter to stabilize the so-
lution and obtain continuous time series of coefficients in spite of
gap-bearing raw data. This damping, however, slightly biased the
estimated C-responses towards smaller amplitudes. In contrast to
Kuvshinov & Olsen (2006), we here employ observatory data in
addition to satellite data. As a result, a stable estimation of the co-
efficients is possible for each instant, obviating the requirement for
damping.

From hereon, we work with C-responses estimated from data
from both phases. These responses, which we label C °*(w), where
 denotes angular frequency, are known to be affected by induc-
tion in the oceans (e.g. Everett et al. 2003; Kuvshinov & Olsen
2005). We iteratively correct the real and the imaginary part of
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Figure 2. (a) Estimated (uncorrected) C-responses in this study in comparison to those obtained by Kuvshinov & Olsen (2006). (b) C-responses corrected
for induction in the oceans; solid lines indicate C-response predictions corresponding to the recovered conductivity models (Fig. 5). Top panels show squared

coherencies.

the C-responses for the ocean effect using

. ReC™(w)
Re C (w):Rer(a))xm, 1)
-
i € (@) = Tm (@) x L2E (@) @)

Im C3D(w)’

where C'"P(w) and C*P(w) are the C-responses computed in a 1-D
model and a 3-D model (consisting of a laterally heterogeneous
surface shell plus the 1-D model underneath), respectively. This
multiplicative scheme implies a relative correction of the estimated
C-responses, which yields more reliable results than the absolute,
additive correction previously used by Kuvshinov et al. (2005) and
Piithe & Kuvshinov (2013). A separate treatment of Re C and Im C'is
necessary because a combined correction would be biased towards
the real part, which has larger amplitudes. The entire correction
scheme is presented in Fig. 3 (reprinted from Piithe & Kuvshinov
2013). Note that the scheme employs the deterministic inversion al-
gorithm outlined in Section 3.1 to recover a 1-D mantle conductivity
model in every iteration.

Corrected C-responses C*°"(w) are shown in Fig. 2(b) and com-
pared to those obtained by Kuvshinov & Olsen (2006), who used
a different correction scheme. The ocean effect is clearly visible
in both the real and imaginary part at periods <10 d. Re C " re-
mains almost constant at 850-900 km for periods up to 10 d. This
implies a thick, highly resistive layer underneath the surface shell.
The effect of the correction is slightly more pronounced than in the
results of Kuvshinov & Olsen (2006); the differences (in the real
part) therefore increase for periods <10 d. This is likely a result of
the different correction scheme.

The numerical values of observed and corrected C-responses,
uncertainties and squared coherencies are provided in Table 1.

3 DETERMINISTIC INVERSION

3.1 1-D inversion: concept

Deterministic inversion seeks a single model m that minimizes the
misfit between data and model predictions given additional con-
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Figure 3. Processing scheme for the iterative 1-D inversion. Inputs and
outputs are marked by grey and red boxes, respectively. Note that by the
term ‘3-D model’, we denote the 1-D model plus a laterally heterogeneous
surface shell.

straints. It can be formulated as a minimization problem, in which
the cost function (or penalty function) ¢ is defined as

¢(m’ )‘) = ¢d(m) + A‘(p)?l(m)’ (3)

where ¢, is data misfit and A and ¢,, are regularization parameter
and regularization term, respectively. The model vector m consists
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Table 1. Observed and corrected C-responses with uncertainties (in km) and squared coherencies as functions of period (in seconds).

