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[1] This study discusses in detail the inversion of the Apollo lunar seismic data and the
question of how to analyze the results. The well-known problem of estimating structural
parameters (seismic velocities) and other parameters crucial to an understanding of a
planetary body from a set of arrival times is strongly nonlinear. Here we consider this
problem from the point of view of Bayesian statistics using a Markov chain Monte Carlo
method. Generally, the results seem to indicate a somewhat thinner crust with a thickness
around 45 km as well as a more detailed lunar velocity structure, especially in the middle
mantle, than obtained in earlier studies. Concerning the moonquake locations, the shallow
moonquakes are found in the depth range 50–220 km, and the majority of deep
moonquakes are concentrated in the depth range 850–1000 km, with what seems to be an
apparently rather sharp lower boundary. In wanting to further analyze the outcome of the
inversion for specific features in a statistical fashion, we have used credible intervals, two-
dimensional marginals, and Bayesian hypothesis testing. Using this form of hypothesis
testing, we are able to decide between the relative importance of any two hypotheses given
data, prior information, and the physical laws that govern the relationship between model
and data, such as having to decide between a thin crust of 45 km and a thick crust as
implied by the generally assumed value of 60 km. We obtain a Bayes factor of 4.2,
implying that a thinner crust is strongly favored. INDEX TERMS: 6250 Planetology: Solar

System Objects: Moon (1221); 5430 Planetology: Solid Surface Planets: Interiors (8147); 3260 Mathematical

Geophysics: Inverse theory; 5455 Planetology: Solid Surface Planets: Origin and evolution; KEYWORDS:
Moon, inverse theory, seismology, interior structure, terrestrial planets

1. Introduction

[2] Using seismology to obtain information about the
interior of the Moon saw its advent with the U.S. Apollo
missions which were undertaken from July 1969 to Decem-
ber 1972. Seismic stations were deployed at five of the six
locations (Apollo 17 did not carry a seismometer) as part of
the integrated set of geophysical experiments called the
Apollo Lunar Surface Experiment Package (ALSEP). Only
four of these five stations (12, 14, 15, and 16), powered by
radioactive thermal generators, operated concurrently as a
four-station seismic array, which was operative from April
1972 until 30 September 1977, when transmission of seismic
data was suspended. Each seismic package consisted of three
long-period (LP) seismometers aligned orthogonally to
measure one vertical (Z ) and two horizontal (X and Y )
components of surface motion. The sensor unit also included
a short-period seismometer which was sensitive to vertical
motion at higher frequencies (for more instrumental details,

see Latham et al. [1969]). Digital data were transmitted
continuously from the lunar surface to receiving stations on
Earth and were stored on magnetic tapes for subsequent
analysis. All the seismic data were then displayed on a
compressed timescale format from which lunar seismic
signals were identified [Nakamura et al., 1980].
[3] The lunar seismic network spans the near face of the

Moon in an approximate equilateral triangle with 1100 km
spacing between stations with two seismometers placed 180
km apart at one corner (see Figure 1) and covers most
geological settings on the front side of the Moon. Since the
first mission, more than 12,000 events have been recorded
and catalogued over a period of 8 years, and it has taken
several more to evaluate the data [Nakamura et al., 1981].
Since the compilation of the recorded seismograms, it has
been shown that the Moon is very aseismic compared to the
Earth. In comparison to the Earth the energy released in
seismic activity is 8 orders of magnitude less, being about
1010 J yr�1, compared to 1018 J yr�1 by earthquakes [Goins et
al., 1981a], although Nakamura [1980] has pointed out that
the actual average lunar seismic energy release could be as
high as 1014 J yr�1. Most of the moonquakes are very small

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. E6, 10.1029/2001JE001658, 2002

Copyright 2002 by the American Geophysical Union.
0148-0227/02/2001JE001658$09.00

19

Klaus Mosegaard

Klaus Mosegaard



on the Richter scale with magnitudes ranging up to 4 for
shallow events [Nakamura et al., 1974a], whereas the deep
events were generally of magnitude <2 [Goins et al., 1981a].
Because of the high sensitivity of the seismometers and the
low level of microseismic background noise, however, each
station detected on the average between 650 and 1250
moonquakes per year.
[4] Upon examination of the first lunar seismic data

returned to Earth in 1969, it became evident that their
interpretation would be a somewhat more intricate process,
owing to an apparent complexity inherent in lunar seismo-
grams. It turned out that the lunar seismic signals were
characterized by being very long, of high frequency, and of
reverberating nature with small first arrivals and slowly
building amplitudes [Latham et al., 1972]. Unlike the Earth,
where seismic pulses in general are of rather short duration, of
the order of minutes, the most prominent feature of lunar
signals is their anomalous long continuance. Strong signals,
as those from the impacts of the upper stage of the Saturn
rocket, last several hours. Moonquake and meteoroid impact
signals typically continue for 30 min to 2 hours. The general
picture that appears upon deciphering lunar seismograms
from a meteoroid impact is the following [Lammlein et al.,
1974]: lunar signals have emerging beginnings, increase
gradually to a maximum, and then slowly decay. Following
the first one or two cycles of thePwave, groundmotion is very
complex, with little or no correlation between any two
components. The onset of a shear wave from an impact signal
is indistinct where it can be identified at all. Coherent surface
wave trains displaying dispersion have not been recognized in
any recordings to date, although it is believed that scattered
surfacewaves undoubtedly contribute to the signals [Toksöz et
al., 1974]. It has been suggested that these signals are caused

by intense scattering of the waves in the uppermost layers of
the lunar crust [e.g., Latham et al., 1970]. Topographic
features, lunar regolith, compositional boundaries, and espe-
cially joints and cracks in the crust become very efficient
scatterers in the absence of water and the absence of damping.
The seismic velocity increases markedly after the first 10–
15 km, and deeper material is believed to be sufficiently
homogeneous to transmit seismic waves with little scattering.
In this lunar environment, seismic waves generated by an
impact are intensively scattered near the impact point. Scat-
tered energygradually diffuses into the lunar interior, inwhich
it propagates normally and undergoes further scatteringwhere
it reenters the lunar surface layer. As a result of this, a
prolonged wave train with gradual rise and decay is observed
at a distant seismic station [Lammlein et al., 1974].
[5] Four distinct types of events have been identified.

They are deep moonquakes, shallow moonquakes, and ther-
mal moonquakes, all of which reflect the present dynamic
state of the lunar interior, and of course meteroid impacts. For
a summary of the catalogued events detected on the LP
seismograms during the operation of the network, see Naka-
mura et al. [1981]. The deep moonquakes, by far the most
numerous of events, are usually �1 on the Richter scale
[Goins et al., 1981a; Lammlein, 1977] and were found to be
located halfway toward the center of the Moon in the depth
range 700–1200 km [Nakamura et al., 1982]. They consist
of repetitive moonquakes that emanate from specific source
regions, and many nearly identical wave trains have been
observed [Lammlein et al., 1974]. This important observation
meant that the locations are fixed, and moreover, it allowed
the summing of a large number of moonquake signals,
improving the signal-to-noise ratio. At most hypocenters,
one moonquake occurred for a period of a few days during a

Figure 1. Location map showing the four seismic stations that operated simultaneously.
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fixed time in the monthly lunar tidal cycle, giving rise to
peaks at 27-day intervals of the observed lunar seismic
activity. In addition, a 206-day variation and a 6-year
variation in the activity, also due to tidal effects, such as the
solar perturbation of the lunar orbit, have been observed
[Lammlein et al., 1974; Lammlein, 1977]. These periodicities
have been taken as evidence that the deep focus moonquakes
are related to the tidal forces acting on the Moon and appear
to represent merely a process of storage and release of tidal
energy without a significant release of tectonic energy
[Nakamura, 1978; Koyama and Nakamura, 1980].
[6] The shallow moonquakes are a manifestation of

another type of natural lunar seismicity. These are the most
energetic seismic sources observed on the Moon, although
they are less abundant than the other types of seismic events,
with an average of 4 events per year [Nakamura, 1977]. They
are also known as high-frequency-teleseismic (HFT) events
owing to their unusually high frequency content and the great
distances at which they are observed [Nakamura et al.,
1974a]. The estimation of the source depth at which HFT
events occur has been inconclusive, although several lines of
evidence, such as the variation of the observed amplitude of
HFT signals with distance, suggested that they originated no
deeper than a few hundred kilometers [Nakamura et al.,
1979]. It has been pointed out that there is no clear correlation
between them and the tides, as is obvious for deep moon-
quakes [Nakamura, 1977]. This led to the conclusion that
their origin is likely to be tectonic, given their similarity to
intraplate earthquakes [Nakamura et al., 1979, 1982]. Their
mechanism, though, could not be explained by plate motion,
because of the lack of concentration of events into narrow
belts as is observed on the Earth.
[7] A large percentage of the events observed on the short

period components are very small moonquakes, occurring
with great regularity. It is believed that these events, also
termed thermal moonquakes, are triggered by diurnal ther-
mal variations [Duennebier and Sutton, 1974].
[8] With the completion of processing of all the lunar

seismic data collected during the Apollo seismic network
operation, a set of arrival times was obtained, constituting a
primary data set from which the interior velocity structure of
the Moon could be inferred. The most recent and concise
summary of the seismic velocity profile is based on the
complete 5-year data set acquired when the four Apollo
seismometers were simultaneously operative [Nakamura et
al., 1982; Nakamura, 1983]. Nakamura and coworkers have
used arrival times from various seismic events for the
elucidation of the seismic velocity profile of the lunar interior.
Analysis of the man-made impacts led to a model of the
shallow lunar structure, a model for the upper mantle was
constructed on the basis of the shallow moonquakes and the
meteroid impacts, and modeling of the deep lunar interior
was subject to deep moonquake data. A linearized least
squares inversion technique using arrival time data from 41
deep moonquakes, 7 artificial impacts, 18 meteroid impacts,
and 14 shallow moonquakes as compared to only 24 deep
moonquake sources used byGoins et al. [1981b] was applied
in steps. These models established the Moon as a highly
differentiated body, with a crust and a mantle whose lower
parts were thought to be partially molten [Nakamura et al.,
1973]. However, velocity variations and the depths of pos-
sible discontinuities in the mantle could not be addressed,

