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Impact of grain size on the convection of terrestrial planets

A. Rozel1,

Abstract. This article presents a set of simulations of mantle convection, using a new
model of grain size-dependent rheology. In the present paper, it is shown that this rhe-
ology behaves in many ways as a visco-plastic rheology. I use a model of grain size evo-
lution which has been calibrated on experimental data in a previous paper. In this phys-
ical model, the grain size is directly related to the stress state, following a temperature-
dependent piezometric law. The rheology used here allows both diffusion and disloca-
tion creep, depending on the grain size. At low stress, the grain size is high and forces
the rheology to be dislocation dominated. For sufficiently high stresses, the equilibrium
regime reached by the grains is located in the diffusion creep. In this case, the viscos-
ity is linked to a stress-dependent grain size, which actually makes the rheology more
non-Newtonian than it is in dislocation creep. This experimentally calibrated model al-
lowed me to perform a set of numerical experiments of convection in which the rheol-
ogy may be diffusion or dislocation creep dominated, depending on the state of the stress
tensor. Then, The stress exponent varies from 3 to 5 because of grain size, which has
a large impact on the temperature dependence of the viscosity. The present paper shows
the impact of this new model on the convection regimes of terrestrial planets. In par-
ticular, for a wide range of parameters, I observe the episodic regime which is thought
to govern the dynamics of Venus. This process of episodic resurfacing was obtained in
previous simulations using visco-plastic rheologies is a tight range of parameters. I ob-
tain it here without using an ad hoc plasticity law, only using a viscous rheology based
on laboratory measurements. In these simulations, I show that the cooling rate of the
terrestrial planets may be largely modified by the consideration of a grain size-dependent
rheology.

1. Introduction

Although the plate tectonic regime has been studied for
decades, the rheologies that generate it self-consistently have
still to be determined. Laboratory experiments of rock
deformation show a strong effect of the temperature on
the viscosity (see Hirth and Kohlstedt [2003]). But several
studies have also shown that the consideration of a very
temperature-dependent viscosity (in adequation with the ex-
perimental data) generates a stagnant lid on top of convec-
tion cells [Christensen, 1989; Ogawa et al., 1991; Solomatov ,
1995]. This might represent the convective state of Mars or
Mercury but is very far from the plate tectonic regime of
the Earth. Thus, it appeared that additional parameters
are required to break the thick lithosphere generated by the
huge temperature dependence of the viscosity.

Several effects have been proposed to localize the defor-
mation at plate boundaries: plastic yielding [e.g., Moresi
and Solomatov , 1998; Trompert and Hansen, 1998; Tackley ,
2000], partial melting [Bercovici and Ricard , 2003; McKen-
zie, 1984], damage [Bercovici et al., 2000; Bercovici and
Karato, 2003], non-Newtonian rheologies [Weinstein and Ol-
son, 1992], shear heating [Burg and Schmalholz , 2008], hy-
dration of the rocks [Lenardic and Kaula, 1994; Hilairet
et al., 2007], etc. The singular state of the lithosphere of
the Earth is probably due to a set of these potentially cou-
pled parameters but the effect of each has still not always
been systematically determined.
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Plastic yielding, instantaneous rheologies and shear heat-
ing seem insufficient to fully describe the behavior of the
lithosphere of the Earth particularly because they do not
provide an appropriate memory for the rheology [Bercovici
and Karato, 2003]. Grain size dependent rheologies is used
in several studies of the localization of deformation in shear
zones [Kameyama et al., 1997; Braun et al., 1999; Montési
and Hirth, 2003] or mantle convection simulations [Hall and
Parmentier , 2003; Barr and McKinnon, 2007; Solomatov
and Reese, 2008] but these formalisms are based on phe-
nomenological considerations and lacks important physical
properties such as energy conservation and the positivity
of entropy evolution. Composite rheologies including dis-
location creep, diffusion creep (and Peierls plasticity) have
also been considered [Kameyama et al., 1999; Duretz et al.,
2010] but the grain size is most often fixed to a constant
value. Also, the value of the rheological stress exponent n
(in the formalism ε̇ ∝ τn−1τ ) is of primary importance in
lithosphere scale simulations [Bercovici , 1993; Montési and
Zuber , 2002].

