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S U M M A R Y
We invert the Apollo lunar seismic data set, together with lunar mass and moment of inertia,
directly for the chemical composition and thermal state of the Moon. The lunar mantle and crust
are modelled in the chemical system CaO–FeO–MgO–Al2O3–SiO2. The stable minerals, their
seismic properties, and the bulk density are computed by Gibbs free energy minimization.
Voigt–Reuss–Hill averaging is then used to compute seismic-wave velocity profiles, from
which traveltimes are estimated, while mass and moment of inertia are obtained by integration
of the density profile. Given this scheme, the data are jointly inverted using a Markov chain
Monte Carlo algorithm, from which a range of compositions and temperatures fitting data
within uncertainties are obtained. The analysis constrains the range of compositions, thermal
states, mineralogy and physical structure of the lunar interior that are consistent with data.
Additionally, the analysis provides estimates for the size and density of the lunar core. The
inferred lunar compositions have lower Mg#s (∼83) than the Earth’s mantle (∼89), suggesting
that the Moon was derived from material other than the Earth’s mantle. This supports giant
impact simulations of lunar origin that show that more than 80 per cent of the material making
up the Moon is derived from the impactor.

Key words: inversion, thermodynamic modeling, mantle composition, mantle temperature,
physical structure.

1 I N T RO D U C T I O N

Of all geophysical methods used to study a planet’s structure, seis-
mology is uniquely suited to determine many of the parameters that
are essential to understanding the dynamic behaviour of the planet.
For this reason seismology has played a leading role in the study of
the internal structure of the Earth. The only other solar system body
from which we have seismic observations pertinent to its interior
properties is the Moon, thus giving us an opportunity to examine
planetary formation independently of the Earth. Issues that can be
addressed geophysically and which hold the potential of providing
constraints on lunar formation and evolution, include the question
of whether the Moon has a metallic iron core, the depth of dif-
ferentiation needed to produce the plagioclase rich highland crust,
its bulk composition and the question whether it bears any generic
relationship to that of the Earth’s mantle.

From 1969 to 1972 the US Apollo program installed one short-
lived and four long-lived seismometers on the Moon. The latter
instruments were operated until 1977. The data collected by the
Apollo seismic network provided the basis for a number of earlier
studies of lunar seismicity and internal structure (e.g. Toksöz et al.
1974; Goins et al. 1981a; Nakamura et al. 1982). Given the much

increased computer capabilities over the last 25 yr, the Apollo lunar
seismic data have become the focus of renewed interest, enabling
the acquisition of previously unobtainable information (Khan et al.
2000; Khan & Mosegaard 2002; Lognonné et al. 2003; Bulow et al.
2005; Nakamura 2005).

Seismic velocity profiles are not an end in themselves, and there-
fore, inversions for seismic structure can only be used as an indirect
means of inferring the internal state and composition of the Moon,
by, for example, comparing laboratory measurements of seismic-
wave velocities made on returned samples and terrestrial analogues
with those obtained from the inversions. In view of the limitations
inherent in this process, we propose to infer composition and ther-
mal state of the lunar mantle directly by a joint inversion of the
Apollo lunar seismic-arrival time data set, lunar mass and moment
of inertia.

From an inverse problem theoretical point of view, the inver-
sion of seismic and gravity data presented here serves a deeper
purpose than simply attempting to invert for chemical composition
and thermal state. There is much to be gained by the integration of
widely different data sets, where one would usually invert for a set
of parameters that a priori do not have anything in common. For in-
stance, inversion of seismic data give information on seismic-wave
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Figure 1. An illustration of the objective behind this study, termed multiparameter inversion, where the goal is to invert plural geophysical data to obtain
information on a set of parameters that describes the system at a fundamental level. The different geophysical observations could, for example, be seismic-arrival
times, gravity data and electromagnetic sounding data. The figure shows the different model and data parameters underlying the description of the geophysical
problem as well as the different theories (g1, . . . , g4) employed in calculating data given the composition and selenotherm.

velocities, and electromagnetic sounding data provide knowledge on
the electrical conductivity profile, while gravity data tell us about the
subsurface density structure. However, at this level of the inversion
it is not possible to constrain, for example, seismic velocities from
inversion of electromagnetic sounding data, unless, of course, lab-
oratory measurements or physical laws are available correlating the
particular parameters of interest. By appealing to a set of parameters
which are not only common to all data sets, but also characterizes
the media under study at a fundamental level, we present a way
of integrating different geophysical data sets into a joint inversion.
This is exemplified in Fig. 1. The important point to note here is that
the method not only enables us to link the various geophysical data
in a natural way, but that it also provides a means of introducing
information on various aspects of the media, such as its mineralogy,
petrology, geology and geophysics, that can equally serve to corre-
late the geophysical data in the inversion. The method provides a
generic way of constructing planetary models where the radial varia-
tion of mineralogy, density and seismic-wave velocity with pressure
and temperature are naturally specified, allowing for the direct in-
version of parameters such as chemical composition, temperature,
mineralogy, density and velocity structure.

Kuskov & Kronrod (1998, 2001) estimated lunar composition
by inverting previously derived seismic velocity models, mass and
moment of inertia in conjunction with a free energy minimization
model that was used to compute the lunar mineralogy. In contrast to
Kuskov & Kronrod, here we directly confront the primary seismic
data and simultaneously consider gravitational data using a non-
linear inversion method. The method presented here has also been
extended to other planets as well as data, and includes:

(1) Inversion of electromagnetic sounding data to constrain man-
tle composition and thermal state of the Earth and the Moon (Khan
et al. 2006a,b).

(2) Inversion of geophysical data pertinent to the interior of Mars
(Khan & Connolly 2006).

Previous terrestrial studies encompassed only certain aspects of
what is undertaken here (e.g. Goes et al. 2000; Cammarano et al.
2003; Deschamps & Trampert 2004; Godey et al. 2004; Shapiro &
Ritzwoller 2004; Trampert et al. 2004; Mattern et al. 2005).

As the inversion of seismic traveltimes, mass and moment of in-
ertia for composition, thermal state and other parameters is strongly
non-linear, the inverse problem is formulated within the Bayesian
framework. This involves the use of probability density functions
(pdf ’s) to delineate the various states of information of the prob-
lem. (Tarantola & Valette 1982; Tarantola 2004). The solution to
the inverse problem is defined as the conjunction of these pdf ’s
and contained in the posterior pdf , from which samples are ob-
tained by employing a Markov chain Monte Carlo (MCMC) method
(e.g. Mosegaard & Tarantola 1995).

In the following sections, we present the basic theory for jointly
inverting different geophysical fields, while subsequent sections de-
tail the application to the specific problem of jointly inverting Apollo
lunar seismic and gravity data for lunar composition and thermal
state. As concerns the content of this paper, it is primarily concerned
with methodology. Interpretation and comparison of the results to
earlier lunar investigations as well as implications of these for lunar
origin and evolution are described in Khan et al. (2006d).