although they were believed to be present [Nakamura, 1983].
The central part of the Moon could also not be ascertained
from the seismic data owing to the distribution of seismic
sources. All confirmed deep moonquakes occurred on the
nearside, except for one source, A33, which is located on the
farside beyond the eastern limb. No big meteoroid impacts
antipodal to the stations giving rise to unequivocal arrivals
were detected, leaving the important question of the existence
of a lunar core unanswered, although it has to be noted for the
sake of completeness that a farside impact, almost diametri-
cally opposite to station 15, gave tentative evidence for a low-
velocity core with a radius around 400 km [Nakamura et al.,
1974b; Sellers, 1992].
[9] In the earlier studies mentioned above, the analysis of

the nonlinear inverse problem was primarily centered on the
construction of best fitting models, thereby obviating the
analysis of uncertainty and nonuniqueness, which are impor-
tant items when inferring scientific conclusions from inverse
calculations. We [Khan et al., 2000] presented a new P and S
wave velocity structure for the Moon from a Monte Carlo
inversionof theApollo lunar seismic data,whereweadopted a
Bayesian viewpoint on inverse problems [Tarantola and
Valette, 1982;Mosegaard and Tarantola, 1995] whose main
feature is the use of probabilities to describe the model
parameters (which are the ones we invert for) and what lends
itself to their description is the a posteriori probability density
in the model space which summarizes all information about
the model we are studying supplied by data, a priori informa-
tion, and the physical laws relatingmodel and data. Given that
for general inverse problems the shape of the posterior
probability distribution is not known, it cannot simply be
described by mathematical means and covariances. The
Markov ChainMonte Carlo (MCMC) algorithm, on the other
hand, samples a large suite of models from this probability
distribution, thereby rendering uswith a better representation.
The main purpose of the present study is, on the one hand, to
detail themethod of analysis underlying that investigation and
moreover to extend the Bayesian analysis carried out byKhan
et al. [2000] (a detailed discussion of the results has already
been given in that study and will not be reiterated here) and as
an application of this to investigate the suite of models
sampled via theMCMCalgorithmas to lunar crustal thickness
using Bayesian hypothesis testing [Bernardo and Smith,
1994]. In regard to the data set, no attempt was made to
identify new events or arrivals, and the data used in this study
are the same events as those considered in the study by
Nakamura [1983], comprising first arrivals of P and Swaves.
However, seismograms from these events have been reviewed
in order to assess the uncertainty and consistency on these
arrivals. Finally, as regards the outline of the present manu-
script, we have chosen first to present general ideas concern-
ing (1) the use of MCMC algorithms to solve the general
inverse problem and (2) the analysis of the posterior distribu-
tion. Upon this follows a detailed description of the applica-
tion of these methods to the Apollo lunar seismic data set.

2. Theory: General Ideas

2.1. Solving the General Inverse Problem Using
a MCMC Algorithm

[10] It is customary to commence an investigation such as
this one by delineating our physical system by a set of
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model parameters, m = (m1, m2,. . ., ms), which completely
define the system. These parameters are not directly meas-
urable. What we usually are in possession of, though, are
certain observable data, d = (d1, d2,. . ., dn), obtained
through physical measurements. Now, what we could do
next is to try to prognosticate the observable parameters by
using any theory applicable to our particular predicament.
This results in another set of parameters, termed calculated
data dcal, which are dependent on the model parameters.
This dependency can be depicted by a relation of the form

d ¼ gðmÞ; ð1Þ

g being a functional relation governing the physical laws that
correlate model and data. What is meant by solving the
forward problem, then, is the prediction of observable data
given a set of model parameters, and conversely, solving the
inverse problem is understood to be the inference of values of
the model parameters, given observable data. Central to our
method is the notion of a state of information over the
parameter set. In concordance with the most general
description of states of information over a given parameter
set, as presented by Tarantola and Valette [1982] and
Tarantola [1987], we shall be employing probability
densities over the corresponding parameter space, describing
the various states of information inherent to our system. This
knowledge embodies the results of measurements of the
observable parameters and the a priori information on model
parameters as well as the information on the physical
correlations between observable and model parameters.
Solving the inverse problem, then, shall be formulated as a
problem of combining all this information into an alterior
state, termed the posterior probability density. The extensive
use of probability densities for delineating any information
has the advantage of presenting the solution to the inverse
problem in the most generic way, thereby implicitly
incorporating any nonlinearities [Tarantola and Valette,
1982].
[11] It is clear, then, that the most general method for

solving nonlinear inverse problems needs an extensive
exploration of the model space, since the posterior proba-
bility density in the model space contains all the information
about the system being studied. Therefore, given probabil-
istic prior information on m and a statistical description of
the observational uncertainties of d, the main idea is to
design a random walk in the model space which samples the
posterior probability distribution, that is, samples models
which are consistent with data as well as prior information.
To this end, we shall use a Markov Chain Monte Carlo
algorithm of the following form (the basic premises under-
lying the use of MC algorithms to solve general inverse
problems are reviewed by Mosegaard [1998]):
1. Propose a new model, mpert, by taking a step of a

random walk to some current model mcur, with a probability
proportional to r(m), the prior probability density on the
model parameters.
2. Calculate the likelihood function for the new model

using L(m) = k�exp(�S(m), where k is a normalization
constant, S(m) is the misfit function, and L(m) is a measure
of the degree of data fit.
3. Accept the new model with a probability Pacc ¼

minð1; LðmpertÞ=LðmcurÞÞ:

4. If mpert is accepted, then mcur = mpert. If not, then
reapply mcur and repeat the above steps.
[12] This algorithm will sample the posterior probability

density

sðmÞ ¼ hrðmÞLðmÞ; ð2Þ

h being a normalization constant, asymptotically. ‘‘Asymp-
totically,’’ in this case, implies that the statistical correlation
between samples taken at times separated by n iterations
will converge toward zero as n goes to infinity. The
advantage of using the above scheme to sample the
posterior probability density s(m) is that sampling is
conferred to those parts of the model space where model
parameters consistent with data and prior information exist.

2.2. Analysis of the Posterior Distribution

[13] Having designated the posterior probability distribu-
tion s(m) as the solution to our inverse problem, our main
concern is now the analysis of this distribution. However,
owing to its complex shape (it might be multimodal, contain
infinite variances, etc.), it is not possible to directly access
information from it. Instead, the information of most use is
obtained by investigating the probability P that a certain
feature resides at a given depth or depth range (correspond-
ing to the model parameters being contained within a given
subset of the model space), which can be calculated from

Pðm 2 �Þ ¼
R
� sðmÞdmR
� sðmÞdm ; ð3Þ

where � denotes a subset of the model space � and the
denominator is clearly identified as a normalization factor.
This can easily be extended to the calculation of means and
covariances.
[14] We could also adopt the point of view taken by

Mosegaard [1998], who states that the main aim of
resolution analysis is to aid in having to choose between
differing interpretations of a given data set. In line here-
with our principal purpose in analyzing the sampled
models will basically be to conjure up queries addressing
correlations between several model parameters. The one
question that we intend to investigate using the sampled
models concerns the lunar crust and could be formulated
as follows:
. How likely is it, on the basis of the seismic data and

their uncertainties as well as prior information, that the
Moon has a discontinuity (suitably defined) in a certain
depth range, marking for example the crust-mantle inter-
face?
However, answering questions like these involves having to
evaluate resolution measures of the form [Mosegaard,
1998]

Rð�; f Þ ¼
Z
�

f ðmÞsðmÞdm; ð4Þ

where f (m) is a given function of the model parameters m
and � is, as in (3), an event or subset of the model space �
containing the models of current interest. The similarity
between (3) and (4) is obvious.
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[15] It is clear from the above discussion that in the case
of the general inverse problem, (3) and (4) are inaccessible
to analytical evaluation, since we do not have an analytical
expression for s(m). However, the problem can be solved
using the MCMC algorithm, as mentioned before, which
samples a large collection of models, m1, m2, . . . , mn, from
s(m), whereby the resolution measure, given by (4), in turn
can be approximated by the following simple average
[Mosegaard, 1998]:

Rð�; f Þ 
 1

N

X
fnjmn2�g

f ðmnÞ; ð5Þ

where N normalizes the resolution measure. For the number
of samples N ! 1 the equality of (4) and (5) corresponds
to the important ergodicity property used in Monte Carlo
integration.
[16] However, we shall avail ourselves of a slightly

different approach which is known as hypothesis testing.
While the two analyses basically amount to the same, since
a hypothesis corresponds to a question, the advantage in
hypothesis testing lies in the fact that we are able to
compare any two hypotheses against each other.
[17] The classical problem of hypothesis testing concerns

itself with making a choice among different hypotheses,H1,
H2,. . . , Hn, on the basis of some observed data d. Or
formulated alternatively, we might be in the position of
having to decide how the prior probability P(H), concern-
ing any hypothesis H, has been amended by taking into
account observed data d (henceforth abbreviated data); that
is, we are interested in evaluating P(H|d), which is usually
termed the posterior probability distribution. The mathe-
matical connection linking the prior and the posterior is
given by the Bayes theorem

PðHjdÞ ¼ hPðdjHÞPðHÞ; ð6Þ

where h is a normalization constant. Extending the analysis
in order to compare any two hypotheses, we arrive at the
Bayes factor, whose definition has been ascribed to Turing
[e.g., Good, 1988].
2.2.1. Definition (Bayes factor)

[18] Given two hypotheses Hi, Hj corresponding to
different areas of the model space �, for data d, the Bayes
factor Bij in favor of Hi (and against Hj) is given by the
posterior to prior odds ratio.