Cobs C corr
Period Re C Im C Re C Im C sCobs coh?
129600 692.3 —277.9 872.2 —132.3 435 0.93
154800 723.5 —232.5 870.7 —111.3 40.8 0.95
183600 748.4 —209.8 868.7 —102.6 37.5 0.96
219600 773.0 —179.2 8703 —-90.9 36.5 0.96
262800 781.8 —156.4 859.3 —83.4 354 0.97
313200 798.6 —1354 861.7 —-76.2 352 0.97
370800 822.9 —1343 875.9 —80.2 41.9 0.97
439200 836.6 —144.6 881.0 -91.7 45.7 0.97
522000 847.1 —152.9 884.4 —102.9 43.1 0.97
619200 853.4 —179.0 885.1 —127.6 51.3 0.97
738000 877.2 —192.2 905.0 —144.6 46.0 0.98
878400 890.1 —223.7 914.6 —176.6 9223 0.98
1044000 917.4 —248.9 939.4 —204.8 48.6 0.97
1242000 921.7 —256.3 941.4 —218.6 59.2 0.97
1476000 942.6 —278.3 960.5 —244.5 63.0 0.97
1756800 989.2 —302.3 1006.1 —272.2 454 0.98
2088000 1031.3 —326.7 1047.2 —300.0 54.5 0.98
2484000 1052.9 —364.5 1067.6 —340.1 68.3 0.97
2955600 1071.8 —367.6 1085.4 —347.4 89.1 0.96
3513600 1120.4 —337.3 1133.3 -322.1 121.1 0.94
4179600 1160.2 —314.3 1172.4 —302.7 164.2 0.92
4971600 1239.1 —329.3 1250.9 -319.3 202.5 0.91
5911200 1269.4 —397.2 1280.4 —387.2 211.8 0.91
7030800 1357.4 —453.0 1368.2 —443.6 160.1 0.93
8362800 1428.5 —518.3 1438.8 —509.2 141.8 0.94
9946800 1574.9 —525.7 1585.2 —517.8 1823 0.91
11829600 1602.6 —562.4 1612.0 —554.9 194.3 0.92
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of a discrete parametrization of the radial conductivity structure.
We formulate the data misfit as

L Z |Cmod(a}) _ Cobs(w)lz
N, 5Cobs(w)2 ’

¢ = “4)

w

where N, is number of frequencies, C°™(w) are estimated C-
responses (potentially corrected for the ocean effect), §C°*(w)
are corresponding uncertainties, and C™%(w) are modelled C-
responses. The regularization term ¢,, in our implementation pe-
nalizes jumps in conductivity between adjacent layers.

Descent methods (e.g. Nocedal & Wright 2006) make use of the
gradient V¢ (and often also of the Hessian H(¢)) to systematically
move through the model space until a point is reached where ¢ is
minimum. Here, we apply the full Newton method, in which the
model is updated as

m . =my; — o H (¢ Ve, (5)
where o determines the step length in an inexact line search (e.g.
Nocedal & Wright 2006). We compute model predictions C™%(w),
gradient and Hessian of the data misfit ¢, analytically as outlined
in the Appendix.

Let us assume that ¢ has a minimum at my. Since the gradient of
¢ at m, vanishes, a second-order polynomial approximation reads

1
$(my + Am) ~ $(m,) + EAmTH(tﬁ(mo))Am, (6)
with Am being a perturbation of m,. Let us define

A¢ = ¢(mg + Am) — $(mo) (N

as a maximum permissible perturbation of ¢. Eq. (6) can then be
rewritten as

A¢ = 3 AmTH((mp)Am. ®)

For simplicity, we allow C™(w) to deviate from C°**(w) within
uncertainties § C°*(w). According to eq. (4), this yields A¢ = 1.

In case of a diagonal Hessian, eq. (8) is easily solved for maxi-
mum perturbations of a model parameter m;:

my= ol ©)
(¢(my)),;
A diagonal Hessian, however, implies that there is no correlation
between any two model parameters. This is very improbable for
real-world problems. In the much more important case of a non-
diagonal Hessian, a proxy for Am; is given by

Amj =,/2A¢ H(p(my)) (10)

where H (¢(m0));j1 denotes the jth diagonal element of the inverse
Hessian (Pankratov & Kuvshinov 2015). Note that the formulations
(9) and (10) are only equivalent in case of a diagonal Hessian.
Whether diagonal or non-diagonal, the perturbations Am; can be
interpreted as estimates of model uncertainties. In the present con-
text, these estimates only approximate the true model uncertainties.
First, the use of a second-order polynomial implies a linearization
of a non-linear inverse problem around the minimum of the cost
function. Second, the choice of A¢ = 1 is heuristic, and there might
be good reasons for other choices. Finally, the applied regulariza-
tion has generated large covariances between model parameters,
such that the bounds for the conductivity in a specific layer neces-
sarily depend on the conductivity in all other layers. Nevertheless,
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point of convergence my. See the main text for details.

the perturbations Am; yield valuable information about relative un-
certainties and thus about the resolution of the recovered model at
different depths.