2 T H E I N V E R S E P RO B L E M — G E N E R A L
F O R M U L AT I O N

2.1 Statement and solution of the inverse problem

The present approach to solving the inverse problem will be within
the Bayesian framework using pdf ’s. The solution is contained
in the posterior probability density and is obtained by a con-
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junction of the available information (e.g. Tarantola & Valette
1982). Samples from this posterior distribution are then obtained by
employing a MCMC method as described in Mosegaard & Tarantola
(1995).

Any information we have about the model m obtained indepen-
dently of data is contained in the prior pdf η(m). When knowledge
about data as well as the physical theory linking the unknown model
to data is taken into account (described by the likelihood function
L(m)), we update the prior to the posterior pdf σ (m), which con-
stitutes the solution to our problem (Tarantola & Valette 1982)

σ (m) = kη(m)L(m), (1)

where k is a normalization constant. As regards the functional form
of the likelihood function, it is determined by the observations and
the type of uncertainties used in describing data noise as well as the
errors connected with the physical modelling (if quantifiable). If,
as in our case, we are considering several independent geophysical
observations, the likelihood function can be written as the product
of a number of likelihood functions pertaining to the individual
geophysical data,

L(m) =
∏
α

Lα(m), (2)

where Lα(m) is the likelihood function for every independent geo-
physical method considered.

Since we, in the present interdisciplinary context, are dealing with
various data sets that are a manifestation of different unrelated prop-
erties when described by parameters at the geophysical level, but of
the same properties at the more fundamental level of chemistry, an
extension of the above theory along the lines of Bosch (1999) is
called for.

2.2 The joint posterior distribution

Estimating different media properties from the joint inversion of
several a priori unrelated geophysical data sets, is exemplified in a
very thorough analysis by Bosch (1999). He makes the distinction
between primary (lithology) and secondary (seismic-wave veloci-
ties, magnetic susceptibility) parameters to jointly invert airborne
measurements of magnetic and gravity data for subsurface lithology
over a 2-D model. This division into primary and secondary model
parameters, as shown in Fig. 1, therefore, prompts the following
extension of eq. (1) to the case where we consider a joint model pa-
rameter spaceM as the product of two model spacesMp×Ms (this
is easily generalized to the case of n model parameter spaces). Mp

and Ms are called primary and secondary model parameter spaces,
respectively, and contain primary and secondary model parameter
arrays, m p and ms . In the joint model spaceM, we obviously have m
= {m p , ms}. Let us furthermore imagine having performed a num-
ber of different geophysical measurements, each leading to a data
parameter vector d1, d2, . . . , dk defined in the data spaces D1,D2,
. . . ,Dk . In the joint data parameter space D = D1 ×D2 ×· · ·×Dk),
we can write the joint data parameter array as d = {d1, d2, . . . , dk}.
Our problem now consists of inferring information on m p and ms

from the k data parameter vectors and whatever prior information
available. The posterior distribution, eq. (1), in the joint model space
can be written as

σ (ms, mp) = kη(ms, mp)L(ms, mp). (3)

Since we are dealing with two model parameter sets where the sec-
ondary parameters are derived from the primary model parameters,
and therefore depend on these, we can decompose the prior pdf into

two parts by using conditional probabilities (any pdf can be written
this way)

η(ms, mp) = ηs(ms | mp)ηp(mp), (4)

where η p(m p) represents a marginal prior pdf in the primary model
space and contains information on primary model parameters only.
ηs(ms | m p) is a conditional pdf in the secondary model param-
eter space and it describes prior knowledge on ms as well as the
dependence of ms on m p .

Given that the physical law in going from m p to ms is different
from the one used to perform the step ms → d, we can decompose
the likelihood function in much the same way as we treated the prior
pdf . Let us assume that L(m) has been normalized and write it as
L̂(m). This permits the following decomposition

L̂(ms, mp) = cL(ms, mp),

L̂(ms, mp) = cLs(ms | mp)Lp(mp),
(5)

where c is a normalization constant. Lp(mp) is the likelihood func-
tion that calculates secondary model parameters given values of
primary model parameters and Ls(ms | mp) is another likelihood
function that calculates data given values of ms , conditional on m p .
By substituting the expressions for the prior pdf and the likelihood
function, eqs (4) and (5), into eq. (3), the posterior distribution can
be written as

σ (ms, mp) = kηs(ms | mp)ηp(mp)Ls(ms | mp)Lp(mp), (6)

where k=ck . By re-arranging terms and employing k = k1k2 we
obtain

σ (ms, mp) = k2ηs(ms | mp)Ls(ms | mp)k1ηp(mp)Lp(mp)

= σs(ms | mp)σp(mp),
(7)

which shows that the posterior pdf in the joint model space is given
by the product of the posterior pdf ’s defined in the model spaces
Mp and Ms . In Section 3.3 we will deal specifically with the in-
dividual pdf ’s ηp, ηs,Lp and Ls , when applying the theory to the
simultaneous inversion of seismic and gravity data.

2.3 Sampling the joint posterior distribution

Having defined the posterior distribution above (eq. 7), as the solu-
tion to our inverse problem containing all the information about our
model m from data d and prior information, the question that arises
next is how to extract the information from the posterior distribution.
To generally characterize our model, we need to compute summary
properties of the posterior pdf . Of usual interest are marginal distri-
butions of selected parameters in m, providing us with, for example,
the uncertainty on the parameter of interest. In the case of the gen-
eral inverse problem, however, the posterior pdf does not exist as
an analytical function and given its usually complex shape defined
over a high-dimensional model space it can not be integrated analyti-
cally. Instead we have to estimate posterior probabilities by statistical
integration methods which consist of approximating the pdf inte-
gral by a summation over a sample from the posterior distribution
(e.g. Mosegaard 1998)∫

�

f (m)σ (m)dm ≈ 1

N

∑
{n|mn∈�}

f (mn), (8)

where � is an event or a subset of the model space, n = 1, . . . , N
the position in the chain of N sampled models and f an indicator
function, given by

f (m) =
{

1, if m ∈ �

0, if m ∈ �.
(9)
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From this expression any desired characteristic of the posterior pdf ,
such as marginal or conditional probabilities or others, like means
and variances of model parameters, can easily be evaluated, essen-
tially performing an integration. MCMC algorithms have been found
to be extremely well adapted for Bayesian inference problems. This
is especially true in cases where η(m) and L(m) are complicated
functions and where the evaluation of the likelihood functions in-
volves solving non-linear forward model operators, which usually do
not exist in closed analytical form, but rather as computer-intensive
algorithms (e.g. Mosegaard & Tarantola 1995). The main idea is,
therefore, to design a random walk in the model space which sam-
ples the posterior probability density, that is, samples models that
are consistent with data and prior information and where the choice
of the next state (i.e. next model) depends only upon the current
state. The random walk is generally said to be independent of the
starting model and will after a number of moves (termed the ‘burn-
in’ period), converge on a region of high posterior probability. Once
convergence has been reached, the retaining of samples commences
and it can be shown that this chain of models can be made to sam-
ple any desired pdf , that is, it can be designed to sample models
distributed according to the posterior pdf (e.g. Gelfand & Smith
1990; Gelman & Rubin 1992; Tierney 1994; Besag et al. 1995).
The versatility of the MCMC method is one of the reasons why it
has gained in popularity (the reviews of Mosegaard & Sambridge
2002 and Sambridge & Mosegaard 2002 contain a nice compilation
of various applications of MCMC methods to geophysics).