BijðdÞ ¼
PðdjHiÞ
PðdjHjÞ

¼
PðHijdÞ=PðHj

��dÞ
PðHiÞ=PðHjÞ

; ð7Þ

P(d|Hi) being the probability distribution, usually termed
the likelihood (see below). Thus the Bayes factor provides a
measure of whether the data d have increased or decreased
the odds on Hi relative to Hj. Accordingly, if Bij(d) > 1, Hi

is now more relatively plausible than Hj in the light of d; on
the other hand, if Bij(d) < 1, it signifies that Hj has now
increased in relative plausibility [Bernardo and Smith,
1994]. It is clear that apart from how one defines the crust-
mantle transition or any other hypothesis for that matter, this
form of analysis is straightforward as seen from the

Bayesian viewpoint. This can be appreciated by rewriting
the above equation as

PðHijdÞ
PðHj

��dÞ ¼ PðdjHiÞ
PðdjHjÞ

� PðHiÞ
PðHjÞ

; ð8Þ

that is, the ratio of posterior odds equals the integrated
likelihood ratio times the ratio of prior odds. This
equation shows explicitly how the ratio of integrated
likelihoods plays the key part in providing the mechanism
by which data transform relative prior beliefs into relative
posterior beliefs. If we compare this to the form of the
posterior probability distribution, equation (2), which we
used in sampling solutions to our inverse problem, the
connection is complete, in that (2) states in an analogous
manner the role of the likelihood function L(m), which
contains information on data d and on the physical
theories linking data and model parameters, in changing
the prior probability distribution on model parameters
r(m) into the posterior s(m) [Mosegaard and Tarantola,
1995; Mosegaard, 1998].

3. Analysis: Application of the MCMC Algorithm
to the Apollo Lunar Seismic Data

3.1. Forward Problem

[19] As mentioned, the forward problem consists of calcu-
lating data, that is, travel times, given a set of model
parameters, that is, a model of the subsurface velocity
structure, among other things. In our model of the Moon the
assumption of radial symmetry is made. The Moon is parti-
tioned into 56 shells of variable size, with each layer being
characterized by its physical extent andmaterial parameters in
the form of the velocity. To each shell is assigned a piecewise
linearly varyingP and Swave velocity of the form v(r) = vo+ k
� r, which is continuous at layer boundaries. In order to
accommodate ray theory, certain limits are placed on the
velocity gradients, resulting in a smoothness constraint limit-
ing vertical resolution to roughly 5 km.
[20] Since the Moon is neither spherically symmetric nor

geologically homogeneous, an additional asset was intro-
duced to facilitate a more realistic modeling of the lunar
interior. Our model of the Moon was stripped of a surficial
layer, 1 km thick, which is known to be of very low velocity
[Kovach and Watkins, 1973]. Because of the extreme
velocity gradients encountered by the rays when impinging
this layer, they will be almost vertically incident upon
reaching the surface. The travel time for a ray in this layer
will therefore to a good approximation be given by T =
1 km/vsurface. So, instead of ray tracing in a sphere with a
radius of 1738 km, we traced in one with a radius of
1737 km and added for every station and surface source a
time correction to the travel time. Starting off with a surface
velocity of, say, 0.5 km s�1 [Nakamura et al., 1982] means
that we have to add a total time correction of 4 s to the travel
time of a ray emanating from a surface source and 2 s for
one originating within the Moon. Leaving the time correc-
tions variable, this method has the added advantage of
taking localized properties of the surficial material beneath
each station into account. For consistency, all time correc-
tions have been correlated in such a way that if a particular
station has been assigned a given initial correction, this
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same correction will be added to the travel times for the rays
emitted from all sources and traveling to this particular
receiver. In the same way, the corrections are correlated for
the impacts; that is, all rays emanating from a particular
impact have the same correction added to their total travel
time.

3.2. Inverse Problem

[21] Three parameters as discussed in the previous sec-
tion are used to describe our physical model of the Moon
which included the position of the layer boundaries, ri, their
velocities, vi, and the time corrections, tk, in the surficial
layer. In choosing how to parameterize our physical system,
however, it has to be noted that the choice of which
parameterization to employ is an ambiguous matter, in the
sense that it is not unique [Tarantola and Valette, 1982]. So,
instead of examining a number of different parameteriza-
tions, such as the velocity or the slowness, we shall avail
ourselves of another approach, this being the invariance
argument. As the name suggests, invariance implies the
procurement of commensurate distributions upon transfor-
mation from any one invariant measure. The ‘‘log-velocity’’
possesses exactly this property [Tarantola, 1987]; that is,
given a uniform distribution in log(v/vo), for example, we
will achieve a similar distribution whether it be the velocity
or the slowness we are transforming to. We shall therefore
adopt log(v/vo) as the parameterization throughout this
study. (In the following we shall continue to use vi to
describe the velocity parameters, but it is tacitly assumed
that we actually mean the log-velocity. Throughout this
study, vo = 1.0 km s�1.)
[22] To fully characterize our physical system, we also

need to incorporate parameters which describe the meteor-
oid impact as well as the shallow and deep moonquake
locations, thus resulting in the addition of three other
parameters in the delineation of our model. These parame-
ters are the depth coordinate of every moonquake and the
selenographical position of the epicenter, that is, longitude
and latitude, which we shall label sj and the latter two qj and
fj, respectively. Our model is thus ultimately given by m =
{ri, vi, tk, sj, qj, fj}.
[23] In commencing the MCMC algorithm we started

out by assuming some initial model m, henceforth mcur,
comprising a set of values. Now, by perturbing one of
these parameters, that is, by either changing the position
of a boundary layer, changing the value of the velocity at
a given layer boundary, assigning a new time correction
for either a source or a station, or amending the hypo-
central or epicentral coordinates depending on the partic-
ular event, we obtain a new model. The random walker is
then set out to sample the parameter space according to
the prior information and using a set of random rules
whose efficiency has been optimized through several
numerical experiments. Let us outline these random rules
and the prior information. For every iteration it is first
decided which parameter is to be perturbed next. The
decision is made whether to change a parameter pertain-
ing to the lunar interior or one regarding the location of a
seismic event, which are equally probable. Performing a
velocity perturbation has the same probability (0.5) as
performing a boundary layer perturbation. When it comes
to perturbing the time corrections, these are set to be

amended every fifth iteration. When perturbing either the
velocity or the position of a boundary, the layer is
selected uniformly at random and so is the value of the
parameter to be changed. It should be kept in mind that
perturbations concerning the placement of boundaries
have in a certain sense been restricted in order to
accommodate ray theory. Every layer to be perturbed
can be assigned any value, except in a range of 5 km
within the layer immediately above or below; that is, any
given layer i can assume a value within ri � 1 + 5 km �
ri � ri + 1 � 5 km. Concerning the time amendments,
whether it is a source location or the location of a station,
which is to be perturbed will be chosen uniformly at
random, as are their values. Let us note that we have
made the assumption of a uniform distribution in the ‘‘log-
time’’ domain as in the case of the velocities, the reason
being that the time is directly related to the velocities in
the top layer. Concerning the hypocenter coordinates, the
source depths are uniformly distributed from the surface
to the center of the Moon, and the epicentral coordinates
are likewise assumed to be uniformly distributed, in this
case across the lunar surface. As regards the sampling of
S wave velocities, it has to be remarked that in order to
make the inversion tractable the problem was actually
divided into two stages. The first entailed the inversion of
the P wave arrival times, while the second considered the
inversion of the S wave arrivals. Now, it is clear that the
two parameters, vp and vs, are not independent if
described in terms of the elastic moduli, r, k, and m,
these being the density, bulk, and shear modulus, respec-
tively. It could therefore be argued that this division of
the problem might result in physically unrealizable mod-
els (for further discussion, see section 8). However, being
aware of the connection between the two parameters, we
did impose certain constraints on the sampling of S wave
velocities, corresponding to the addition of prior informa-
tion, by introducing a Gaussian distribution centered on
the average vp

� ffiffiffi
3

p
as obtained from the first inversion

and with a standard deviation given by svp
� ffiffiffi

3
p

. This
prior information thus signifies that S wave velocities
lying far from this distribution are less likely sampled.
[24] This body of information, then, serves as prior

knowledge, in the sense that the random walker will be
sampling the model space with a probability density
describing exactly this information.
[25] At this point the reader might wonder about what

happened to the estimation of parameters pertaining to the
origin time of events, since these are also unknowns when it
comes to event localization. These are also determined in
this study; however, instead of including these in the model
parameter vector m above as another set of parameters to be
determined, we adopted a slightly different approach.
[26] Generally, we have the following relation concerning

the arrival times:

da ¼ mo þ gðmÞ;

where da is the vector of arrival times, mo is a model
parameter vector of origin times corresponding to individual
arrivals, and g(m) is our set of calculated travel times. Now,
for the present purposes we made the assumption that the a
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priori information concerning the origin time model
parameters was normally distributed with mean values as
determined by the Nakamura model [Nakamura et al.,
1976; Nakamura, 1983] and an a priori uncertainty,
typically of a few seconds. This sets the stage for the
following formal definition of new data:

d ¼ da �mo:

To these were assigned a new standard deviation as the sum
of the standard deviation of arrival times and the a priori
dispersion on origin time model parameters, thus defining a
composite uncertainty (to be dealt with later on).
[27] The reason that we ended up choosing what might be

labeled rather loose prior knowledge on model parameters,
by assuming that they were all uniformly distributed within
a large range, was our main aim of wanting to investigate
the full model variability inherent in the lunar seismic data.
[28] Having designated prior information, let us continue

the MCMC algorithm and assume that the random walker
wishes to sample the velocity at some depth. He currently
resides at vi and from there takes a step in some direction to
a point vi

new. Now, we do not restrict the random walker to
wander within some specified range, but shall rather let him
drift around the model space from zero to infinity, although
every jump is in a sense constrained so as to assure that the
random walker can take only small steps. Sampling the a
priori distribution by this method basically corresponds to
the process of diffusion, since the random walker can
essentially, if given steps enough, explore the whole model
space. Mathematically, we would write this condition as
vi
new = vi + x � (2 � a � 1), where a denotes a uniformly

distributed number in the interval [0,1] and x is a constant,
typically of the order of 0.2 km s�1 in this study.
[29] After having obtained a new model, mpert, our next

step is to gauge the posterior distribution. This we do by
first calculating a new set of arrival times using g(mpert) and
then comparing these to the observed data in order to obtain
the misfit function. This misfit is of importance, since we
shall by the Metropolis rule use it to either accept or reject
the new model, with probability Pacc = min{1, L(mpert)/
L(mcur)}. In words, we could state this by saying that the
random walker essentially updates his knowledge of the
current state of affairs, as prescribed by Bayes’ theorem, by
merging together prior information with data and theory.
The revision of the prior into the posterior is illustrated in