3.2 1-D inversion: implementation

The model is parametrized using N = 40 spherical layers in depth
between Earth’s surface and the core—mantle boundary (CMB) lo-
cated at a depth of 2890 km. A very good conductor (of 10° Sm™")
is prescribed for the core. The thickness of the layers is generally
fixed to 50 km at depths <1000 km and to 100 km underneath. Mi-
nor modifications of this rule permit layer boundaries at the main
seismic discontinuities in the mid-mantle, located at depths of 410,
520 and 660 km, respectively.

We invert the corrected C-responses for several values of A and
manually pick the final results from an L-curve relating ¢, and ¢,,
(Hansen 1992). In practice, we choose the ‘simplest’ model, that is,
the model with smallest ¢,,, with the constraint ¢, < 1. Fig. 4 shows
the inverse Hessian at the point of convergence my. The matrix is
diagonally dominant, but contains significant energy in off-diagonal
elements, implying correlations between the individual model pa-
rameters. We apply eq. (10) to calculate model uncertainties Am;.

Fig. 5 shows the recovered 1-D model with its uncertainties de-
termined by analysis of the inverse Hessian. Also shown is the
conductivity profile recovered from uncorrected C-responses and
the result of Kuvshinov & Olsen (2006). The recovered model is
characterized by a highly resistive zone in the top 400 km, with a
minimum value of 2 x 1073 S m~! just beneath the surface shell.
Conductivity increases steadily to a depth of 900 km, reaching a
maximum of 2 S m~!. The conductivity profile then shows a sharp
edge; at greater depths, conductivity is almost constant, varying
between 1 Sm™" and 2 S m™! down to the CMB. The correction
for the ocean effect has a great influence on the results in the top
600 km. As expected, the corrected C-responses correspond to a
considerably more resistive conductivity model. This model is also
significantly more resistive than that recovered by Kuvshinov &
Olsen (2006) to a depth of 800 km.

The uncertainty estimates form an hourglass-shaped structure.
Smallest uncertainties are observed at depths between 800 and
1200 km in line with the structure of the inverse Hessian (Fig. 4). At
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Figure 5. 1-D conductivity models recovered by Kuvshinov & Olsen (2006)
(solid black line) and this study (1-D inversion without correction: solid blue
line; 1-D inversion with correction: solid red line; quasi-1-D inversion: solid
yellow line). Narrow red lines indicate uncertainties of the recovered (cor-
rected) model, estimated from analysis of the inverse Hessian. In grey, we
show 400 near-independent models obtained from Monte Carlo sampling.

Table 2. Conductivity model obtained from deterministic 1-D inversion
(with correction for the ocean effect). Depth (to the top of the respective
layer) in km, and conductivity in S m~".

Depth Conductivity Depth Conductivity
0 1.814e—03 950 2.344e+00
10 1.829¢—03 1000 1.815e¢+4-00
60 1.918e—03 1100 1.401e+4-00
110 2.085¢—03 1200 1.232e¢4-00
160 2.348e—03 1300 1.206e+00
210 2.737e—03 1400 1.269e+4-00
260 3.304e—03 1500 1.388e+00
310 4.136e—03 1600 1.542¢4-00
360 5.378e—03 1700 1.710e+00
410 7.290e—03 1800 1.874e4-00
460 1.034e—02 1900 2.019e+00
520 1.559e—02 2000 2.136e+4-00
560 2.460e—02 2100 2.224e+00
610 4.158¢—02 2200 2.284e+4-00
660 7.604e—02 2300 2.322e+00
700 1.497e—01 2400 2.344e4-00
750 3.248e—01 2500 2.356e+00
800 7.490e—01 2600 2.360e+-00
850 1.596e+00 2700 2.362e+00
900 2.412e+4-00 2800 2.362e+4-00

depths <400 km and > 1600 km, conductivity is poorly constrained
by the data.