The MCMC algorithm employed here, known as the Metropolis-
Hastings algorithm (Metropolis et al. 1953; Hastings 1970), is con-
tained in the following rules

(1) Consider m = {ms , m p} to be some current model in the
Markov chain and randomly modify it to some candidate model
m′ = {m′

s , m′
p}, where the candidate model is drawn from the prior

using a proposal distribution.
(2) Acceptance of m′ is governed by the probability

P = min

[
1,

L(m′)
L(m)

]
(10)

If m′ is accepted then it becomes the current model, otherwise
the current state remains m. A factor of great importance, especially
when we are concerned with high-dimensional spaces, where a large
proportion of the volume may have near-zero probability density, is
that this algorithm renders us capable of sampling the space with a
sampling density proportional to the given probability density with-
out excessively sampling low-probability areas of the model space.

3 A P P L I C AT I O N T O T H E J O I N T
I N V E R S I O N O F L U N A R S E I S M I C
A N D G R AV I T Y DATA

3.1 Geophysical data

The lunar seismic network spans the near face of the moon in an
approximate equilateral triangle with 1100 km spacing between sta-
tions, with two seismometers placed 180 km apart at one corner and
covers most geological settings on the front side of the Moon. Since
the first mission more than 12 000 events have been recorded and
catalogued (Nakamura et al. 2005). Since the compilation of the
recorded seismograms, it has been shown that the Moon is aseis-
mic compared to the Earth. In comparison to the Earth the energy
released in seismic activity is eight orders of magnitude less, be-
ing about 1010 J yr−1, compared to 1018 J yr−1 by earthquakes

(Goins et al. 1981a), although Nakamura (1980) has pointed out
that the actual average lunar seismic energy release could be as
high as 1014 J yr−1. Most of the moonquakes are small on the
Richter scale with magnitudes ranging up to 4 for shallow events
(Nakamura et al. 1974a) whereas the deep events were generally of
magnitude <2 (Goins et al. 1981a). Because of the high sensitivity
of the seismometers and the low level of microseismic background
noise, however, each station detected on the average between 650
and 1250 moonquakes per year.

Upon examination of the first lunar seismic data returned to Earth
in 1969, it became evident that their interpretation would be a some-
what more intricate process, due to an apparent complexity inherent
in lunar seismograms. It turned out that the lunar seismic signals
were characterized by being long, of high frequency and of rever-
berating nature with small first arrivals and slowly building ampli-
tudes. These particular characteristics, almost ubiquitous to lunar
seismic signals are thought to be due to near-surface scattering and
the low level of attenuation in the crust (Latham et al. 1970). Unlike
the Earth, where seismic pulses in general are of rather short dura-
tion, the most prominent feature of lunar signals is their anomalous
long continuance. Strong signals, as those from the impacts of the
upper stage of the Saturn rocket last several hours. Moonquake and
meteoroid impact signals typically continue for 30 min to 2 hr.

Four distinct types of events have been identified. They are: deep
moonquakes, shallow moonquakes and thermal moonquakes, all of
which reflect the present dynamic state of the lunar interior, and of
course meteoroid impacts. For a summary of the catalogued events
detected with the long-period seismo-meters during the operation
of the network see (Nakamura et al. 1981, 2005). For further details
the reader is referred to, for example, Latham et al. (1969), Toksöz
(1974), Toksöz et al. (1974) and Nakamura et al. (1980, 1982).

Geophysical data considered here include seismic traveltimes as
well as planetary mass and moment of inertia. Because of the strong
coda anything arriving after the first incoming P and S waves is es-
sentially obscured and we are limited to inverting first arrivals only.
However, even the mere picking of first arrivals is at times a diffi-
cult task, as is evidenced in the compilation by Nakamura (1983) of
arrival time picks performed by several different groups. As there
is no simple solution to the problem of minimizing subjectivity, we
have presently chosen to focus attention on the data set obtained
by Lognonné et al. (2003). Specifically, the geophysical data used
here are lunar seismic traveltimes from a number of diverse events,
including eight artificial impacts, 19 meteoroid impacts, eight shal-
low moonquakes and 24 deep moonquakes, registered at the four
Apollo lunar seismic stations. The 59 events resulted in a total of 318
first P- and S-wave arrivals which are used in the present inversion
(the arrival time picks and associated uncertainties are tabulated in
Lognonné et al. 2003).

The other geophysical data used are lunar mass and moment of
inertia. The adopted values are M = 7.3477 ± 0.011 · 1022 kg and
I/MR2 = 0.3935 ± 0.0002, based on the moment of inertia value of
0.3931 obtained through the analysis of Lunar Prospector (Konopliv
et al. 1998) and rescaled to a mean radius of 1737.1 km (Smith et al.
1997).

3.2 Constructing the forward model

Solving the forward problem is generally condensed into the fol-
lowing statement

d = g(m), (11)
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Table 1. Solution notation, formulae and model sources. Unless otherwise noted, the compositional variables x and y may vary between
zero and unity and are determined as a function of the computational variables by free-energy minimization.

Symbol Solution Formula Source

Crd Cordierite [MgxFe1−x]2Al4Si5O18 Ideal
Cpx Clinopyroxene CaMgx Fe1−x Si2O6 Holland & Powell (1996)
Gt Garnet [Fex CayMg1−x−y ]3Al2Si3O12, x + y ≤ 1 Holland & Powell (1998)
Ol Olivine [Mgx Fe1−x ]2SiO4 Holland & Powell (1998)
Opx Orthopyroxene [Mgx Fe1−x ]2−yAl2ySi2−yO6 Holland & Powell (1996)
Sp Spinel Mgx Fe1−x Al2O3 Ideal

where g is a functional relation governing the physical laws that
relate model and data, expressing our mathematical model of the
physical system under study. Let us look at somewhat more detail
at the forward models, by splitting eq. (11) up into a number of
sequences along the lines of Fig. 1

ms
g3−→ ms

g4−→ d1

g2↗
mp

g1−→ ms

g3↗
g2↘

ms
g5−→ d2

Here m p is a model of an assumed starting composition, tempera-
ture profile, crust and mantle thickness. g1 is the forward operator
embodying the Gibbs free energy minimization routine, calculating
mineral phase proportions (modal mineralogies) and contained in
ms (all subsequent parameters are assembled in ms). g2 calculates
physical properties using an appropriate averaging scheme. g3 cal-
culates seismic velocities and g4 estimates seismic traveltimes (d1)
using the latter parameters, while g5 calculates mass and moment
of inertia (d2) from the obtained densities. Some general comments
about the physical model of the Moon are appropriate before de-
scribing the forward models.