Figure 2, which shows how a prior distribution for a given
velocity parameter is being changed as data are taken into
account. Moreover, we are led to the conclusion that the
level of confinement is a direct measure of the knowledge
we possess about the system; that is, the more the random
walker is constrained when sampling the posterior distribu-
tion in the model space, the greater is our degree of
knowledge.
[30] Now, the strategy set forth here of perturbing only

one parameter at a time is sure to preserve most of the
characteristics of the current model which may have
resulted in a good data fit. While being efficient, in the
sense that we are interested in sampling models with a good
data fit, this strategy will result in a sequence of samples,
that is, models, that tend to be correlated. This is somewhat
unfortunate, since analyses of error and resolution require a
collection of statistically independent models from the
posterior distribution. The way to proceed is to choose
fewer samples from the set of accepted models in such a
way that they constitute a set of independent models. This
can be done by introducing an elapse time (number of
iterations) between retention of samples which was found
by analyzing the fluctuations of the likelihood function as
the algorithm proceeded to be 100. Inspection of the
autocorrelation function for these fluctuations showed that
accepted models separated by 100 iterations were unlikely
to be correlated. On the other hand, the limited number of
iterations performed may not be sufficient to allow the
algorithm to visit enough extrema in the model space. To
circumvent this problem, we chose to commence at different
places in the model space for every 10,000 iterations
performed by the algorithm. This was done by restarting
the MCMC algorithm with different initial values at those
intervals. This procedure should guarantee that the samples
are less correlated as well as leading to a better coverage of
the probability distribution. (It should be noted that
although this method is more efficient in detecting most
of the extrema, its downside is the fact that it is biased
toward an approximately equal coverage of them all. The
global extremum, corresponding to the most likely solution,
might end up being sampled on a par with secondary
extrema, thereby conferring them with equal weight.) To
ensure that the posterior probability density was adequately
sampled in our analysis, we monitored the time series of all
output parameters from the algorithm to verify that these
were indeed stationary over the many iterations performed.

Figure 2. Prior and posterior marginal log(v/vo) parameter distribution. Note how the prior is changed
from sampling a uniform distribution by taking data into account so as to sample the posterior.
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In addition to showing the convergence (The issue of
convergence presents a so far unresolved difficulty in
practice, since it is not easy to decide how many samples
are actually enough to constitute a good representation of
the posterior probability distribution.) of the MCMC algo-
rithm, Figure 3 also depicts an example of how it was
decided when to initiate sampling from the distribution, by
observing the values of the likelihood function from the
time of commencement of the algorithm and as it proceeds.
It is customary to start keeping samples only after the
likelihood function has stabilized around some value. (It
is clear that if our starting model is far removed from any
extrema in the model space the longer time it may take, in
terms of the sequence of updatings, before the algorithm can
actually start to sample the distribution near the extrema
where most of the contribution to the posterior distribution
ought to come from, rendering the issue of when to start
sampling rather important.)
[31] Returning to the sampling algorithm, the next step

would be to perturb another model parameter, as explained
above, and accept this model with the probability Pacc =
min{1, L(mpert)/L(mcur)}. Continuing along this line, we
would assemble a suite of models which are distributed in
accordance with the posterior distribution. The models thus
gathered constitute our main output.
[32] Let us now turn to a point which is of importance

when dealing with data suspected of containing outliers.
The introduction of an outlier(s) is most probably the result
of an erroneously read arrival time, and given the ingrained
complexity of the lunar seismograms, as commented ear-
lier, it only seems too natural to suspect inconsistencies in
the readings of at least a couple of seismic phases. Now,
the central question is, how do we detect these outliers, if
there are any present, and furthermore, does their presence
in a data set ensue in any form of distortion of the posterior
probability density? According to Tarantola [1987], an
outlier will have a proclivity to ‘‘translate’’ the posterior
probability density if we are employing the l2 norm, that is,
if we are assuming independent, identically distributed
Gaussian uncertainties, which is what we have done until
now, the amount of ‘‘translation’’ necessarily depending on
how much the outlier(s) is displaced from the rest of the
data points. If a given data set is suspected of harboring an
outlier(s), Tarantola [1987] advocates the use of the l1
norm instead, since a contortion of the posterior probability

distribution is less prevalent in this case. The l1 norm
assumes that the errors can be modeled using an exponen-
tial probability density; that is, instead of having the misfit
function given by S mð Þ ¼ 1

2
�i=1

N gi mð Þ � diobsÞ
2=s2i , we

shall assume the following form for the misfit function:
S(m) = �i=1

N |gi(m) � dobs
i |/si, where si denotes the

uncertainty on the ith arrival time reading. In order to
investigate as to whether there are any outliers present in
our data set and additionally to check the relative robust-
ness of the Gaussian and exponential hypotheses, we
undertook an inversion of a more uncertain data set,
namely, the meteoroid impacts in combination with the
shallow moonquakes. We included in the inversion the
artificial impacts, this being mainly for technical reasons.
The reason that we have been relying on the l2 norm
hitherto is the fact that the artificial impacts constitute a
more reliable data set, since origin times and impact
locations are known parameters (except for the 16 SIV-B
impact, for which origin time and location are not known
parameters because of the loss of tracking of this spacecraft
prior to impact [Latham et al., 1972]). Figure 3 also shows
how it can be used as an indicator of the presence of
outliers in the data set. An estimate of the likelihood value
when convergence has been reached using the l1 norm is
roughly given by ‘‘minus the number of values in the data
vector.’’ If the MCMC algorithm converges on a value
differing from this, it is attributed to the presence of
conflicting data points in the observed data set. In order
to identify outliers, we generated a set of samples of the
order of 104. The data, that is, the arrival times as
calculated by each iterated model, were checked minutely,
and 20 of the lunar seismic arrivals (not to be confused
with events) were identified as outliers. The rejected out-
liers deviated significantly from the expected values by
more than 4 and up to 15 standard deviations of data noise.
Figures 4a and 4b depict actual histograms of calculated
arrival time differences for a meteoroid impact and a
shallow moonquake as registered at stations 15 and 16,
respectively, which deviated by more than 4 standard
deviations. The outliers were subsequently removed and
the process was initiated all over again until the misfit
attained the appropriate value. It should be noted that this
method has the added benefit of leading to a reevaluation
of the uncertainty on the individual arrival times, which
amount to 1 s for the artificial impacts, 4–26 s for the

Figure 3. Convergence of the MCMC algorithm. The value of the likelihood function is a rough
measure of how well calculated data fit the observables. As convergence has been reached, denoted by
the vertical line, sampling of the posterior distribution is initiated.
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shallow moonquakes and the meteoroid impacts, and 4–7 s
for the deep moonquakes. In order to safeguard the results
from further inconsistencies in the data set, we simply
chose to use the l1 norm throughout this study. This
method of elucidating outliers in a data set corresponds
to the statistical technique known from robust M type
estimation [Barnett and Lewis, 1984; Hampel et al., 1986].
[33] To recapitulate, we started off by randomly generat-

ing models which were distributed according to the poste-
rior. In order to enhance the coverage of the model space by
the random walker, we perturbed him randomly after a fixed
number of iterations. This corresponds to the case in which

the random walker, after having sampled some local or
global extremum for a preset amount of steps, suddenly
finds himself displaced to another region of the model space
around which he would steadily peregrinate in the usual
manner. This subsequent wandering about leads to the
equilibration at yet another extremum, thereby sampling
models belonging to a specific class. From Figure 5 we
clearly see that the models generated by sampling this
particular extremum in the model space are different from
the ones produced at other points of the model space, in that
they accentuate contrastive properties. On display in Figure
5 are exactly 10 distinct models, and these are each

Figure 4. Identification of outliers: (a) the arrival time difference between calculated and observed P
wave arrival for meteoroid impact on day 349 1974 as recorded by station 15 and (b) the case of a
shallow moonquake recorded at station 16 on day 4 1976. The uncertainties on these two readings were
assessed to be 7 and 5 s, respectively.
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representative of a class of models obtained by gathering
samples from 10 distinct extrema. Whether 10 reshufflings
of the random walker actually result in 10 distinctive
families of models is something we clearly cannot be aware
of from the outset, and indeed, had we ended up with only
three different classes of models, this would have been a
revelation in itself, disclosing information about the degree of
nonlinearity of the problem. The models juxtaposed in Figure
5 are also displayed to highlight the ingrained ambiguity
contained in the data. Although the classes of models
presented here are characterized by a fairly large likelihood
value, that is, they produce arrival times which are in close
agreement with the observed ones, being well within the
specified error bounds, they clearly show divergencies
among themselves. Figure 5 simply emphasizes that models
with differing attributes are accountable for the same data,
which is clearly evidenced by Table 1. All three models are
seen to be capable of fitting the observational data within
error bounds (±1 s). This excellent agreement between
observed and calculated data reinforces the method
employed here of elucidating the lunar interior from a great
number of models rather than just adopting the maximum
likelihood model and inferring the velocity structure straight
from this.