The conductivity model recovered in the deterministic inversion
is provided in Table 2.

3.3 Quasi-1-D inversion

In the previous sections, we showed how to correct the estimated re-
sponses for 3-D effects due to induction in the oceans by an iterative



approach, and how to invert the corrected responses for 1-D con-
ductivity structure. Although this approach has proven successful,
a more natural and consistent treatment of 3-D effects is given by
inverting the (uncorrected) responses directly in a 3-D environment.

We modified an existing modular 3-D inversion code (Piithe &
Kuvshinov 2014) to invert for 1-D structure in the presence of a
heterogeneous surface shell. For consistency with the existing im-
plementation, the modified code does not invert C-responses, but
the corresponding Q-responses. In a 3-D environment, model pre-
dictions, gradient and Hessian of the data misfit cannot be computed
analytically as in the 1-D case. For the solution of the forward prob-
lem we hence employ a numerical procedure, which is based on a
contracting integral-equation approach (Pankratov ef al. 1995). The
gradient is computed with finite differences, which requires N addi-
tional forward computations per iteration. A quasi-Newton method
(e.g. Nocedal & Wright 2006) is employed to find the minimum of
the cost function ¢. As in the 1-D case, ¢ includes a regularization
term that minimizes jumps between adjacent layers.

We applied the modified 3-D inversion code to the uncorrected Q-
responses. The results for an appropriate regularization parameter
are shown in Fig. 5. At depths >400 km, the result agrees perfectly
with that of the iterative 1-D inversion. At shallower depths, the
result of the direct inversion is slightly more resistive, but well within
uncertainties. The very good agreement of the results confirms the
functionality of the iterative approach, which is computationally
less expensive than the direct method. It also justifies the more
pronounced effect of the correction compared to that of Kuvshinov
& Olsen (2006), cf. Fig. 2.

4 PROBABILISTIC INVERSION

4.1 Definitions

In contrast to deterministic inversion, probabilistic or Bayesian in-
version (e.g. Tarantola 2005) does not seek a single model that
explains data. Instead, it explores the parameter space and gener-
ates a multitude of models that can be analysed statistically.
Central to the Bayesian approach to inverse problems is the use
of probability density functions (pdfs) to describe any piece of
information entering the problem. We define a prior pdf p(m),
which contains information about the model that is independent of
data, a likelihood function £(m) measuring the probability density
of a model given data and a posterior pdf ¥£(m), which is given by

Z(m) = cp(m)L(m), (11)

where « is a proportionality factor ensuring that the integral of
3 (m) over the entire model space equals 1. Integrating X(m) over a
part of the model space corresponds to the probability that the true
model m* lies within that part, given data and prior information.
Assuming

L(m) = exp(—¢y(m)) (12)
and
p(m) = exp(_)‘(Pm (m))a (13)

a maximization of ¥ becomes equivalent to a minimization of ¢ in
the deterministic inversion.

4.2 Monte Carlo sampling

For aprobabilistic inversion of the corrected C-responses, we use the
Metropolis—Hastings algorithm (Metropolis et al. 1953; Hastings

A new model of Earth’s radial conductivity ~ 1869

1970), which was shown to be particularly efficient in sampling the
posterior pdf. It can be described as follows (Mosegaard & Tarantola
1995):

Given a function X(m), which samples the prior pdf iteratively,
and a uniformly distributed random number « drawn from the in-
terval [0, 1], the model is updated as

K(m, ifa<min(1,m>,
my,| = (my) - L(my)
my else,

(14

with £(m) defined as in eq. (12). This algorithm generates suc-
cessive samples of the posterior pdf without explicitly calculating
3 (m). The sampling density is proportional to the probability den-
sity, that is, low-probability areas of the model space are sampled
less excessively.