Our model of the Moon is assumed to be spherically symmetric
and divided into three concentric shells which are variable in size.
The three layers correspond to crust, mantle and core. Crust and
mantle are described by the following set of primary model param-
eters, its thickness d, temperature T and compositional parameter
c, that specifies their compositions in the CaO–FeO–MgO–Al2O3–
SiO2 (CFMAS) system. Because we lack the thermodynamic data
necessary to model the lunar core, the core is specified by its size
and density. This simplification has no influence on the seismic in-
version, as the core properties only affect the gravitational response
of the moon. In the inversion, the radial node representing the core–
mantle boundary (CMB) is located at 1337 km depth; however, the
physical extent of the CMB is effectively variable, in the sense that
the radius is not restricted to be 400 km (see Section 3.3.1 for a de-
scription of prior information). As concerns the temperature T , it is
defined at six fixed radial nodes (at depths of 0, 200, 400, 500, 1000
and 1700 km). In order to determine the mineralogical structure and
physical properties it also necessary to specify the pressure profile
in addition to composition and temperature.

3.2.1 Petrological modelling and computation of seismic velocities

Lunar compositions were explored within the system CFMAS; a
chemical model that is thought to account for more than 98 per cent
of the Moon’s mass (e.g. Kuskov & Kronrod 1998). While more

complex treatments are possible, such as incorporating Na2O and
TiO2 (Kuskov et al. 2002), we consider that the error in assessing the
solution behaviour of minor oxides outweighs the descriptive benefit
of including them. Cr2O3, NiO and MnO are likewise neglected
here.

The lunar mineralogy is assumed to be dictated by equilibrium and
is computed from thermodynamic data for a given model pressure,
temperature and bulk composition by Gibbs energy minimization
as outlined in Connolly (2005). These calculations were made tak-
ing into consideration the non-stoichiometric phases summarized
in Table 1 and the stoichiometric phases and species in the ther-
modynamic data compilation of Holland & Powell (1998, revised
2002). The equilibrium assumption is dubious at low temperature
(e.g. Rubie & Thompson 1985). In recognition of this limitation, if
a model required a mineralogy at a temperature below 1073 K, then
the equilibrium mineralogy was calculated at 1073 K. Thermody-
namic properties, including elastic moduli, were then computed for
mineralogy so obtained at the temperature of interest. This 1073 K
threshold temperature is somewhat arbitrary, but consistent with
experimental observations that equilibration in anhydrous silicate
systems ceases at temperatures in the range 973–1173 K (Wood &
Holloway 984).

Seismic velocities were computed as described in Connolly &
Kerrick (2002) using the shear modulus data base summarized by
Connolly (2005). Bulk aggregate elastic moduli were computed as
the Voigt–Reuss–Hill average of the elastic moduli of the stable
minerals under the assumption that textural anisotropy is negligible
(Watt et al. 1976).

The physicochemical properties of interest were computed at 31
fixed radial points with specified composition and temperature (this
number was found to provide more than adequate resolution for the
present purposes) starting from the surface and continuing down to
the CMB. The thickness of the individual layers was chosen in such
a way that the highest resolution, that is, thin layers, were placed in
the crust, with layer thickness increasing at the expense of resolution
as we go down through the mantle.

3.2.2 Ray tracing

Once the mineral seismic P- and S-wave velocities have been esti-
mated we use these to calculate traveltimes for the corresponding
waves, emanating from a number of sources and travelling to a set
of receiving stations. Given that v P , v S and ρ are determined at
31 fixed nodal points, our model of the Moon is partitioned into
31 layers of fixed size with each layer delineated by its physi-
cal extent (defined as the difference between the radial position
of two subsequent layers boundaries), P- and S-wave velocity as
determined by the thermodynamic forward modelling routines. To
each shell is assigned a piecewise linearly varying P- and S-wave
velocity of the form v(r ) = vo + k · r , which is continuous at layer
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boundaries and vo and k are constants. As a result of the planet-wide
impacts associated with the sweep-up of the debris from which the
Moon coalesced, actual physical cracks (porosity) were produced
in the surficial layers, which are believed to extent down to depths
of 15–20 km (Toksöz et al. 1974). The presence of porosity acts to
reduce seismic-wave velocities, as measurements on chondrites and
lunar samples have shown (Kanamori et al. 1970; Yomogida & Mat-
sui 1983). Seismic velocities in the uppermost first kilometre on the
Moon have likewise been found to be low (Kovach & Watkins 1973;
Cooper & Kovach 1974). To take this into account, we introduced
porosity in the first four layers (corresponding to a depth of 34 km),
in the form of a scalar λv that can take on a value from 0 to 1, with
1 corresponding to no porosity and values <1 to increased porosity.
Typical porosity values in ordinary chondrites have been measured
to be less than 20 per cent (Yomogida & Matsui 1983; Hons &
Hildebrand 2004). Recent measurements of the effects of porosity
on the elastic parameters have shown that P-wave velocity to first
order is linearly dependent on porosity (Hons & Hildebrand 2004).
The velocity in these layers is, therefore, written as λvv, where v is
either P or S-wave velocity and λv ∈ [0; 1] is porosity.

3.2.3 Mass and moment of inertia

Once the mineral densities as a function of depth have been calcu-
lated we can estimate lunar mass and moment of inertia using the
simple relations

I = 8π

3

∫
ρ(r )r 4dr, M = 4π

∫
ρ(r ) r 2 dr (12)

3.3 Solving the inverse problem

We stated the solution to our inverse problem as a conjunction of
two pdf ’s, namely prior information η(ms , m p) and the likelihood
function L(ms, mp). Let us specify the information comprised in
the former.

Table 2. Prior information on primary model parameters.

Parameter Description Number Distribution Interval Constraints

T Temperature 6 log -uniform T k ∈ [T k−1; T k+1] Temperature profiles
have to satisfy the
sequence
. . .T k−1 ≤ T k ≤ T k+1 . . .

In any given layer k,
T k < T p

k , where T p
k

is the peridotite solidus
of Hirschmann (2000).
T surface = 0◦C.

d Compositional 2 Uniform d crust ∈ [30;60 km] Radius of lunar surface
layer dM ∈ [d crust; d CMB] is anchored at 1737 km.
thickness (M = mantle,

and CMB = core–mantle
boundary).

c CFMAS 10 log -uniform In the mantle layer For the crust the
composition c(CaO, Al2O3) ∈ [1;8], concentration

c(FeO) ∈ [5;20], of the five oxides,
c(MgO) ∈ [20;55] and are varied by 5 wt. per cent
c(SiO2) ∈ [20;55] around the Taylor
(all values in wt. per cent). model (see Table 5).

3.3.1 Sampling the prior distribution

Prior information regarding primary model parameters is summa-
rized in Table 2 below. This is the body of information contained
in the marginal prior pdf η p(m p) and primary model parameters
will be distributed according to this pdf when sampling the primary
model space.