Ricard and Bercovici [2009] proposed a new physical ap-
proach of the evolution of grain aggregates. This new theory
allows to compute the dynamics of a grain size distribu-
tion in a very general way, consistent with the thermody-
namic requirements. Rozel et al. [2010] used this general
approach and calibrated it with the well-documented case
of the olivine rheology (see also Austin and Evans [2007]).
In the present paper, I use this rheology to investigate its ef-
fect on mantle convection. Note that the rheology is still not
time-dependent in this new model because the grain size is
obtained instantaneously from the stress state. [Foley et al.,
2012] have presented a set of simulations in which the viscos-
ity depends on grain size using the formalism of Ricard and
Bercovici [2009]. However, these simulations do not allow
the rheology to switch from diffusion to dislocation creep
following the stress magnitude, which is a central point of
the present paper and modifies completely the dynamics of
the whole mantle.

1



X - 2 A. ROZEL: CONVECTION AND GRAIN SIZE

2. Setup

2.1. Framework of the convection experiments

I consider a fluid heated from below submitted to a tem-
perature increase ∆T . The surface temperature is fixed to
Ts and the bottom temperature to Tb = Ts + ∆T . Except
for the viscosity given by equation (17), all the other pa-
rameters are uniform. Top, bottom and side wall free slip
boundary conditions are imposed and the aspect ratio of the
domain is fixed to 1.

The Stokes equation is solved using the Boussinesq ap-
proximation, considering an infinite Prandtl number and
the convecting material is considered incompressible. The
Stokes, continuity, heat and grain size equations are given
by:

∇ · σ −∇P = RabTz (1)

∇ · v = 0 (2)

∂T

∂t
= ∇2T − v ·∇T (3)

R∗ = ζτ
−n+1

p+1
∗ (4)

where v is the velocity of the fluid, σ is the stress tensor, P
the pressure, Rab the bottom Rayleigh number (defined be-
low, in equation 5), T the temperature, z the dimensionless
depth and t the time. R∗ is the dimensionless grain size,

ζ = χ/(R0τ
−n+1

p+1
r ), R0 is the reference grain size used to re-

move the dimension (1 micron), τr is the reference deviatoric
stress (1 MPa) used to obtain the dimensionless second in-
variant of the deviatoric stress tensor τ∗. χ is a temperature-
dependent variable defined in section 2.2, equation 10. n is
the non-linear stress exponent and p an experimental dimen-
sionless constant involved in the time-dependency of grain
growth (see equation 7).

The structure of the convection code is fully described
in Trompert and Hansen [1996] but I briefly summarize
its main characteristics here. The equations 1, 2 and 3
are solved together using the finite volume formalism on
a staggered grid defined in Harlow and Welch [1965]. The
grid is uniform in the horizontal direction but very refined
vertically in the top and bottom boundary layers. The
vertical position of the mesh nodes are defined using a
Chebichev polynomial. A grid of 64 times 64 nodes has
been found to provide a satisfactory resolution. A multigrid
solver is used to obtain velocity, pressure and temperature
fields. The temperature equation is solved using the fully
implicit Crank-Nicolson method. Smoothing iterations are
performed with the SIMPLER method [Patankar , 1980]. Ja-
cobi iterations are used to solve the temperature field and
Gauss-Seidel iterations has been chosen to obtain the ve-
locity field. W-cycles are performed to improve the conver-
gence. As shown by equation 4 and explained in section 2.2,
the grain size is obtained directly from the stress state and
does not require any particular numerical treatment.

The bottom Rayleigh number is defined by:

Rab =
αρg∆Th3

κηb
, (5)

where α is the thermal expansivity, ρ the density, g the grav-
ity, h the depth of the computational domain, κ the thermal
diffusivity and ηb is a bottom viscosity using the rheological
parameters of the dislocation regime.