4. Analysis: Estimating the Crustal Thickness
Using Bayesian Hypothesis Testing

[34] Having presented the general theory, we are now in
the position to employ the Bayes factor in order to specif-
ically analyze the outcome as to whatever feature we might
be interested in. From (5) it is apparent that the number of
times a model has been sampled is proportional to its
posterior probability. The Bayes factor is thus easily eval-
uated as the ratio of the number of samples from the
posterior distribution to the ratio of the number of samples
from the prior distribution for any two hypotheses.
[35] As noted in section 1, our primary concern is the

depth to the lunar Moho, and we shall here want to
distinguish between the following two hypotheses given
the seismic data and prior information:
Hypothesis 1 (H1): The lunar crustal thickness lies in the

range 35–45 km.
Hypothesis 2 (H2): The lunar crustal thickness lies in the

range 50–70 km.
[36] Of a more technical character is the definition of the

crust-mantle interface. A model subject to the following two
conditions is defined as accommodating a discontinuity:
1. Velocity gradients should reach 0.1 km s�1 km�1.
2. The velocity beneath the designated thickness of the

crust should attain a value of at least 7.6 km s�1.
[37] This interpretation of the lunar Moho has been

constructed so as to agree with the characteristics of all
three models discussed in section 1, H1 and H2 correspond-
ing to the crustal depths as proposed by (1) Khan et al.
[2000] and (2) Toksöz et al. [1974] and Nakamura [1983],
respectively. This implies searching through the entire set of
sampled posterior and prior models and by (5) counting the
number of prior and posterior models, respectively, satisfy-
ing the above two definitions of a crust-mantle boundary and
simply taking their ratio. As a further technical note, it should
be mentioned that the MCMC algorithm is designed to
sample models with the highest possibly achievable resolu-
tion. However, given the well-known trade-off that exists
between resolution and uncertainty, high resolution implies a
rather large dispersion in model parameters and vice versa.
Since we are presently concerned about searching for veloc-
ity discontinuities, small uncertainties on model parameters
are paramount. This is easily achieved by smoothing the
individual models, although of course at the expense of
resolution. We have used the median in filtering the models
over a range of eight values around a given velocity point,

Figure 5. A smoothed version of 10 samples from the
posterior distribution, each one obtained by sampling a
different extremum in the model space. The models shown
here emphasize only the crustal and upper mantle part. The
three models numbered 1–3 have been taken as examples of
models which individually highlight seemingly different
structures but nonetheless are models that all produce a
fairly large likelihood value, that is, produce a good fit to
the observed data (see Table 1).

Table 1. A Comparison of Observations With Calculationsa

Impactor Station
Observed

Travel Times, s

Calculated Travel Times, s

Model 1 Model 2 Model 3

13 SIV-B 12 27.3 27.2 27.2 27.4
14 SIV-B 12 34.3 34.5 34.2 34.6
14 LM 12 23.7 23.0 23.2 24.0
14 LM 14 16.5 16.1 16.3 16.0
15 SIV-B 12 53.7 53.9 54.1 53.3
15 SIV-B 14 35.3 36.3 34.9 36.2
15 LM 15 20.7 21.3 19.8 20.1
17 SIV-B 12 54.7 55.4 55.3 55.5
17 SIV-B 14 30.7 30.0 31.2 30.5
17 SIV-B 15 149.7 149.1 150.0 150.3
17 SIV-B 16 121.8 122.4 121.1 122.0

aThe three models refer to Figure 5.
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since the median preserves any discontinuities rather than
smoothing them.
[38] The posterior and prior odds ratios were found to be

P(H1|d)/P(H2|d) = 2.5 and P(H1)/P(H2) = 0.6, respec-
tively, resulting in a Bayes factor of

B12 ¼
PðH1jdÞ=PðH2jdÞ
PðH1Þ=PðH2Þ

¼ 2:5

0:6
¼ 4:2;

whereby H1 is favored to H2 given data and prior
information.

5. Interpretation of the Results

[39] As emphasized previously, the solution to the Baye-
sian formulation of general inverse problems results in a

posterior probability distribution and not single estimates,
although these can be obtained from the posterior distribution
by numerical integration. What this signifies is that we are
solely working with solutions in terms of probability distri-
butions, and moreover, given the multidimensional nature of
the posterior distribution, it is not accessible for direct display
and only marginals can be exhibited. Therefore care must be
exercised in interpreting the outcome, since false conclusions
and overinterpretations are easily reached.
[40] Now, from Figure 6, depicting the final velocity

model, it would seem very natural to assume the model
belonging to the region of highest probability as the
prevalent one and therefore pick it as the main lunar
velocity structure. However, this particular model will
usually not correspond to the most likely model (which is
typical of strongly nonlinear problems and is clarified
further below), since it has to be remembered that the

Figure 6. The marginal posterior velocity distributions depicting the velocity structure of the Moon. A
total of 50,000 models have been used in constructing the two results. For each kilometer a histogram
reflecting the marginal probability distribution of sampled velocities has been set up. By lining up these
marginals, the velocity as a function of depth is envisioned as contours directly relating their probability
of occurrence. The contour lines define nine equal-sized probability density intervals for the distributions.
The uncertainties on the results are in part due to the large uncertainty in arrival time readings. It should
be kept in mind that the velocity models are depicted using marginal probability distributions, and as such
a model incorporating velocities of maximum probability does not necessarily correspond to the most
likely model. See color version of this figure at back of this issue.
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velocity models shown here have been displayed using
marginal posterior probability distributions, one-dimen-
sional (1-D) marginals, actually. What this means is that if
we were to choose the most probable velocity at a given
depth, this would correspond to the most likely velocity at
this particular depth only, while disregarding the informa-
tion on all other parameters.
[41] Given that s(m) is a rather complicated entity, it is

more convenient and probably also sufficient for general
orientation regarding the uncertainty about m simply to
describe regions of given probability under s(m). From this
point of view the identification of intervals containing 50, 90,
or 99% of the probability under s(m) might actually suffice to
give a good idea of the general quantitative messages implicit
ins(m), leading us to the calculation of credible intervals. The
credible interval is defined as the shortest possible interval
containing a given probability, and in Figure 7 we have
depicted credible intervals containing 99% of the marginal
probability.At first glance these credible intervals appear to be
quite broad,which essentially indicates that the absolute value
of the velocity in a given layer is not very well determined. As
a consequence, the interpretation of the marginals shown in
Figure 6 is a subtle issue where the use of qualities such as
prudence and restraint are to be advocated. For example, if it
happens that at a certain depth or within a certain depth range
there might be a large probability for a somewhat high

velocity, this is, because of the aforementioned ill-determined
nature of the absolute velocities, by nomeans to be interpreted
as the results stating this particular fact.
[42] This conundrum inherent in nonlinear problems is

further illustrated with the following simple example. Fig-
ure 8a shows the nonlinear function investigated for the
purpose (a third-degree polynomial). Also included is the
true model, mtrue, giving rise to noise-free data dtrue. Let us
imagine that we have performed some sort of physical
measurement which results in an observed datum, dobs,
which is also shown. Let us also assume, mainly for sim-
plicity, that noise concerning this data point is normally
distributed with uncertainty s. In this particular example,
dobs turns out to be displaced one s from dtrue (experimental
details are included in the caption of Figure 8). Now, the
situation is this: we have measured a datum, dobs, and given
this observation we would like to infer information about the
model m (here one model parameter) by computing its
posterior probability density (the prior probability density
is assumed constant). What has been said so far is exactly
what we have been describing hitherto in dealing with inverse
problems. Next, the posterior probability distribution for a set
of model parameter values is easily calculated, and Figure 8b
shows this probability distribution. Here mtrue has also been
depicted, and it is obvious that the true model is situated far
from the model of maximum posterior probability.
[43] This example more than anything else reveals the

intricacies hidden in nonlinear problems and explains why
the most probable model is not necessarily the one of
utmost interest, since it might be far displaced, as indeed
it is in the example outlined here (by more than 100%),
from the true model, and this in spite of the fact that data

Figure 7. The lunar P wave velocity structure shown
using 99% credible intervals. The broad velocity ranges
evince the uncertainties involved. The structure in the
middle shows the Nakamura velocity model [Nakamura et
al., 1982] so as to highlight consistency with earlier models.

Figure 8. A simple illustration of a nonlinear problem: (a)
the nonlinear function and (b) the posterior probability
distribution for the model parameterm. Here the true model is
displaced bymore than 100% from themodelwith the greatest
posterior probability, ultimately showing that care has to be
exercised in interpreting the outcome of nonlinear problems.
Details of the experiment are as follows: g(m) = (am)3 + bm,
where a = 0.7 and b = 700; dobs is assumed to be Gaussian
distributed with uncertainty s = 105 and whose actual value is
given by dtrue + s. The posterior probability distribution is
calculated from L(m) = exp(�||dobs � g(m)||2/2s2).
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uncertainty has been modeled using a Gaussian distribution.
With this example in mind it is also clear why, in the case of
nonlinear problems, the model with the highest posterior
probability does not necessarily correspond to the right
solution and thus why interpretations using the most prob-
able model can be erroneous.
[44] Returning to the credible intervals, we further

superposed the Nakamura model on top of our credible
intervals to highlight consistency. Although the Nakamura
model at certain ranges lies just barely within ours, it is
nonetheless contained within the 99% credible region,
which shows that there is no inconsistency between our
results and his model.
[45] On the other hand, an item which turns out to be

well determined is the existence of a velocity discontinu-
ity. This is easily evidenced using two-dimensional mar-
ginals. As an example, we plotted in Figure 9 the marginal
probability distribution among two model parameters, the
P wave velocity at 500 km and at 580 km depth,
respectively, which depicts the correlation that exists
between the two model parameters. From this it is appa-
rent that by far the largest probability is displaced toward
the model parameter at 580 km depth, clearly indicating
that higher velocities at this depth are favored in compar-
ison to those above. This translation of the probability
distribution then is evidence of a velocity discontinuity.
Whether the purported discontinuity is sharp or gradual is
more difficult to assess with this method. It should be
noted that this inference was made without any reference
as to absolute velocity values.
[46] Of course, we could also display 3-D marginals,

depicting the probability distribution among three model
parameters at a time. This is exemplified in Figure 10,
where we have shown examples of 3-D marginals depicting
the sampled hypocentral coordinates of all deep moon-

quakes, giving a good representation of the their distribution
in space.