The critical aspect in the implementation of the Metropolis-
Hastings algorithm is the function X(m), which is supposed to
generate successive samples of the prior pdf. The constraints im-
posed upon the model in deterministic inversion (Section 3) are not
easily applicable in Monte Carlo methods, and we do not formulate
an explicit prior p(m) as suggested by eq. (13). Based on labo-
ratory measurements of anhydrous mantle mineral conductivities,
Khan et al. (2011) assumed conductivity to be a non-decreasing
function of depth. This strong constraint, however, yielded unreal-
istically small model uncertainties (not shown here for brevity). We
therefore opted for the following constraints:

(i) Conductivity must not vary by more than one order of mag-
nitude between adjacent layers,
(ii) Conductivity has to lie in the range [10™> Sm~'; 10° Sm™!].

This yields upper and lower bounds for m; = logio(0;/00), with
09 = 1S m™~!. A random number generator was employed to pick
a value between these bounds assuming a uniform distribution.
The number of model parameters to be perturbed in an iteration
according to the above constraints was adjusted to yield an overall
acceptance rate of 40 per cent.

10° models were sampled in total. In Fig. 5, we present 400 near-
independent samples of the posterior pdf, obtained by retaining only
one sample every 1000 iterations. The collection of sampled models
agrees well with the result of the deterministic inversion. The spread
of the models is minimum at a depth of 1000 km and increases both
at shallower and greater depths, in agreement with the uncertainty
estimates of the deterministic inversion. The results of the Monte
Carlo inversion, however, do not spread symmetrically around the
result of the deterministic inversion. This is particularly the case
in the top 800 km, where the Monte Carlo results tend to smaller
conductivities.

5 DISCUSSION

Deterministic inversion is computationally cheap and therefore most
often the preferred solution in large geophysical inverse problems.
Comparison of our result to that of Kuvshinov & Olsen (2006) shows
large differences in the top 800 km, where our model is significantly
more resistive. The model of Kuvshinov & Olsen (2006) is generally
smoother, which is most probably due to stronger regularization.
The fact that the models partially differ by more than an order of
magnitude is most likely due to data-related issues:

(i) The real part of our C-responses is larger at all periods, which
is due to the fact that Kuvshinov & Olsen (2006) included a damping
parameter when processing the raw data.
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(i) Kuvshinov & Olsen (2006) estimated C-responses at periods
<1 day and therefore sampled shallower depths.

(iii) The effect of the correction for induction in the oceans is
slightly more pronounced in our study (cf. Fig. 2).

In contrast to Kuvshinov & Olsen (2006), we provide model un-
certainties, estimated from the inverse Hessian of the cost function.
These uncertainties should rather be interpreted qualitatively than
quantitatively, because their estimation is based on several approxi-
mations (cf. Section 3). Nevertheless, they provide good indications
about the resolution and show that with current data in a period
range from 1.5 to 150 d, sensitivity is maximum at depths between
800 and 1200 km. The most prominent feature of our results, the
sharp edge at a depth of 900 km, lies in this well-resolved depth
range and thus likely represents real structure.

Apart from the very apparent edge, the recovered model also
shows a zone of elevated conductivity at a depth of approximately
900 km. This feature, however, is not very pronounced, and might
actually be an artefact that arises from lack of information in the
data. The estimated model uncertainties clearly allow for models
without such a zone (Fig. 5) and hence confirm that this structure is
not trustworthy.

Probabilistic approaches to inverse problems offer an alternative
framework for analysing the reliability of a recovered model. The
results of an independent Monte Carlo study, which relied on dif-
ferent prior information, agree well with those of the deterministic
inversion. In particular, the sharp edge at a depth of 900 km is
also visible in the results of the probabilistic inversion. The recov-
ered models, however, tend to smaller conductivities in the upper
mantle and show more structure in the lower mantle. This might in-
dicate that the prior constraints used in the deterministic inversion
are slightly stronger than those used in the probabilistic inversion.
The Monte Carlo results also confirm the depth-dependency of the
uncertainties obtained in the deterministic inversion. Only in the top
600 km, the upper bound of these uncertainties appears too large.