Because the rheology is non-Newtonian in the dislocation
regime, the effective viscosity at the bottom of the convec-
tion domain cannot be known before running the simulation.
Thus, following Solomatov [1995], I use

ηb =
1

2

(
A10 exp

(
− E1

RTb

))− 1
n

ε̇
1−n
n

0 , (6)

where ε̇0 = κ/h2, A10 is a constant, E1 is an activation en-
ergy (which quantifies the temperature dependence of the
rheology), R is the Boltzmann constant and n is the stress
exponent (in dislocation creep). This viscosity is defined
with the bottom temperature Tb but with an a priori strain
rate ε̇0. The effective internal Rayleigh number obtained in
my simulations is larger than Rab (the effective strain rate is
much smaller than ε0). The effective Rayleigh number, com-
puted from the average internal viscosity, computed a pos-
teriori, is about 106− 107. This formulation of the Rayleigh
number based on the dislocation creep viscosity is very clas-
sical [Solomatov , 1995], I chose to use it as a starting point
of my study.

Any attempt to run a convection experiment with Earth-
like parameters would most probably fail. The viscosity vari-
ations occurring for a Arrhenius law between 300 K and 3000
K are incredibly huge (1059 for and an activation energy of
375 kJ mol−1), and other phenomenon (e.g., brittle failure,
Peierls mechanisms, damage...) would anyway limit the ef-
fective strength of the shallow layers. I did not consider
these processes. In my simulations, I therefore restrict the
temperature variations between Ts = 1000 K and Tb = 2000
K. Even in this case, the value of the activation energy is
limited to 420 kJ mol−1 (see figure 2). The maximal viscos-
ity contrast reached are already of the order of 1015.

2.2. Grain size-dependent rheology

2.2.1. Approximation of the grain size kinetics

In Rozel et al. [2010], we derive the general evolution
equation for the mean grain size R, (equation (40) of Rozel
et al. [2010])

dR
dt

=
G

pRp−1 − f
R2

3γ

λ3

λ2
τ : ε̇dis, (7)

where t is the time. The first term on the right is the usual
coarsening term where p ∼ 2 is an experimental dimension-
less constant, and G = k0 exp (−Eg/RT ) is a kinetic term
(see Table 1), k0 is an experimental constant, Eg is the acti-
vation energy of the grain growth kinetics, T is the temper-
ature in Kelvin. f is the partitioning parameter defined in
equation 8, γ is the surface tension of the grain boundaries.
λ2 and λ3 are dimensionless constants derived analytically
in Rozel et al. [2010] (see table 1). τ is the deviatoric stress
tensor and ε̇dis is the strain-rate tensor due to dislocation
creep rheology only.

The first term of the right hand side of equation 7 rep-
resents the usual normal growth [e.g. Hillert , 1965; Karato,
1989]. The second term represents the effect of dynamic
grain reduction through recrystallization. This term is con-
trolled by the energy dissipated by dislocation creep, τ : ε̇dis
(contraction of the stress tensor τ and the strain rate ten-
sor in dislocation creep ε̇dis) and depends on γ, the surface
tension of the olivine grains. We obtained the partitioning
parameter f from various experiments and its temperature
dependence may be reasonably approximated by:

f = exp

(
−αf

(
T

1000

)β)
. (8)

All the constants, αf , β and λi are dimensionless. Their
values are discussed from theory or observations (see Rozel
et al. [2010]) and reported in Table 1.

The calibration of the grain size dynamics with experi-
mental data shows that the kinetics of equilibration is rapid
with respect to a typical convection time scale except on
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the coldest, shallowest part of the lithosphere where defor-
mation occurs anyway by different processes [Rozel et al.,
2010]. This result is based on the grain growth kinetics ob-
tained by Karato [1989]. Thus, I have chosen to investigate
the equation (7) in steady state, i.e., considering dR/dt = 0.
In this situation, the equilibrium grain size becomes:

R = χ(T )τ
−n+1

p+1 , (9)

with

χ(T ) =

(
3γGλ2

pfA1λ3

) 1
p+1

, (10)

where τ is the second invariant of the deviatoric stress tensor
and A1 is the dislocation creep rheological function given by
A1 = A10 exp (−E1/RT ).

Equation (9) is what is called a ”pieozemeter” used by ge-
ologists to infer paleo-stresses from mineral grain sizes [e.g.,
Van der Wal et al., 1993; Post and Tullis, 1999; Shimizu,
2008]. The numerical value of the stress exponent corre-
sponds to what is observed for olivine [e.g., (n+1)/(p+1) ∼
1.3, De Bresser et al., 2001]. The prefactor χ(T ) does not
vary too much in the mantle due to the competition between
growth and recrystallization (e.g., corresponding to a small
effective activation energy of order (Eg − E1)/(p + 1)) bal-
anced by the partitioning factor f , see equation (10). The
term χ(T ) varies by a factor 4 at typical mantle conditions
(1200-2100 K) and is minimal at 1600 K.