6. Results and Discussion

[47] In interpreting the results, we have to be aware of the
limitations which have been imposed in part on us by way of
the nature of the data and in part by us in our choice of our
particular model of the Moon and the inversion. Chief
limitations imposed by data are, of course, due to the fact
that only four stations were operative, covering only a small
area of the front side of the Moon with two stations placed
close to each other, raising the question whether they really
represent independent degrees of freedom to determine the
unknowns. And of course the complex lunar signal character-
istics have right from the beginning been a major obstacle,
limiting modeling to essentially first arrivals, although
attempts at modeling the low-frequency part of the signals
have also been undertaken [Loudin, 1979; Khan and Mose-
gaard, 2001].
[48] In terms of our model of the Moon the necessary

assumption of spherical symmetry has to be cited as a
limiting factor, and the obtained velocity structure is thus
to be viewed as an average over the front side of the Moon,
covered by the four seismic stations, with near-surface lateral
heterogeneity modeled using local corrections. Although
these local corrections are a simple way of dealing with
lateral heterogeneity, by being a vertical average over the 1
km surficial low-velocity layer which has been stripped off,
they nonetheless contain a clue to the differences among the
four stations. However, whether this difference is due to
actual differences in velocity, thereby reflecting different
geological settings, or simply due to differences in top-
ography among the four stations cannot be assessed by the
local corrections. The importance of the local corrections,

Figure 9. Two-dimensional marginal P wave velocity distribution depicting the correlation between
sampled velocity parameters at 500 and 580 km depth. The distribution is clearly seen to be translated
toward higher velocities at a depth of 580 km, indicating the existence of a velocity jump. Eighty-eight
percent of the probability distribution lies above the equality line.
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however, becomes obvious when one considers the question
as to whether or not stations 12 and 14 can be regarded as
being independent sources of information. It is clear that
with the large number of parameters that have to be deter-
mined the arrival times from these two stations should carry
full weight. However, if the arrival time is delayed at one
station relative to the other and this happens to be due to
local structural differences beneath the two stations, such
differences directly affect large systematic errors in struc-
tural parameters thus determined, as noted by Nakamura
[1983]. The significance of the local corrections is thus
obvious, since structural differences if extant are dealt with
by these local parameters. Figure 11 depicts the sampled
local corrections in terms of velocities, showing differences
to be present beneath each of the four stations.

[49] From the point of view of the inversion there exists
the usual trade-off between resolution and uncertainty. In
this study it has to be emphasized that we have chosen the
highest possible resolution given the constraint we had to
satisfy to accommodate ray theory. The uncertainties are
therefore to be viewed in the light of this. Had we, for
example, chosen to increase the minimum layer thickness,
this would have reduced the uncertainties on the velocities.
This is partly the reason why the Nakamura model has
smaller uncertainties. Accordingly, we have chosen the best
possible resolution given ray theory and thus the most
conservative estimate of model parameter uncertainties.
As regards the MCMC algorithm, it has to be said that in
the end we are able to pick only a limited number of
samples from the posterior distribution. If the problem is

Figure 10. Sampled deep moonquake hypocenter coordinates showing the spatial distribution of quakes
in the lunar interior. Figures 10a–10c display all sampled hypocenter coordinates for each deep
moonquake source region from a number of different viewpoints. Since the individual source regions
contain a cluster of many thousand samples, which are indvidually not distinguishable, Figure 10d
depicts the distribution of sampled hypocenter coordinates for the lone farside moonquake, A33, for
enhancement. Figures 10a–10c also contain a central sphere with a radius of 500 km, which was
included so as to enhance illustration of the spatial distribution of the moonquakes and is not meant to
signify a lunar core. In Figure 10c we are viewing down on the lunar north pole, and the only farside
moonquake observed to date, A33, lying just over the eastern limb, is clearly visible. Crosses denote
seismic stations. See color version of this figure at back of this issue.
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too complex, one might tend to bypass solutions in the
model space. This would result in an underestimation of the
width of the uncertainty, because of the inadequate coverage
of the model space. Stationarity in the likelihood function
and model parameters, while sampling, is a necessary
condition, but not a sufficient one to ensure that we have
actually sampled the posterior distribution in a satisfactory
manner. Despite these shortcomings in mathematical details,
this method is still a much better tool than deterministic
ones (like linearized methods), in that the deterministic
methods tend to sample a model which lies close to its
start, introducing a bias, since the uncertainty on the
obtained model essentially depends on where one starts off.
[50] Another issue concerning this study which merits a

comment is the very limited data set, giving in part rise to
the error bounds on the results. Earlier studies assumed all
arrival time readings equally uncertain. This has the unfor-
tunate consequence of conferring equal weight to all data
points. Good as well as bad arrival time readings are thus
equally probable, which might lead to inconsistencies. Now,
the point of view adopted here of assigning to a given
arrival time an a priori uncertainty and the subsequent
process of looking for and discarding outliers, resulting in
a revision of the posterior uncertainty, should protect the

results from these inconsistencies. On the other hand, it
must be said that the procedure of eliminating certain data
points on the grounds that they deviate from the assigned
arrival time reading ± the uncertainty is a somewhat crude
approach, since the given data point is strictly an event,
which, however, owing to the complex nature of the
seismogram, is extremely difficult to pick.
[51] In spite of this, inversion of the artificial impacts led

to the crustal velocity structure (to a depth of roughly
100 km), inversion of meteoroid impacts in combination
with the shallow moonquakes provided information on the
lunar upper mantle (depth range roughly 100 to 500 km),
and finally, inversion of the deep moonquakes provided
information about the middle mantle velocity structure
(depth range 500–1100 km). About 5 � 106 models were
sampled in all, from which 5 � 104 were used for analysis
in this study. The results are shown in Figure 6. Figure 12
shows the marginal distributions of sampled hypocenter
coordinates for deep moonquake source A7, depicting
another way of presenting the full posterior distribution
(Figure 10). The hypocentral coordinates for all deep and
shallow moonquakes and the epicentral coordinates for the
meteoroid impacts are compiled in Tables 2, 3, and 4,
respectively.

Figure 11. The P wave velocity structure of the uppermost 1 km of the lunar crust, comprising the very
low velocity layer beneath each of the four Apollo landing sites. Mean values are v12 = 0.6 km s�1, v14 =
1.3 km s�1, v15 = 1.0 km s�1, and v16 = 0.9 km s�1.

Figure 12. Marginal distributions depicting the sampled source depths and epicentral coordinates in
terms of latitude and longitude for deep moonquake source A7.
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[52] A detailed discussion of how to interpret the data has
been advanced, and there it was made rather obvious that,
because of the large credible region encompassed by the
models, the absolute velocities were ill-determined. How-
ever, velocity discontinuities were found by employing 2-D
marginals. In Figure 9 we depicted the correlation between
two model parameters at 500 and 580 km depth, respec-
tively, and it was clearly seen that the probability distribu-
tion was displaced toward higher velocities at 580 km
depth, indicating a transition in this general region. This
estimate can be made quantitatively, since the actual prob-
ability for there being such a discontinuity can easily be
calculated using (5), which states that all we have to do is to
count the number of models purporting whatever feature we
might be interested in. In the above case the probability is
88%, which speaks for itself. Figure 13 shows the outcome
of a similar analysis conducted for the S wave models which
gave a 99% probability for there being a velocity increase in
the same region. While our results (Figure 6) appear to
suggest constant velocity zones for the upper mantle,
Nakamura et al. [1976] inferred a decrease of shear wave
velocity starting at roughly 300 km depth associated with a
lower Q for shear waves, using the decay of shear wave
amplitude with distance and the relative arrival times of P

and S waves. This decrease in vs is easily investigated using
2-D marginals. The result is depicted in Figure 14, which
clearly shows the probability distribution displaced toward
higher velocities at 280 km than at 320 km depth with a
value of 95%, although the involved velocity decreases are
minor. No significant velocity changes were found for the P
wave models.
[53] Turning to a different method of analysis of the

posterior distribution leads us to our investigation of the
much debated lunar crustal thickness using Bayesian
hypothesis testing. Our analysis resulted in a Bayes factor
of 4.2, which undeniably leads to the conclusion that
hypothesis 1 is more plausible than hypothesis 2, thereby
favoring the depth to the lunar Moho in the range 35–45
km. As a further aid in arguing for a shallow lunar crust we
have displayed the models, satisfying the two hypotheses,
where Figure 15 depicts the posterior velocity models
satisfying H1 and H2, respectively. Of prime interest in
Figure 15a is the obviously discernible discontinuity at �38
± 3 km depth, where the results indicate an increase in
velocity from 6.8 ± 0.7 to 7.8 ± 0.6 km s�1. This is slightly
thinner than the value of 45±5 km inferred so far for the
crustal thickness [Khan et al., 2000], although it should be
stressed that these two values do not mutually disagree,
since the former has been obtained from a subset of all

Table 2. Shallow Moonquake Hypocenter Estimatesa

Event Hypocenter Coordinates

Year Day Depth, km Latitude, �N Longitude, �E

1971 107 74.5 ± 21.2 52.5 ± 2.8 26.9 ± 3.3
1971 140 47.5 ± 46.4 37.4 ± 2.1 �19.4 ± 3.7
1971 192 220.8 ± 48.8 49.4 ± 2.5 �27.2 ± 8.7
1972 002 172.5 ± 54.7 56.9 ± 4.2 111.4 ± 5.5
1973 072 48.9 ± 34.9 �81.9 ± 2.9 �130.7 ± 3.4
1973 171 114.8 ± 22.7 �5.4 ± 2.7 �68.1 ± 2.8
1974 192 132.6 ± 40.7 26.1 ± 4.9 85.1 ± 2.3
1975 003 74.8 ± 16.2 27.3 ± 3.0 �102.2 ± 3.5
1975 012 101.9 ± 25.6 63.1 ± 5.5 46.9 ± 3.5
1975 044 129.9 ± 70.3 �16.4 ± 2.3 �24.6 ± 3.1
1975 314 73.2 ± 18.7 �10.6 ± 2.7 58.9 ± 3.2
1976 004 88.0 ± 38.8 44.5 ± 3.2 30.5 ± 3.7
1976 066 74.4 ± 26.9 45.6 ± 3.9 �26.3 ± 4.8
1976 068 119.8 ± 23.9 �18.2 ± 2.3 �10.8 ± 1.6

aAll estimates are mean values, and the values indicated by ± signify one
standard deviation.