Having sampled the primary model parameters we can estimate,
using the thermodynamic forward modelling routine, secondary
model parameters, which include modal mineralogies Fα (α is the
number of minerals) and bulk physical properties v P , v S and ρ as
a function of depth. Prior information concerning these parameters
is summarized in Table 3 and comprises the information contained
in the conditional pdf ηs(ms | m p)

In completing the construction of our joint model parameter vec-
tor, we have to add the remaining parameters, which are porosity,
core density, core size and finally hypo- and epicentre coordinates
of the various seismic events, in order to relocate these. We include
these remaining model parameters in m p . It should be noted that
there is no conflict in doing so, since the values of the secondary
parameters are entirely independent of any parameters other than
the composition in the CFMAS system, the temperature and the
thickness of the crust and mantle. Prior information as concerns the
remaining model parameters is given in Table 4.

We can thus summarize our primary and secondary model pa-
rameter vectors as m p = {d i , c′

i j , T ′
k , λm

v , r core, ρ core, Z p , θ p , φ p}
and ms = {Fαl , v

l
P , vl

S, ρ
l}, with primes above parameters denoting

logarithmic parameters.

3.3.2 Sampling the posterior distribution

Having sampled prior information, the posterior distribution, is, by
eq. (1) or (7), obtained by combining the former with the likeli-
hood function L(m), that is, by taking data into account. Let us as-
sume that the observational uncertainties and calculation errors are
independent among the different geophysical methods employed.
We additionally make the assumption that data uncertainties can be
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Table 3. Prior information on secondary model parameters.

Parameter Description # Distribution Constraints

F Modal mineralogies 31 × α Conditioned on None
primary model α = 40
parameters

ρ Density 31 Conditioned on In sampling density
primary model profiles, a penalty
parameters function has been introduced

such that the algorithm is
less likely to accept
density models with a
density decrease.

vP P-wave velocity 31 Conditioned on None
primary model
parameters

vS S-wave velocity 31 Conditioned on None
primary model
parameters

Table 4. Prior information on additional primary model parameters.

Parameter Description Number Distribution Interval

λv Porosity (velocity) 4 Uniform Layer 1: λv = λo
v + δv(2α − 1),

λo
v = 0.6, δv = 0.1 and α is a

uniformly distributed random
number in the interval [0; 1].
Layer 2–4: λv(i) = λ′

v α(1 − λ′
v)+

β i (1 − [λ′
v + α − αλ′

v]), λ′
v = 0.75

and β i = i/4.
ρ core Core density 1 Uniform ρ core ∈ [ρm ; ρ c]

ρm is the value of ρ

at the base of the
mantle, as estimated
by VERTEX and
ρ c = 7.5 g cm−3.

r core Core radius 1 Uniform r core ∈ [0; 400 km]
Z Depth of deep 32 Uniform Z ∈ [0; 1737 km]

and shallow
moonquakes

θ , φ Epicentral 102 Uniform Over the entire sphere
coordinates of
seismic events
(latitude, longitude)

modelled using an l1-norm. With these specifications, the likelihood
function takes the form

L(m) ∝ exp

(
−

∣∣d I
obs − d I

cal(m)
∣∣

σI
−

∣∣d M
obs − d M

cal(m)
∣∣

σM

−
∑

i

∣∣d Pi
obs − d Pi

cal(m)
∣∣

σPi

−
∑

j

∣∣d S j

obs − d
S j

cal(m)
∣∣

σS j

)
,

(13)

where dobs denotes observed data, d cal(m) synthetic data computed
using model m with superscripts alluding to the particular geophys-
ical observations and σ the uncertainty on either of these. Note that
uncertainties on individual arrival time readings are different.

To initiate the sampling algorithm we need some arbitrary model
as the MCMC algorithm, in principle, is independent of where it
starts off in the model space. However, given the complexity of
the problem, we chose to start off with a model that, a priori, is
believed to resemble the bulk composition of the Moon to some
degree. For crust and mantle layers we assume the crust and bulk

Table 5. Bulk composition models of the silicate part of the Moon and
Earth.

Model CaO FeO MgO Al2O3 SiO2

Moon
Taylor crustal model (1982) 16.5 6.5 7.0 25.0 45.5
Taylor bulk model (1982) 4.6 13.1 32.3 6.1 43.9
Warren (2005) 3.0 9.1 35.6 3.8 46.2
Kuskov & Kronrod I (1998) 4.8 10.4 28.5 6.3 50.0
Kuskov & Kronrod II (1998) 4.3 11.7 29.6 5.9 48.5
Earth
McDonough & Sun (1995) 3.6 8.2 38.2 4.5 45.5

Moon compositions as estimated by Taylor (1982), respectively (see
Table 5). To sample the posterior distribution we have to proceed
along the steps outlined earlier in our description of the Metropolis-
Hastings algorithm. Let us write it down for the following sequence
(though simplified, this sequence is the same as the one following
eq. 11)
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mp
mp−→ m′

p

g1,g2,g3−→ ms
ms−→ m′

s

g4,g5−→ d

by breaking it down into its constituent parts and considering these
individually:

(1) mp
mp−→ m′

p – prior sampling of primary model parameters
in Mp using marginal prior η1.

– Choose a compositional layer at random.
– Perturb its thickness at random.
– Change the composition in the system CFMAS randomly

in this layer.
– Select at random one of the six layers where the temperature

is defined.
– Perturb the value of the temperature in the layer.
– Complete construction of m′

p by sampling candidate values
for the remaining primary parameters (epi- and hypocentre co-
ordinates, porosity, core density and radius) from the proposal
(= prior) pdf .

(2) m′
p

g1,g2,g3−→ ms – estimation of secondary model parameters
given values of primary model parameters using the forward mod-
elling operators g1, g2 and g3.

– Construct v P , v S and ρ model by running the thermody-
namic forward model.

(3) ms
ms−→ m′

s – prior sampling of secondary model parameters
in Ms using conditional prior η2.

– Verify that the proposed ρ model satisfies the sequence
. . .ρ l−1 ≤ ρ l ≤ ρ l+1 . . . .

(4) m′
s

g4,g5−→ {d1, d2} – Calculation of data in the joint data pa-
rameter space D given proposed joint model parameter vector m′ =
{m′

s, m′
p} in the joint model space M using the forward modelling

operators g4 and g5.
– Calculate traveltimes as well as lunar mass and moment of

inertia by running the ray tracer and the mass and moment of
inertia calculations.

(5) Acceptance or rejection of proposed model.
– Compute acceptance probability P using the expression

P = min

[
1,

L(m′)
L(m)

]

– Select a random number α ∈ [0; 1] and compare it to P .
Accept m′ = {m′

s, m′
p} if α < P , otherwise leave m = {ms ,

m p} unchanged.
(6) Return to step 1.

This sequence of steps will produce samples which are distributed
according to the posterior pdf (Mosegaard & Tarantola 1995). The
final collection of samples, then, constitutes our output, which can
be used to infer the interior composition and structure of the Moon.