The relation (9) is valid in both dislocation regime and
diffusion regime. As discussed in Rozel et al. [2010], this
results from two causes. First, some of the strain rate is still
accommodated by dislocation even for grains in the diffu-
sive regime (see equation (11)), second, the largest grains of
the grain size distribution can still remain in the dislocation
regime even though the average grain size is in the diffusion
domain.

The piezometric equilibrium (equation (9)) leads to a sim-
ple and important result developed in Rozel et al. [2010].
At a given temperature, when the applied stress is high, the
equilibrium grain size is small and is then likely to reach the
diffusion regime. On the contrary, when the stresses are low,
the equilibrium grain size is large and the rheology is located
in the dislocation regime. This means that the viscosity is
likely to reach its diffusion component at high stress (i.e.,
probably in the lithosphere) and to remain in dislocation
creep at low stress (in the mantle).
2.2.2. Definition of the viscosity

I consider that the mantle is deformed with a composite
rheology

ε̇ = ε̇1 + ε̇2, (11)

where the strain-rate tensor is due to dislocation creep ε̇1
and diffusion creep ε̇2,

ε̇1 = A1τ
n−1τ (12)

and
ε̇2 = A2R−mτ , (13)

where τ is the second invariant of the stress tensor, n and
m are experimental dimensionless constants, R is the Boltz-
mann constant and T is the temperature. Both rheologies
are temperature dependent, i.e., Ai = Ai0 exp (−Ei/RT ).

The deformation by dislocation creep corresponds to an
equivalent viscosity

η1 =
1

2A1
τ1−n =

1

2
A
− 1

n
1 ε̇

1−n
n , (14)

where ε̇ is the second invariant of the strain rate tensor.
In the diffusion regime, combining the stress-radius relation

(9) with the strain rate-stress relation (13) the equivalent
viscosity obeys a similar equation:

η2 =
1

2A′2
τ1−n

′
=

1

2
A
′− 1

n′
2 ε̇

1−n′
n′ . (15)

where

A′2 =A2χ
−m

n′ =
m(n+ 1) + p+ 1

p+ 1
.

(16)

For simplicity, I used a stress exponent n = 3, which implies
that n′ = 5. Finally, the composite viscosity is defined by:

1

η
=

1

η1
+

1

η2
. (17)

The rheology at grain size equilibrium is therefore always
non-linear. It is even more stress-dependent in the diffusion
regime than in the dislocation regime (n′ > n). This is in
contradiction with the usual reasoning at constant grain size
that confer stress non linearity to the dislocation regime and
a Newtonian behavior to the diffusive regime.

In the following, I study the effect of this rheology on
the convective dynamics of the mantle. The rheology and
the grain size evolution parameters I use are only valid for
olivine, i.e., for the major constituent of the shallowest man-
tle. I use this rheology for the whole mantle which is cer-
tainly a limitation of this model. However, the magnitude
of the viscosity in the lower mantle is fixed by the Rayleigh
number (see equation (5)) and is quantitatively acceptable.

2.3. Transition from diffusion to dislocation creep

The definition of the viscosity given by equation (17) is
insufficient because the transition between diffusion and dis-
location creep is not clear yet. The prefactor A20 of the
viscosity in diffusion creep has to be defined. The following
sections (2.3.1 and 2.3.2) explain how I chose to incorporate
the diffusion creep rheology.
2.3.1. The dimensional stress transition

In the case of a mixture of diffusion and dislocation (see
equation (17)), the rheological state of the fluid depends on