Table 3. Meteoroid Impact Epicenter Estimatesa

Event Epicenter Coordinates

Year Day Latitude, �N Longitude, �E

1971 143 �6.5 ± 4.4 �18.3 ± 3.2
1971 163 27.8 ± 2.5 �36.7 ± 4.4
1971 293 32.1 ± 2.8 �36.4 ± 2.1
1972 134 �0.2 ± 2.1 �14.6 ± 1.3
1972 199 15.2 ± 12.6 133.6 ± 2.5
1972 213 29.0 ± 1.5 �6.3 ± 1.5
1972 324 65.4 ± 3.3 �21.5 ± 6.2
1974 325 �6.3 ± 2.1 22.8 ± 0.9
1974 349 �10.2 ± 7.7 �12.4 ± 2.1
1975 102 5.4 ± 1.9 33.8 ± 1.7
1975 124 �57.4 ± 11.2 �117.4 ± 3.7
1976 025 �2.5 ± 5.0 �71.4 ± 1.7
1976 319 4.1 ± 6.7 �86.9 ± 5.5
1977 107 �37.9 ± 5.9 �60.3 ± 4.6

aAll estimates are mean values. The values indicated by ± signify one
standard deviation.

Table 4. Deep Moonquake Hypocenter Estimatesa

Source

Hypocenter Coordinates

Depth, km Latitude, �N Longitude, �E

A1 921 ± 6 �19.9 ± 1.3 �40.9 ± 1.5
A5 702 ± 10 17.4 ± 1.5 �39.1 ± 3.4
A6 847 ± 8 36.2 ± 2.9 54.2 ± 1.4
A7 876 ± 6 22.9 ± 1.4 55.6 ± 2.7
A8 942 ± 14 �33.7 ± 2.3 �37.3 ± 2.3
A9 992 ± 8 �7.9 ± 1.1 �14.4 ± 3.9
A11 822 ± 11 6.6 ± 1.2 6.8 ± 2.0
A14 928 ± 13 �25.2 ± 0.9 �37.6 ± 1.2
A15 820 ± 24 �0.2 ± 2.5 �3.8 ± 3.4
A16 1161 ± 29 7.1 ± 2.1 3.7 ± 1.5
A17 820 ± 37 26.7 ± 1.4 �21.5 ± 1.0
A18 918 ± 7 22.3 ± 1.6 32.1 ± 1.2
A19 799 ± 4 17.0 ± 3.8 30.8 ± 3.3
A20 960 ± 4 25.1 ± 1.3 �34.0 ± 1.6
A24 985 ± 22 �37.8 ± 1.8 �42.7 ± 2.1
A25 959 ± 12 37.0 ± 1.0 67.7 ± 2.4
A27 1056 ± 13 20.9 ± 2.6 21.1 ± 2.0
A28 1048 ± 8 8.3 ± 1.8 28.3 ± 2.1
A30 915 ± 17 13.1 ± 1.5 �33.2 ± 1.6
A33 902 ± 11 3.7 ± 2.1 112.3 ± 2.8
A34 993 ± 13 6.2 ± 2.4 �7.6 ± 1.3
A36 1016 ± 9 64.4 ± 2.5 �12.5 ± 1.5
A39 933 ± 6 �16.9 ± 4.5 �14.6 ± 1.8
A40 905 ± 23 �0.3 ± 1.4 �10.6 ± 2.9
A41 801 ± 4 19.7 ± 1.2 �34.6 ± 0.9
A42 915 ± 9 27.9 ± 3.1 �51.1 ± 3.0
A44 941 ± 8 61.2 ± 2.4 52.9 ± 0.9
A50 836 ± 16 11.4 ± 1.3 �52.9 ± 1.7
A53 932 ± 12 �27.9 ± 3.6 �31.0 ± 2.1
A54 968 ± 18 8.4 ± 1.8 �64.0 ± 4.7
A61 801 ± 5 21.8 ± 1.1 43.4 ± 1.1
A71 945 ± 26 14.3 ± 1.0 �12.4 ± 2.0
A84 879 ± 18 �13.6 ± 2.8 �31.0 ± 1.6
A85 821 ± 7 35.9 ± 2.7 68.1 ± 1.7
A97 948 ± 10 4.5 ± 1.8 12.4 ± 3.6

aAll estimates are mean values and the values indicated by ± signify one
standard deviation. The source numbering follows that of Nakamura et al.,
[1982].
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sampled models, namely, those models that additionally
concur with the constraints imposed by H1. The models
which were found to have discontinuities in the depth range
50–70 km are displayed in Figure 15b. One might be
tempted to label these models unphysical, but what is
actually apparent here is the nonuniqueness inherent in

the data we are dealing with, which leads to a multitude
of possible models with clearly quite different implications
for the lunar crustal velocity structure. The interpretation of
Figure 15b is such that it shows that in order for the MCMC
algorithm to generate models incorporating velocity dis-
continuities at depths around 60 km it seems at the same

Figure 13. Two-dimensional marginal S wave velocity distribution depicting the correlation between
sampled velocity parameters at 500 and 580 km depth. The distribution is clearly seen to be translated
toward higher velocities at a depth of 580 km, indicating the existence of a velocity jump. Ninety-nine
percent of the probability distribution is situated above the equality line.

Figure 14. Two-dimensional marginal S wave velocity distribution depicting the correlation between
sampled velocity parameters at 280 and 320 km depth. The distribution is clearly seen to be translated
toward higher velocities at a depth of 280 km, indicating the existence of a velocity decrease in this
region. Ninety-five percent of the probability distribution lies below the equality line.
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Figure 15. (a) Marginal posterior P wave velocity distributions depicting the lunar crustal velocity
structure obtained from inversion of artificial impacts. The figure has been constructed from a total of 2709
models having satisfied H1. The contour lines define eight equal-sized probability density intervals for the
distributions. (b) Marginal posterior P wave velocity distributions for those models that satisfied H2. The
figure has been constructed from a total of 905 models. See color version of this figure at back of this issue.
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time to have a preference for generating substantial velocity
decreases in the lower crust. Now, the sampling of such
geologically unsound models could easily have been
restricted. However, this would have required the introduc-
tion of prior information into the inverse problem, which
implies constraining the numerical system, thereby reducing
its nonuniqueness and not exposing the true model varia-
bility, which, as noted, was one of the primary motivations

for conducting our reanalysis of the Apollo lunar seismic
data. Moreover, what actually constitutes ‘‘geologically
unsound’’ features in a model is often debatable given its
subjectivity.
[54] Of relevance in assessing Bayesian hypothesis test-

ing as a tool for inferring conclusions is to inquire whether
the conclusions reached are contingent upon the hypotheses;
that is, is the Bayes factor dependent upon the specific

Figure 16. (opposite) Seismic ray paths in the Moon for a surface source. Figures 16a and 16b correspond to the Toksöz
model with velocity discontinuities of 2 km/s and 1 km/s placed at 60 km depth. Figure 16c shows ray paths using the
velocity model obtained here, with a velocity discontinuity of 1 km/s at a depth of 42 km. Where the density of rays is high,
focusing of energy has occurred, leading to large amplitudes. Numbers on the lunar surface denote epicentral distance in
kilometers.

Figure 17. Composite plot of seismograms recorded from all artificial impacts on vertical components
as a function of epicentral distance. Notation ‘‘S14Z 67’’ on the left of the first trace means station 14
vertical component recorded at an epicentral distance of 67 km, whereas ‘‘14LM’’ on the right of the trace
signifies the mission and the impactor, in this case the lunar module of mission 14. Note the large-
amplitude arrival at a distance of 172 km. Arrows indicate the position of first P wave arrivals as read by
J. Gagnepain-Beyneix (manuscript in preparation, 2002). Seismograms are plotted to the same scale.
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constraints employed in describing the physical features of
interest? This is easily verified by simply altering the
constraints. As an example, let us look for discontinuities
in our models specified according to the following defini-
tions:
1. Velocity gradients should reach 0.3 km s�1 km�1.

2. The velocity beneath the crust should reach a value of
8.0 km s�1.
[55] We also extended the depth range in which we seek

the crust-mantle boundary of hypothesis 1, from 35–45 km
to 30–50 km, so as to have the same size as the range
considered in hypothesis 2, but intuitionally searching a
greater depth range should just result in an augmented
number of models satisfying H1. The Bayes factor for this
analysis is B12 = 7.5, leading to a further increase in the
plausibility of H1 relative to H2. This should confirm the
reliability of hypothesis testing.
[56] In view of the discrepancy between the crustal

thickness estimate presented in this study and the ones
obtained earlier, with values ranging from 65 km [Toksöz
et al., 1972] over 55 km [Toksöz et al., 1974] to 58 km
[Nakamura et al., 1982] for the region below the Apollo 12
and 14 landing sites, a few comments are merited. (For the
sake of completeness, it should be noted that another recent
reanalysis of the Apollo lunar seismic data set, although
using a different inversion technique, has also resulted in a
thinner estimate for the crustal thickness [Chenet et al.,
2002].) In the study of Toksöz et al. [1972, 1974], amplitude
data and synthetic seismograms were employed in addition
to the travel times from the man-made impacts.