6 PRELIMINARY INTERPRETATION OF
MANTLE CONDUCTIVITY STRUCTURE

To interpret the inverted conductivity profile (Fig. 5), we con-
struct laboratory-based conductivity profiles as a function of mantle
composition, temperature, pressure and water content. We com-
bine laboratory measurements of mineral conductivity with a self-
consistently computed mineralogical model of the Earth’s mantle
using Gibbs free-energy minimization following the approach out-
lined in Khan & Shankland (2012). For present purposes, we assume
a chemically homogeneous and adiabatic mantle made of pyrolite.
The bulk electrical conductivity profiles so computed are shown
in Fig. 6 for different values of mantle water content (here re-
stricted to be present in the minerals olivine (ol), orthopyroxene,
wadsleyite (wads) and ringwoodite) and self-consistently computed
mantle adiabats. Input temperature for the latter is defined as the
temperature at the location where the mantle adiabat intersects the
conductive geotherm at 150 km depth. For more details on con-
structing laboratory-based conductivity profiles, we refer the reader
to Khan & Shankland (2012).

The discontinuities associated with mineral phase transforma-
tions at 410, 520 and 660 km depth are clearly present in the
laboratory-based conductivity profiles, but absent in the field-
derived profile. The inability of EM fields to sense discontinuities
results directly from their diffusive nature. Conductivities found
here in the upper mantle appear to be well-estimated by an up-
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Figure 6. 1-D conductivity profiles estimated in this study (blue line) and
computed using laboratory-based conductivity data for various mantle wa-
ter contents and temperatures. Ol and wads refer to major upper mantle and
transition-zone minerals olivine and wadsleyite, respectively. T,q is the tem-
perature at the location where the mantle adiabat intersects the conductive
geotherm at 150 km depth. For the computations related to variations in
water content (black lines), we assumed a mantle adiabat of 1300 °C with an
intersection depth of 100 km, whereas for the mantle adiabats (grey lines)
we fixed water content to 0.001 wt per cent (ol) and 0.01 wt per cent (wads).
o9 =1Sm!. See the main text for more details.

per mantle water content of 0.001 wt per cent and a mantle tem-
perature of 1200 °C at 150 km depth in line with earlier obser-
vations (e.g. Karato 2011; Khan & Shankland 2012; Yoshino &
Katsura 2013). In the absence of conductivity measurements of hy-
drous lower mantle minerals, the recovered edge of the conductivity
profile at around 900 km depth either requires higher tempera-
tures or the presence of material of higher conductivity such as
that associated with ponding of melt in and below the transition
zone.

Recent geophysical studies suggest ponding of melt at the top of
the lower mantle as a means of explaining some anomalous features.
For example, in a regional 3-D EM study Koyama et al. (2014)
found a strong conductivity anomaly underneath the south-eastern
part of Australia at the bottom of the transition-zone that appears to
require the presence of melt. Schmandt et al. (2014), using P-to-S
conversions (receiver functions), likewise observed what appears
to be evidence for melt below the transition-zone underneath the
North American continent. Locally large conductivity anomalies
in the topmost lower mantle might be related to carbonate melts,
which have been observed experimentally to increase conductivity
significantly beyond what is possible with hydrous olivine (e.g.



Gaillard et al. 2008; Yoshino et al. 2012). As discussed by, for
example, Litasov (2011) melting in CO,-containing systems can
produce carbonate melts in these regions of the mantle. We leave it
for future studies to consider this in more detail.

7 CONCLUSION AND OUTLOOK

Global C-responses were estimated from a vast amount of data that
derive from satellites and geomagnetic observatories. We corrected
the responses for 3-D effects due to induction in the oceans by an
iterative approach.

The corrected C-responses were inverted for a 1-D electrical con-
ductivity profile of Earth’s mantle. The recovered model features
a highly resistive upper mantle, increasing conductivity in and be-
neath the transition zone and high conductivities underneath. The
results of a deterministic inversion were verified by a direct inver-
sion of uncorrected responses in a 3-D environment and an inde-
pendent probabilistic analysis. We showed that reasonable bounds
for the recovered model can be obtained within the framework of
a deterministic inversion by making use of the inverse Hessian of
the cost function. The uncertainty estimates reveal that data are
most sensitive to structures at depths between 800 and 1200 km,
whereas conductivity at depths <400 km and >1600 km is poorly
constrained.