Table 1. Choice of parameters

Parameter Value Unit Description
κ 10−6 m2 s−1 Thermal diffusivity
α 3 10−5 K−1 Thermal expansivity
ρ 5000 kg m−3 Density
g 10 m s−2 Gravity
h 2900 km Domain depth
∆T 1000 K Temperature contrast
TS 1000 K Surface temperature
Rab 104 Bottom Rayleigh number
αf 2 Coefficient of f
β 2.9 Coefficient of f
λ2 2.054 Constant
λ3 5.053 Constant
σ 0.6 GS distr. standard deviation
γ 1 J.m−2 Surface tension
E1 530 kJ mol−1 Ref. Act. Energy (disl.)
n 3 disl. exponent
E2 375 kJ mol−1 Ref. Act. Energy (diff.)
m 3 diff. exponent
k0 4 104 µm2 s−1 Growth prefactor
Eg 200 kJ mol−1 Growth activation energy
p 2 Growth coefficient
R 8.314 J mol−1 K−1 Boltzmann constant
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the magnitude of the stress. The transition stress τt between
diffusion and dislocation creep is only a function of temper-
ature. According to equations (14) and (15), I obtain :

τt(T ) =

(
A′2(T )

A1(T )

) 1
n−n′

. (18)

When the stress in the fluid is greater than τt, then, at
grain size equilibrium, creeps mainly occurs in the diffusion
regime (i.e., recrystallization decreases the average grain size
until deformation occurs by diffusion). When the stress is
lower than τt, the viscosity is in the dislocation regime (i.e.,
grain growth proceeds until dislocation creep becomes dom-
inant). This transition stress is only weakly temperature-
dependent. High stress regions are usually located in the
lithosphere where the viscosity is significantly increased by
the low temperature. The deep mantle deforms in the dis-
location regime and the shallow mantle deforms under dif-
fusion.

However, as I previously mentioned, I cannot use the
observed values of the activation energies and realistic top
and bottom temperatures because of numerical convergence
problems. The magnitude of the transition stress defined in
equation (18) is affected by the rescaling of the activation en-
ergies. The choice of the activation energies and prefactors
also imposes the reference bottom viscosity ηb (see equation
(6)) and thus, the Rayleigh number of the simulation.

The transition stress would also be affected by a modi-
fication of the grain size growth law or of the partitioning
factor f , as G and f enter in the expression of the piezome-
ter (equation (10)) that ultimately controls the rheology
through equation (16). Yet, the partitioning factor has been
obtained according to the grain size evolution law (equation
(7)) with experimental parameters. To remain consistent
with experimental data, I chose not to modify its value. It
could be argued that the grain size evolution law also de-
pends on the dissipation term τ : ε̇dis which is affected by
the rescaling of the activation energies. Nevertheless, by im-
posing the bottom Rayleigh number which gives a realistic
effective viscosity (significant of its expected value in the
mantle), the orders of magnitude of the stress and strain-
rate tensors are likely to remain in an acceptable range, at
least in the convecting part. Thus, the modification of the
activation energies of diffusion and dislocation creep has a
weak impact on the effective grain size value reached in my
simulations in the convective parts of the domain.
2.3.2. Rescaling of the rheological parameters

For consistency with experimental data, I have chosen to
decrease the activation energies E1 and E2 by the same fac-
tor. As a reference, I used the experimental values Eexp1 and
Eexp2 of Hirth and Kohlstedt [2003] (see Table 1). Thus, I
use the constant ratio E2/E1 = Eexp2 /Eexp1 ' 0.7.

The dislocation creep viscosity is defined by the choice
of the exponent n, the activation energy E1 and the prefac-
tor A10 or alternatively of n, E1 and the bottom Rayleigh
number (equation (6)), from which A10 can be readily de-
duced. For the diffusion creep, as I choose an activation
energy E2 = 0.7E1, and keep the exponent m to 3, I only
need a diffusion creep rheological prefactor A20 to complete
my choice of parameters. As I cannot consider the experi-
mental value of A20 because I have decrease the activation
energies, it is safer to choose the stress at which the tran-
sition between diffusion and dislocation occurs, (equation
(18)), which fixes the value of this prefactor.

In [Rozel et al., 2010], we have shown that the grain size
sensitive regime should be reached in the top lithosphere,
using the experimental values of the rheological parameters,
assuming a constant strain-rate of 10−15 s−1 and a temper-
ature profile of a 50 Myrs old cooling lithosphere. In this

simple setup, the top 50 kilometers of the lithosphere are
in the diffusion regime. Thus, I can reasonably expect a
rheological transition located in the lithosphere.
2.3.3. The dimensionless stress transition

The transition between diffusion and dislocation creep is
controlled by the stress τt(T ). Choosing a precise value for
τt in Pa is impossible because it depends on temperature
(equation (18)). Plus, the deviatoric stress level in a simu-
lation is not known a priori. So, before using my diffusion
creep model, for a given value of an activation energy, I run
a first simulation assuming a simple dislocation creep rheol-
ogy and record the maximal dimensionless deviatoric stress
τ∗max. This maximal stress is always reached at the top of
the domain, at temperature Ts, it is then called τ∗max(Ts).