[57] Now, amplitude data do provide additional informa-
tion on velocity discontinuities, since phenomena such as
geometric focusing, defocusing, and reflection of seismic
rays are controlled by velocity gradients. These effects are
illustrated in Figures 16a, 16b, and 16c for three different
velocity models. Figures 16a and 16b depict ray paths in
the crust using the Toksöz model, with velocity disconti-
nuities of 2 and 1 km/s situated at 60 km depth, respec-
tively. It is clear that in order to focus rays at the
appropriate epicentral distance with the Toksöz model so
as to obtain the observed large first P wave arrival at a
distance of 172 km (see Figure 17), a discontinuity of 2 km/
s is needed, which is probably difficult to realize. Figure
16c, on the other hand, shows that it is indeed possible to fit
the same data by a model corresponding to the one
presented in this study, including a 1 km/s discontinuity
at a depth of 42 km.
[58] The positive velocity discontinuity will, of course,

produce a multiplicity in the travel time curve corresponding
to the different arrivals, like the refracted first arrival, the
direct arrival, and, if present, any reflected arrivals. Therefore
the presence of any later P wave arrivals will provide addi-
tional evidence for velocity gradients or discontinuities inside
the Moon. In the studies of Toksöz et al. [1972, 1974], later
arrivals as well as surface reflected phases were reportedly
identified in the seismograms and used to further evince the
existence of a high-velocity discontinuity. However, the
notorious coda seen on lunar seismograms, produced by
intense scattering, obscures secondary and all later arriving
phases, thereby severely hampering their identification. This

Figure 18. The SIVB 15 impact, 29 July 1971, as recorded at ALSEP 12 (LP) at a distance of 356 km.
Traces start at 20 h 58 min 50.5 s. Ground motion is given in du. Here X and Y represent the horizontal
components of ground motion, and Z corresponds to vertical motion. The two peaks immediately after the
arrow are clearly visible on the Z component and were identified as noise by Toksöz et al. [1972]. Ahead
of these two pulses the signal itself contains very little noise, and the present authors are therefore more
prone to picking the first arrival at the arrow, rather than 5 s later. While the Y component does not reveal
anything, the X component contains a signal (indicated by the arrow) that corresponds to the one on the
vertical component.
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does not necessarily mean that none of the purported secon-
dary arrivals are real. Some of them may truly represent
reflected and converted phases from some interface, but
others may quite possibly be due to side scattering
(Y. Nakamura, personal communication, 2001).
[59] The calculation of theoretical seismograms defines a

more definitive approach, since these can be directly com-
pared to their observed equivalents. The computation of
synthetic seismograms is mostly dependent on the velocity
structure but, of course, also depends on the seismic source
and the response of the seismometer. For details of how
seismograms were computed the reader is referred to Toksöz
et al. [1972]. Figure 6 of that manuscript, in particular, shows
a comparison of observed and synthetic seismograms, and it
is apparent even from a first look that discrepancies are

present, especially when considering the impact recorded at
an epicentral distance of 356 km. Concerning this particular
seismogram, the authors state that (p. 497): ‘‘. . .the first two
peaks of the observed seismograms are noise pulses and can
be clearly identified as such in unfiltered seismograms.’’
However, an independent review of this event, by the present
authors (see Figure 18) does not qualify the two pulses as
noise, but rather as the start of the signal, which, of course,
leaves the synthetics and thereby the velocity model used in
deriving these questionable.
[60] Having said this, one should be aware that the act of

using uncertain data, in the sense of those discussed here
when solving inverse problems, should be cautioned, since
the probable inconsistency with which, as an example,
secondary later arrivals have been read can lead to biasing

Figure 19. Map of the lunar nearside showing the four Apollo stations as well as deep and shallow
moonquake epicenters taken from Tables 2 and 4, respectively. The white dots on the face of the Moon
denote the four stations. Black dots indicate deep moonquakes, and open circles denote shallow
moonquakes. On the rim of the Moon are additionally located three white dots indicating the location of
the shallow moonquakes on the lunar farside. The white square on the right near the lunar equator shows
the location of the lone farside deep moonquake.
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of the final result, as it is succinctly stated by Tarantola
[1987]:
....With such kinds of data, it is clear that the subjectivity
of the scientist plays a major role. It is indeed the case,
whichever inverse method is used, that results obtained by
different scientists (for instance for the location of a
hypocenter) from such data sets are different. Objectivity
can only be attained if the data redundancy is great
enough that differences in data interpretation among
different observers do not significantly alter the models
obtained.
[61] In having performed a relocalization of all events,

except the artificial impacts, we will briefly discuss the
spatial distribution of the natural seismic events. The current
depth distribution (50–220 km depth) of shallow moon-
quakes confirms earlier evidence suggesting the upper
mantle to be tectonically active, implying that this region
of the Moon is the only zone in the lunar interior where
tectonic stresses thought to arise from thermal contraction
and expansion are high enough to cause mechanical failure
[Nakamura et al., 1979]. When the epicenters are drawn on
the lunar surface, some shallow moonquakes appear to
occur, now as then, on the edges of impact basins, which
had led to the suggestion that they were correlated [Naka-
mura et al., 1979] (see Figure 19). However, because of the
limited number of detected events, the statistical signifi-
cance of this correlation must be considered inconclusive.
[62] Concerning the deep moonquakes, it was observed

in earlier studies [Lammlein et al., 1974; Lammlein, 1977;
Nakamura et al., 1982] that their source regions clustered
within seismic belts. Two deep belts were identified by
Lammlein et al. [1974], one belt extending ENE to WSW
and another belt extending south. In addition, Nakamura et
al. [1982] discerned two more belts in the NW quadrant
trending W and WNW. The present distribution seems more
to define a main SW to NE trending belt extending from
source A24 at 37.8�S and 42.7�W to A85 at 35.9�N and
68.1�E, comprising 60% of the events investigated here and
lying on an arc of a great circle (see Figure 19). This belt is
�250 km in width and 3800 km in length as measured on
the lunar surface. The linear trends inferred earlier in the
NW quadrant are less conspicuous with the present distri-
bution. The only farside moonquake observed to date,
situated at 3.7�N and 112.3�E, most clearly presents an
isolated, well-located source of moonquake activity and
does not appear to be part of the main NE to SW trending
belt as previously noted [Lammlein et al., 1974]. The
curious lack of moonquake activity in the SE quadrant
was also observed earlier and was ascribed as being due
to the presence of a localized high attenuation zone or
alternatively may simply be due to the absence of deep
moonquakes beneath this mostly highland region [Naka-
mura et al., 1982].
[63] As concerns the depth distribution of deep moon-

quakes, we have found that 16 events, corresponding to
almost 50%, fall in the narrow range from 850 to 950 km.

7. Conclusion

[64] In this paper we have presented a detailed analysis of
a general inverse problem as is constituted by the inversion
of the Apollo lunar seismic data. This was done by using a

MCMC sampling algorithm, that is, by performing a ran-
dom walk in a multidimensional model space that combines
prior information with information from measurements and
from the theoretical relationship between data and model
parameters. Input to the algorithm were random models
generated according to the prior distribution and the like-
lihood function. As output we assimilated random realiza-
tions of the posterior distribution, which contains all the
information about the parameterized physical system deriv-
able from available sources.
[65] We furthermore gave examples of how to investigate

the models comprising the complex posterior distribution in
a statistical fashion, using credible intervals, 2-D marginals,
and Bayesian hypothesis testing. Common to all of them is
the notion of conjuring up questions relating to any partic-
ular property of our interest, like the depth of a particular
deep moonquake, for instance. All models exhibit an
example of this property, and it may turn out that all of
them provide the same value for it, in which case we would
say that the depth of this moonquake is well-constrained by
data. On the other hand, it might also happen that all models
end up giving different answers to that question, thus
rendering this feature ill-determined. Whatever the partic-
ular method, the point to note here is that within the
probabilistic formulation of the general inverse problem,
doing statistics is an all important asset which provides us
with a clear probabilistic answer.
[66] It was also shown that because of the large credible

intervals containing 99% of the probability distribution, the
absolute velocities were not very well-determined. Two-
dimensional marginals, on the other hand, could be used to
investigate the correlation between any two parameters,
shedding light on the presence of velocity changes, dis-
continuities, and the like. Moreover, Bayesian hypothesis
testing was shown to be a very informative tool in providing
evidence for the relative plausibility between any two
hypotheses concerning features of interest. The advantage
of using this form of hypothesis testing to examine a set of
models as to certain features was made obvious. Instead of
having to a priori constrain the system in certain ways from
the outset, which means having to run the algorithm again
with different sets of prior information, we chose to invoke
as few prior constraints as possible so as to facilitate the
comparison between any two hypotheses in order to gauge
which particular feature is most probable given data and
prior information. We specifically employed Bayesian
hypothesis testing to distinguish between a thin and a thick
lunar crust, which resulted in a Bayes factor Bij of 4.2,
clearly favoring a thinner crust with a thickness around
38 km.

8. Future Work

[67] Finally, we would like to touch on the matter alluded
to earlier regarding the sampling of P and S wave velocities.
Let us consider the following two relations governing the
wave velocities as a function of the material parameters:

vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 4=3m

r

s
; ð9Þ
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vs ¼
ffiffiffi
m
r

r
: ð10Þ

From these two equations it is immediately apparent that the
parameters vp and vs considered in this study are not
independent when considered in terms of the elastic
constants describing the medium. This raises the interesting
problem of inverting for these parameters instead of the
wave velocities using the same arrival time data set, since
the inherent dependency that is here brought out would
probably result in narrower distributions.
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Figure 6. The marginal posterior velocity distributions depicting the velocity structure of the Moon. A
total of 50,000 models have been used in constructing the two results. For each kilometer a histogram
reflecting the marginal probability distribution of sampled velocities has been set up. By lining up these
marginals, the velocity as a function of depth is envisioned as contours directly relating their probability
of occurrence. The contour lines define nine equal-sized probability density intervals for the distributions.
The uncertainties on the results are in part due to the large uncertainty in arrival time readings. It should
be kept in mind that the velocity models are depicted using marginal probability distributions, and as such
a model incorporating velocities of maximum probability does not necessarily correspond to the most
likely model.
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Figure 10. Sampled deep moonquake hypocenter coordinates showing the spatial distribution of quakes
in the lunar interior. Figures 10a–10c display all sampled hypocenter coordinates for each deep
moonquake source region from a number of different viewpoints. Since the individual source regions
contain a cluster of many thousand samples, which are indvidually not distinguishable, Figure 10d
depicts the distribution of sampled hypocenter coordinates for the lone farside moonquake, A33, for
enhancement. Figures 10a–10c also contain a central sphere with a radius of 500 km, which was
included so as to enhance illustration of the spatial distribution of the moonquakes and is not meant to
signify a lunar core. In Figure 10c we are viewing down on the lunar north pole, and the only farside
moonquake observed to date, A33, lying just over the eastern limb, is clearly visible. Crosses denote
seismic stations.
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Figure 15. (a) Marginal posterior P wave velocity distributions depicting the lunar crustal velocity
structure obtained from inversion of artificial impacts. The figure has been constructed from a total of
2709 models having satisfied H1. The contour lines define eight equal-sized probability density intervals
for the distributions. (b) Marginal posterior P wave velocity distributions for those models that satisfied
H2. The figure has been constructed from a total of 905 models.
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