An update of the conductivity model recovered in this study is
planned once several years of data from the Swarm multisatellite
geomagnetic mission will become available.
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APPENDIX: ANALYTICAL
COMPUTATION OF THE GRADIENT
VECTOR AND THE HESSIAN MATRIX

Kuvshinov & Semenov (2012) discuss in the appendix of their
paper the solution of Maxwell’s equations in a spherical 1-D model
consisting of N layers, in which conductivity o varies with radius
7 as

2
o(r) = oy (;—k) , Fepl <T <1y, (A1)

where r; = a, ry+1 = 0 and o is an appropriate constant. Con-
ductivity is thus a piecewise inverse quadratic function of depth. If
the layers are thin, the variation of conductivity within a layer is
small, thus o (r) & oy for r; | < r < r;. Formulation (A1) how-
ever is mathematically easier to handle than a piecewise constant
conductivity structure.

Kuvshinov & Semenov (2012) discuss the calculation of ad-
mittances Yi(w) = Y(w, ;) in a spherical body with conductivity
structure as given by eq. (Al). Admittances can be calculated an-
alytically with a recurrence formula, that is, ¥y = flo, Y1) and
Yny =f(o v). Furthermore, the C-response is related to the admittance
at Earth’s surface as

1

) 2
where w1 is the magnetic permeability of free space. The explicit
recurrence formula, which is mathematically not complex, but cum-
bersome, is given in appendix E of Kuvshinov & Semenov (2012).

Descent methods used in deterministic inversions require the
computation of the gradient and Hessian of the data misfit, which
in our case is given by eq. (4). The gradient V¢, contains the
derivatives of the misfit ¢, with respect to the model parameters m,
which read

B(Pd _ 2 (Cmod(a)) C(’bs(u)))* 3Cm°d(a))
o — = Re Z 5Cbs(e)? am,

(A3)

amk va e

where superscript * stands for complex conjugation. m is a func-
tion of the conductivities, which depends on the parametrization
of the inversion domain. This function is usually simple — in our
case, m; = logo(0s/0y), with 0y = 1 S m~'. We concentrate on

calculating the derivatives of C™*%(w) with respect to o, the deriva-
tives with respect to m; follow with the chain rule. Taking in mind
the recurrence formula, we obtain

k=1
aCc  aC aY; \ 9Y,
= . (A4)
dop  0Yy 7 1 \9Yiy ) Do
where, from eq. (A2),
aC 1

= (AS)

3Y,  iopeYi(w)

The Hessian H(¢,) contains the second derivatives of the misfit ¢,
with respect to the model parameters. Its components follow from
eq. (A3),

2¢d _ R Z (Cmod(w) _ Cobs(w))* 32Cm°d(a))
amgom; N, = 8Cos(w)? om0m;

1 acmod(w) * acmod(w)
+6C°b5(w)2< omy ) om; :| (AS)

This equation contains the second derivative of the C-response with
respect to the model parameters m;, and m;. We again focus on the
derivatives with respect to the conductivities. Taking the derivative
of eq. (A4) with respect to ¢;, we obtain

’C a2cﬁ Yi \ 9%, 17 ( 8%\ 9%
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i=j+1

for off-diagonal elements of H(¢,) (here assuming ! < k, for
| > k, indices must be switched). For diagonal elements, we ob-
tain analogously

2
32C i:[' 0%\, oC A AN B 7
9072 ayz w,+1 oy ar, L\ 9y, ) 902

i=1 i=1
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From eq. (A2), we can again deduce that

92C 2

— = (A9)
Y, iwpo Y1 (w)?

The computation of all other derivatives appearing in eqs (A4),
(A7) and (A8) requires the ingestion of the recurrence formula for
Y, (Kuvshinov & Semenov 2012) in the above equations.