Using this value, choosing the stress transition is easy be-
cause the maximal stress is reached at the surface, for a fixed
temperature T = Ts. I define then the stress transition at
the surface temperature Ts using (see figure 1)

τt(Ts) = Ωτmax(Ts), (19)

where the dimensional maximal stress τmax(Ts) is obtained
from τmax(Ts) = τ∗max(Ts)ε̇0ηb (where ε0 is again the ref-
erence strain rate used in equation 6) and Ω is a dimen-
sionless number (hereafter called non dimensional stress).
The dimensionless stress transition τ∗t (Ts) is obtained with
the same approach, such that τt(Ts) = τ∗t (Ts)ε̇0ηb and
τ∗t (Ts) = Ωτ∗max(Ts). An example of stress profiles using
this formalism is schematically illustrated in figure 1. In this
figure, a typical temperature profile is assumed (increasing
with depth). The red curve shows the transition stress be-
tween diffusion and dislocation creep, defined in equation
18, non dimensionalized. This stress is non-homogeneous
because it depends on temperature. The black curve shows
the stress profile obtained in dislocation creep at all depths.
Note that the value τ∗max(Ts) is reached at the surface only
and has no meaning elsewhere. τ∗max(Ts) is only used to

Figure 1. Schematic example of the stress profiles with
and without the grain size dependent rheology. The black
curve represents the stress profile in the reference simu-
lation considering dislocation creep only. The red dot-
dash curve shows the (temperature-dependent) transition
stress profile I would obtain for Ω = τ∗t (Ts)/τ

∗
max(Ts) =

1/30. The purple curve represents the stress profile
reached with the composite rheology. The diffusion creep
rheology acts as a stress limiter in the top lithosphere.
Note that τ∗max(Ts) is not reached by the black curve
because it is the maximal value of the stresses in the
domain, which is greater than the maximal value of the
stress profile.
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define the stress transition τ∗t (Ts), which allows to define
τ∗t (T ), for all T . The purple curve shows what the stress
profile would be if the diffusion creep rheology were intro-
duced in this example.

Using the equations 16, 18 and 19, it is possible to finally
define the missing prefactor of the diffusion creep rheology:

A20 = (Ωτ∗maxε̇0ηb)
n−n′

(
3γG(TS)λ2

pf(TS)λ3

)
. (20)

When Ω < 1, a temporarily or permanent grain size sen-
sitive creep layer appears in the top boundary layer and may
even reach the convecting mantle. When Ω > 1, the diffu-
sion creep rheology does not affect too much the convection.
This formulation allows then to easily introduce the grain
size dependence of the rheology in the lithosphere, as it is
expected using experimental parameters [Rozel et al., 2010].

With all these complexities in mind, I hope to provide a
set of models that capture some of the complexities of the
terrestrial planets: a mantle convecting with a composite
rheology and where grain size is controlled by a piezometer
with weak temperature dependence.

3. Results

3.1. Map of the convection regimes

I have performed a set of convection simulations for dif-
ferent values of the activation energy E1 and different non
dimensional stress Ω. The convection regimes reached in
each simulation is presented in figure 2. The activation en-
ergy for dislocation creep, E1, ranges from 250 kJ mol−1 to
420 kJ mol−1 and Ω from 10−3 to 103. When Ω is large, the
rheology is everywhere controlled by dislocation creep (with
an exponent of n = 3), when Ω is small the rheology is ev-
erywhere controlled by diffusion creep (which is grain size
sensitive with an exponent m = 3, but appears as stress-
dependent with an exponent n′ = 5, because grain size and
stress remain related by a piezometric rule).