Convergence is reached after roughly 1000 iterations. Only after
convergence had been reached, and sampled models fit the observa-
tions, did we retain samples from the posterior pdf . As a practical
criterion to ensure convergence of the MCMC algorithm, we mon-
itored the time-series of all output parameters from the algorithm
to verify that these were indeed stationary over the many iterations
performed. The question as to how many samples are needed to ade-
quately represent the posterior pdf , is assumed answered once there
are no longer any significant changes to the characteristics of the
posterior pdf . To further ensure that we have adequately sampled the
model space and to verify that the algorithm is actually independent
of the starting model we also chose to recommence the algorithm at
a number of different places in the model space, corresponding to
different starting models. As to the issue of obtaining independent

samples, the way that we dealt with this problem was to introduce an
‘elapse time’ (number of iterations) between retention of samples,
which was found to be 100 by analysing the autocorrelation func-
tion of the fluctuations of the likelihood function. In all 1.2 million
models have been sampled from which 12 000 were kept for further
analysis, with an overall acceptance rate of ∼40 per cent.

4 A N A LY S I S A N D V I S UA L I Z AT I O N
O F P O S T E R I O R R E S U LT S

The posterior probabilities calculated here are mathematical entities
based on the quantitative information used as input in the inversion.
Stated differently, the probabilities are based entirely on (1) data
and their uncertainties, (2) prior information as quantified here, and
(3) the physical relation between data and unknown model parame-
ters. Given these probabilities, we can calculate resolution measures,
which are given by eq. (8). If f (m) = mi , the resolution measure is
equal to the mean, mi of the ith model parameter mi . On the other
hand, should we be interested in the covariance between the model
parameters mi and m j , f (m) = (mi − mi )(m j − m j ). In this way
any estimator or estimator of dispersion can be obtained. Resolu-
tion measures usually represent the answer to questions addressing
certain aspects of the subject matter in terms of a probability. For
example, a question of great interest here could be formulated as
follows. How likely is it, given the observed data, their uncertain-
ties and prior information, that bulk lunar composition resembles
the composition of the Earth’s upper mantle?

There are a number of ways to display the results depending on
the questions that we are trying to address. For the purpose of obtain-
ing information on single parameters and their uncertainties, 1-D
marginals are most appropriate. While 1-D marginal pdf ’s are easily
visualizable and provide a clear picture of the pdf as regards single
parameters, information on any other parameters is not provided.
For this, 2-D or 3-D marginal pdf ’s are called for, as they are able
to reveal the correlation that exists among several parameters. As
advocated by Mosegaard & Tarantola (1995) and Tarantola (2004),
we can also display a collection of models from the posterior pdf .
Looking at, say, 100 models taken randomly from the prior and
posterior pdf is surprisingly informative, as general features char-
acteristic of the models, like those that are well resolved, will tend
to be recurring. Displaying such a collection could be said to be
our starting point, because subsequent analysis of the posterior pdf ,
in the form of uncertainties on parameters and correlations etc., is
often guided by what we learn when looking at such a collection of
models. Fig. 2 below shows 100 models representing the a priori and
a posteriori pdf for temperature from the surface down to the CMB.
These models provide us with an approximate idea of, not only, the
prior information used, but also, by comparing prior and posterior,
the information contained in the data. The information displayed
in these movies is only a first order representation of the prior and
posterior pdf . Increasing accuracy as concerns the pdf necessarily
entails displaying more models. Nonetheless, what comes to mind
when scrutinizing the posterior models is the variability, reflecting
the inherent random nature of the MCMC method. While models
are seemingly different, all of them are models with high likelihood
values that predict data within uncertainties. This is highlighted in
Fig. 3, where we have displayed the a priori and a posteriori data
movie for a subset of the data (only mass and moment of inertia are
shown here). When sampling the posterior data distribution (thick
line), we immediately see how the prior random walk (thin line) is
gauged when data are taken into account.
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Figure 2. Collection of 100 models taken randomly from the prior (a) and
posterior (b) pdf ’s showing temperature as a function of depth. Separation
between individual models is 50 ◦C. Comparison of prior and posterior
provides a valuable insight into the information contained in the data. Prior
models seem ‘messy’, reflecting the few prior constraints imposed on these
parameters, whereas posterior models seem ‘well behaved’.
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Figure 3. Prior (thin line) and posterior (thick line) data fit. The extreme
narrowing of the posterior relative to the prior pdf ’s is due to the small
uncertainties on the observations. While only mass and moment of inertia
are shown here, the same distributions can easily be shown for single seismic-
arrival times.

5 R E S U LT S A N D D I S C U S S I O N

As the final results are conditioned on the nature and validity of the
assumptions that go into any study, the interpretation of the results
should reflect these limitations. Limitations are imposed by us, in
part, because of our choice of the particular model of the Moon and
the inversion method, and on us, in part, because of the nature of the
data.

Chief limitations imposed by data are due to the fact that only
four stations were operative, covering a small area of the front side
of the moon, as well as the fact that we are confined to modelling
first arrivals. Of importance in this respect, is the limited amount
of data available including their quality, which limits detailed mod-

elling and forces the assumption of radial symmetry. Because of this
assumption the results are averages over the front side of the Moon,
covered by the four seismic stations.

With regard to the inverse problem, we face the usual trade-off
between resolution and uncertainty on estimated model parameter
values, reflecting our choice of parametrization. As already pointed
out, the minimum number of compositional layers was used. The res-
olution regarding the other parameters (ρ, v P , v S and T) was found
on the grounds that the distribution of calculated data provided an
adequate fit to the observed data distribution. Had we chosen to aug-
ment the number of layers, we would have gained in resolution, but
at the same time increased the uncertainty of the estimated model
parameters. It is difficult to quantify the effect of uncertainties in
the thermodynamic models, however, the fact that we are confined
to conditions of the terrestrial upper mantle (confining pressures
at ∼150 km depth) requires only limited extrapolation of experi-
mentally calibrated equations of state. Another factor accorded at-
tention in the interpretation of terrestrial seismic velocities is the
effect of anelasticity which causes dispersion so that the seismic-
wave velocities at finite frequency ω are less than in the elastic limit
(ω → ∞). Minster & Anderson (1981) consider dispersion in the
low attenuation limit as given by

v (P, T, ω) = v (P, T, ω → ∞)

[
1 − 1

2Q
cot

(
απ

2

)]
(14)

indicating that dispersion in this limit depends on pressure, tem-
perature and frequency through their effect on the attenuation Q.
Typical values of α are around 0.2–0.3, consistent with experimen-
tal results (Jackson et al. 2002). Due to the absence of water and
volatiles, Q-values for the Moon are typically an order of mag-
nitude higher than in the Earth (Latham et al. 1970). The crustal
Q-value (depth range 0–45 km) is around 6000 for both P and
S waves, whereas upper-mantle Q-values (depth range∼45–560 km)
are around 4000–7000 for P waves and ∼4000 for S waves and fi-
nally middle mantle Q-values (depth range ∼560–1100 km) are
∼1500 for P waves (Nakamura & Koyama 1982). Such high
Q-values will result in only minor velocity changes due to anelastic
effects over most of the lunar interior (<0.1 per cent). Also consid-
ering the large uncertainties in anelasticity parameters, dispersion
effects will not be given further consideration here.