The figure 2 shows that the introduction of a grain size
dependent rheology is sufficient to break the stagnant lid
generated in fully dislocation creep simulations. In itself,
this result has a very important impact on the dynamics of
planets. I show that a very high activation energy may be
considered in diffusion creep without generating a stagnant
lid. The diffusion creep rheology being very non-Newtonian,
the temperature dependence of the viscosity is largely de-
creased by the large stress exponent n = 5 (see the ex-
ponents to the rheological prefactors in equations (14) and
(15)).

Moreover, I also present the first episodic regime ever ob-
served with fully viscous rheologies (and no ad hoc plastic
yielding). The present model may actually represent plas-
tic yielding very well and has the advantage of being based
on an identified physical mechanism. This regime is sus-
pected to be active on Venus, which has experienced an
overturn within the past gigayear [Nimmo and McKenzie,
1998]. Also, this episodic regime (described in section 3.2.3)
is located in a large region in the parameter space depicted
in figure 2. It is then reasonably expectable in a realistic
situation.

The figure 3 displays the Nusselt numbers obtained in
all simulations, when the time dependent parameters have
reached their (stationary or unstationary) equilibrium. I
show that the convection regimes generated by the grain
size-dependent rheology largely modifies the Nusselt num-
ber (heat flux). A clear trend to large Nusselt numbers is
observed for increasing importance of the grain size (when
Ω decreases). This means that the consideration of diffusion
creep may largely increase the cooling rate of planets. This

Figure 2. Convection regimes generated by my models.
The boundaries between stagnant lid and isoviscous con-
vection predicted by Solomatov [1995] are represented by
the blue dashed lines. When the non dimensional transi-
tion stress Ω is decreased, the boundary between no lid
or episodic and stagnant lid convection occurs at higher
viscosity contrasts. At intermediate values of the tran-
sition stress, the system reaches an episodic regime. At
low values of the transition stress, the whole mantle de-
forms in the diffusion regime but the convection regime
remains episodic.

Figure 3. Regime diagram in the Ω − Nusselt space.
The average Nusselt number is computed for a long time
corresponding to a large number of overturns. Follow-
ing the color code of Figure 2, black squares: stagnant
lid regime, red squares: no lid regime, green diamonds:
episodic regime and orange circles: episodic regime in
diffusion creep. I show that the Nusselt numbers are af-
fected by the modification of convection regimes.

result is not surprising, an increase of heat flux has been re-
ported in the episodic regime obtained with plastic yielding
[Moresi and Solomatov , 1998]. However, here, I did not con-
sider any ad hoc plastic yielding. To summarize, a low heat
flux is observed in the stagnant lid regime, an intermediate
heat flux is reported in the episodic regime and a large heat
flux is observed in the no lid regime. In the episodic regime,
as seen in figure 4, the instantaneous Nusselt is highly vari-
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Figure 4. Episodic regime (Ω = 3 10−3, E1 = 374 kJ mol−1). The top thermal layer is always in the
diffusion regime. The mantle oscillates between diffusion and dislocation creep following the activity of
hot and cold plumes.

able and can be up to one order of magnitude larger or
smaller than the average value. Finally, when the full dif-
fusion regime is reached, the Nusselt number reaches very
high values as the average viscosity becomes much smaller.

3.2. Description of the convection regimes

The figures 4 and 5 present the three main convection
regimes obtained for various choices of parameters: stag-
nant lid, no lid and episodic regime. A description of these
regimes is proposed in the present section.
3.2.1. Stagnant lid regime

In the stagnant lid regime, even if a grain size-dependent
rheology is considered, the viscosity of the lithosphere re-
mains sufficient to “freeze” the surface.

With large activation energies and in the two limiting
cases Ω << 1 and Ω >> 1, the stagnant lid regime may be
attained (illustrated in figure 5, left column). In this regime
regime, I observe regions near the surface, in which the rhe-
ology is principally located in the diffusion creep regime (fig-
ure 5, left column). However, this diffusive layer is still too
viscous to be broken by convection. In figure 5, I even show
a case in which the whole lithosphere is in diffusion creep,
without breaking the lid.