The primary parameters were c, T and d and Figs 4 and 5 dis-
play c for the crust and mantle in the form of 1-D prior and poste-
rior marginals, clearly showing that c is being constrained by data.
Temperature models are shown in Fig. 6 and like c, the posterior
marginals for T are also seen to be significantly narrowed, sig-
nalling that inversion of seismic traveltime data are able to provide
information on composition and thermal state. Our thermal profiles
are generally in agreement with earlier geophysically derived se-
lenotherms; like Huebner et al. (1979) and Hood & Sonett (1982)
temperatures well below the solidus at a depth of 1000 km are ob-
tained bringing us into accord with the overall seismic evidence of
a solid and rigid lunar mantle (for summary discussions of these
and other geophysical evidence on mantle thermal evolution and
present-day state the reader is referred to e.g. Hood & Zuber 2000;
Khan et al. 2006d). Major mineral phases and derived bulk physical
properties, in the form of radial density, seismic P- and S-wave ve-
locity profiles are shown in Figs 7–10. The remarkable homogeneity
of the obtained lunar mantle mineralogy is also apparent in the re-
sulting seismic-wave velocity profiles. Major velocity changes in
the mantle are not immediately apparent, which is related to the fact
that we modelled the lunar mantle using single compositions. Any
transitions between upper and lower mantle arising from a change
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Figure 4. Prior (black bins) and posterior (white bins) marginal pdf ’s for the
oxides in the CFMAS system (marked to the right of each figure) comprising
the crustal composition. The crustal composition was a priori bounded to
lie within 5 per cent of the Taylor crustal model (see Table 5).
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Figure 5. Prior (black bins) and posterior (white bins) marginal pdf ’s for
the oxides in the CFMAS system (marked to the right of each figure) com-
prising the mantle composition. A priori bounds on mantle composition are
summarized in Table 2. Note that as we are not plotting the logarithm of
the individual parameters, we do not obtain homogeneous distributions, but
ones that are skewed.

in composition are thus obviously discounted, leaving only phase
changes as possible markers. We searched the entire set of sam-
pled vP and vS models for any velocity changes in the mantle by
correlating v P and v S at depths of 400 and 750 km, respectively.
No major velocity changes were found, reflecting the apparently
remarkable homogeneity of vP and vS . A slight increase in den-
sity is discernible though, due to the coupled effects of pressure
and increased amounts of the denser phase garnet relative to ortho
and clinopyroxene. v S is seen to decrease on going down through
the mantle which is related to it being relatively more sensitive to
temperature than vP. Bulk sampled compositions and Mg#s [molar
MgO/(MgO+FeO)×100] for the silicate part of the Moon are dis-
played in the histograms in Fig. 11. Previous bulk compositions
obtained from geochemical (Taylor 1982; Warren 2005) as well as
geophysical modelling (Kuskov & Kronrod 1998) and that of the
Earth’s upper mantle (McDonough & Sun 1995) have been included
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Figure 6. Marginal prior (left-hand side panel) and posterior (right-hand
side panel) pdf ’s depicting all sampled mantle selenotherms for the silicate
part of the Moon, that is, from surface down to the CMB. At the six fixed depth
nodes a histogram reflecting the marginal probability distribution of sampled
temperature is set up. By lining up these marginals, temperature as a function
of radius can be envisioned as contours directly relating their probability of
occurrence. Shades of grey between white and black indicating, respectively,
least and most probable outcomes. Note that the posterior pdf ’s have not only
narrowed significantly relative to the prior pdf ’s, but that they have also been
displaced. The discontinuity apparent on the posterior plot is an artefact due
to the parametrization.

for comparison. Previous geophysically derived seismic velocities
are compiled in Table 6 and overall agreement is seen to be present.

Concerning the core, current consensus favours a small (<1–
3 per cent by volume) iron or iron core containing some light element
such as S (Hood & Jones 1987; Mueller et al. 1988; Kuskov &
Kronrod 1998; Hood et al. 1999; Righter 2002; Williams et al. 2001;
Khan et al. 2004), in line with the prevailing model for the origin of
the Moon (Canup 2004). While most geophysical and geochemical
data pertaining to the lunar core seem to converge upon the necessity
for a small lunar core of iron-like composition, it has to be noted
that this is strictly not demanded and other compositions are also
consistent with data (the reader is referred to e.g. Hood & Zuber
2000; Williams et al. 2001; Khan et al. 2004, for further discussion).
The latter two studies also point to the most probable existence of
small iron core with a radius of ∼350 km, in line with our results
shown in Fig. 12.

Issues of obvious interest here include questions concerning con-
vergence, stationarity, data sensitivity, model resolution and not least
the trade-offs existing between the inverted parameters. Let us ad-
dress the latter issue first by investigating effects of temperature
changes on mantle mineralogy and physical properties as well as
the associated effects of how changes in mineralogy affects physical
properties (the primary parameters, c and T are distributed indepen-
dently according to the prior pdf η p and are thus not correlated; as
we parametrized the mantle using single compositions, c and ρ, vP

and vS are generally also uncorrelated). Fig. 13 below shows how
T affects mantle mineralogy (Figs 13A–D) and the physical proper-
ties v S (Figs 13E–H) and ρ (Figs 13I–L). At any given depth olivine
content and physical properties are seen to be anticorrelated with T
as expected, while ρ and v S correlate positively with olivine content
(Figs 13M–T). In general, the correlations are found to be weak and
are observed to decrease as a function of depth so that they become
insignificant at about 1000 km depth. Moreover, absolute values of
ρ and especially vS are seen to decrease as a function of depth, sig-
nalling that temperature effects are relatively more important than
pressure effects in the Moon.
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Figure 7. Marginal posterior pdf ’s of major minerals, showing the volume per cent of each phase as a function of radius for the silicate part of the Moon. At
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side panel) pdf ’s depicting the mantle density structure for the silicate part
of the Moon. The density increase in the mantle is due an increased amount
of garnet. Shades of grey as in Fig. 6.

Of importance when having to draw conclusions from inverse
calculations, are issues of convergence and resolution. Criteria usu-
ally adopted as regards convergence, include the necessity of stabi-
lization of inverted parameter values and similarity of these across
independent chains, that is, runs, which usually provide adequate
confidence in the results. Fig. 14 shows the results obtained for
sampled Mg#s from the inversion of three independent posterior
chains using different random number sequences. While the re-
sults vary in detail, the general characteristics are, as expected,
similar.
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Figure 9. Marginal prior (left-hand side panel) and posterior (right-hand
side panel) pdf ’s depicting the mantle P-wave velocity structure for the
silicate part of the Moon. Shades of grey as in Fig. 6.

To address the issue of data resolution, it is practical to investigate
how well resolved a certain parameter is when inverting individual
data sets. Fig. 14 summarizes these results, in the form of sampled
Mg#s, for separate inversions of (1) only seismic data, (2) only grav-
ity data, (3) joint inversion of all data and (4) the prior information.
Inversion of individual data sets shows that while the characteris-
tics differ among the posterior pdf ’s, a significant narrowing of the
prior pdf is observed, signalling that individual data sets are indeed
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Figure 11. Marginal posterior pdf ’s displaying bulk lunar composition and
Mg# for the silicate part of the Moon (crust and mantle). Upward and down-
ward pointing arrows indicate the bulk composition estimates of Warren
(2005) and Kuskov & Kronrod (1998) (their model II), respectively, while
crosses denote bulk composition of the Earth’s upper mantle as estimated
by McDonough & Sun (1995). In accordance with previous estimates bulk
Moon is generally seen to be different from the pyrolite composition of
Ringwood (1966), thought to be representative of the Earth’s upper mantle.

sensitive to the inverted parameters. Moreover, the posterior pdf
obtained by joint inversion of all data is seen to be significantly
constrained when compared to those obtained by inversion of single
data sets.

In having to evaluate models of lunar formation and evolution,
the question of the resemblance of the lunar and terrestrial mantle
composition has figured prominently (e.g. Drake 1986; Ringwood
1986; Taylor 1986; Warren 2005; Taylor et al. 2006). Many re-
cent estimates of the composition of the upper mantle of the Earth
(McDonough & Sun 1995; Salters & Stracke 2004) are similar to that
of the pyrolite composition proposed by Ringwood (1966). These
compositional estimates are principally based on studies of the com-
position of meteorites, mantle xenoliths and the basaltic products of
mantle melting. These compositions can reproduce the seismic ve-

Table 6. Seismic P- and S-wave velocities obtained from earlier studies.
The results by Nakamura, Khan et al. and Lognonné et al. were obtained
by inversion of lunar seismic-arrival times, whereas the study by Kuskov
et al. represents results obtained from an inversion of the velocity model
derived by Nakamura. Whereas the former three investigations inverted for
1-D velocity profiles, Kuskov et al. inverted the Nakamura velocity profiles
to constrain composition.

Model v P v S

(km s−1) (km s−1)

Kuskov et al. (2002)
Upper mantle (60–500 km) 7.4–8.2 4.2–4.7
Lower mantle (5000–1000 km) 7.6–8.4 4.2–4.6

Nakamura (1983)
Upper mantle (270–500 km) 7.46 ± 0.25 4.25 ± 0.1
Lower mantle (500–1000 km) 8.26 ± 0.4 4.65 ± 0.16

Khan et al. (2000)
Upper mantle (45–500 km) 8.0 ± 0.8 4.0 ± 0.9
Lower mantle (700–800 km) 9.0 ± 1.9 5.5 ± 0.9

Lognonné et al. (2003)
Upper mantle (300–500 km) 7.75 ± 0.15 4.4 ± 0.15
Lower mantle (500–750 km) 7.9 ± 0.3 4.2 ± 0.3

locity and density profiles of the Earth’s upper mantle for likely
geotherms (Murakami & Yoshioka 2001). Moreover, they also have
a sufficiently high Mg#, close to 90, to generate melts with a Mg# re-
sembling the most primitive mid-ocean ridge basalts. The results of
our inversion procedure generate mantle compositions for the Moon
that are strikingly different to that of pyrolite, with our models hav-
ing somewhat lower SiO2 and MgO than the pyrolite composition.
Almost all of our models have higher FeO than pyrolite, and some-
what lower CaO and Al2O3 contents. Our results, therefore, indicate
that the mantle composition of the Moon is different from that of the
Earth’s. Our estimates of bulk lunar composition (silicate portion of
the Moon) obtained here, lends additional support to this contention.
The discrepancy is further exemplified by the Mg#, where we find a
bulk lunar Mg# of approximately 82 and our range of values match
the observed Mg# of the most primitive mare basalts. Moreover, as
we consistently found bulk lunar Mg# differing significantly from
that of the Earth’s (89), we believe that this compositional difference
is robust, and that it reflects not only a different origin, but also dif-
ferent evolutionary histories for the Earth and Moon. Giant impact
scenarios, originally proposed by Hartmann & Davis (1975) and
Cameron & Ward (1976), where the Moon forms from the silicate
debris that comes to lie in a circumterrestrial ring have done away
with most of the geochemical obstacles. As most of the material
(>80 per cent, Canup 2004) making up the Moon is derived from
the mantle of the impactor any present-day Earth–Moon differences
are most easily explained, at least to first order, as originating from
the distinct chemical makeup of the impactor.

6 C O N C L U S I O N

As outlined in Fig. 1, the method presented here is a general approach
to an integrated inversion of a priori unrelated geophysical data to
constrain composition, thermal state and other parameters pertinent
to the specific problem being treated. Traditionally, geophysical data
are inverted for parameters that are a physical manifestation of those
data, for example, inversion of seismic data for seismic-wave ve-
locities, inversion of gravity data for density structure, electromag-
netic sounding data for electrical conductivity structure etc. How-
ever, in the absence of physical laws or laboratory measurements
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Figure 13. Plots showing the correlation between several sampled parameters at various depths (indicated as subscripts on the y-axes). (A–D) T versus Ol
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of grey as before.

correlating, for example, seismic-wave velocities and electrical con-
ductivities there is no obvious way of constraining the electrical
conductivity structure from an inversion of seismic-arrival times.
Therefore, inverting for a set of parameters which describe the sys-
tem being studied at a fundamental level, that is, chemical composi-
tion and temperature, rather than density and seismic-wave velocity,
allows us to naturally link geophysical data that are not a priori re-
lated. The generality of the method makes it easily extendable so
as to include more complex chemical models and other kinds of
geophysical data in the inversion.

We used a probabilistic inference approach to combine the in-
formation describing the various geochemical and geophysical as-
pects of the problem. This was specifically done by introducing a
joint posterior pdf which considers not only a suite of properties
(chemical composition, temperature, layer thickness, etc.), but also

multiple types of geophysical data. In the present formulation, we
partitioned the model parameter space into a primary and secondary
model parameter space, according to fundamental and geophysical
parameters and employed a joint prior pdf to describe this infor-
mation. The joint prior pdf was written as the product of a prior
pdf over primary parameters and a conditional prior pdf over sec-
ondary parameters. The joint likelihood function was given as the
product of the likelihood functions for each individual data set. The
generality of the present formulation makes it easily extendable to
include other kinds of geophysical data as well as forward modelling
sequences.

As regards sampling models from the joint posterior pdf , we used
a stochastically based sampling algorithm. Specifically, this was
done by using a MCMC sampling algorithm, that is, by performing
a random walk in a multidimensional model space that combines
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Figure 14. Marginal prior and several posterior pdf ’s showing sampled bulk lunar Mg#s for the silicate part of the Moon, obtained from an inversion of prior
information (grey line), only gravity data (grey dot–dashed line), only seismic data (grey-dashed line), all data jointly (dashed line), all data jointly with different
random seeds (full and dot–dashed line), respectively. Resolution is seen to increase as we add information in the inversion.

prior information with information from measurements and from the
theoretical relationship between data and model parameters. Input
to the algorithm were random models generated according to the (1)
primary prior pdf , (2) the generalization to the joint model space,
by sampling the secondary prior pdf (conditional to primary pa-
rameters) and (3) a modification of the joint prior random walk by
considering the likelihood function to sample the joint posterior pdf
using the Metropolis rule. As output we assimilated random realiza-
tions of the posterior pdf , which contain all the information about
our parametrized physical system.
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