The stagnant lid regime has been largely documented in
the past decades [Morris and Canright , 1984; Fowler , 1985;
Solomatov , 1995; Reese et al., 1998]. I did not focus this
study on this precise regime but did not observe a signif-
icant modification of the dynamics of the flow field. The
figure 5 shows that the grain size remains in a very accept-
able range in this regime.
3.2.2. No lid regime

For a low activation energy and a large value of Ω, the
temperature dependence of the viscosity is not sufficient to
generate a stagnant lid (cf. figure 2, red squares at the bot-
tom right). The figure 5 (right column) shows an example
of this stationary regime.

Solomatov [1995] has shown that two distinct regimes
may actually exist in absence of stagnant lid: the isoviscous
and sluggish regimes. I only observed the sluggish regime in
my computations. I show in section 3.3 that this is in agree-
ment with the boundary layer theory formulated in Soloma-
tov [1995].

The figure 5 (right column) shows that the internal di-
mensionless temperature is close to 0.7 and that the hot
and cold plumes are not symmetrical. This is a clear con-
firmation that the no lid regime I observe is the sluggish
(or also called “transitional”) regime described by Soloma-
tov [1995]. The grain size in the mantle is between 1 mm to
5 cm, which shows that the calibration is reasonable. The
grain size in the top of the cold thermal layer reaches a very
low value in this case (down to 1 micron). Though this value
is small, it is still in an acceptable range. This small size is
due to the large stresses that appear in the cold regions in
which the viscosity is higher than in the mantle but where
an important deformation is effective.
3.2.3. Episodic regime

I show in figure 4 the evolution with time (from left to
right) of various quantities (temperature, rheology, grain
size and viscosity) in the episodic regime. The correspond-
ing Nusselt number evolution is depicted in figure 6 (where
the blue stars indicate the moment at which I took the snap-
shots of figure 4). The rheology of the lithosphere oscillates
between dislocation and diffusion creep stages depending on
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its stress state. The behavior of the convective domain be-
comes cyclic. First, the lithosphere thickens with time while
its rheology remains controlled by dislocation creep. The
surface velocity and the Nusselt number decrease until the
lithospheric deviatoric stresses become large enough to drive
the rheology to the grain size sensitive creep regime. At this
time, the lithosphere accelerates while the Nusselt number
reaches a maximum (see figure 6) and the whole lithosphere
sinks into the mantle. Then, the global convection weakens
with a low level of deviatoric stresses that allow the grains
to coarsen until the rheology becomes dominated by dislo-
cations. The whole process is repeated without becoming
strictly periodic. The figure 4 (third row) shows that the
grain size in the mantle remains between 1 mm and 10 cm.
In the lithosphere, the grain size is dynamically decreased
from 1 mm down to 10 microns, which remains in an ac-
ceptable range. This shows that my calibration leads to a
realistic situation, though I had to decrease the activation
energies for technical reasons.

3.3. Regime boundaries

Figure 5. Stagnant lid (left, Ω = 3 10−2, E1 = 375
kJ mol−1) and no lid regime (right, Ω = 1, E1 = 270
kJ mol−1). I plot temperature, rheology, grain size, and
viscosity in each case. The rheology (second row) is rep-
resented in percentage of diffusion creep, from 0% (blue,
for dislocation creep) to 100% (red, for diffusion creep).
The diffusion creep is reached only in the lithosphere and
for low Ω. On the left, the top layer is located in diffu-
sion creep but the yielding is not sufficient to break the
lid. On the right, the lithosphere is very fewly grain size-
dependent but the lid as still been broken. The grain
size (third row) remains in an acceptable range (from 1
micron to 10 cm). The viscosity varies over 8 orders of
magnitude (in dimensionless units, in fourth row).

In this section, I explain how the end members of the
boundaries of the convection regimes shown in figure 2 may
be analytically derived using the boundary layer theory of
Solomatov [1995]. In this theory, a stagnant lid is formed
when:

log

(
η (Ts, τ0)

η (Tb, τ0)

)
> 4(n+ 1), (21)

where the viscosity ratio is actually the viscosity contrast
through the convective domain for all stress τ0. n is the
stress exponent of the rheology. This equation defines
the critical viscosity contrast above which the stagnant lid
forms, for a given stress exponent n. These viscosities are
obtained using the formulation of equation (14) and (15) at
constant stress. The two following sections detail the end
members of these boundaries in dislocation and diffusion
dominant situations.
3.3.1. Dislocation creep dominant

In the case Ω >> 1, the whole domain undergoes dislo-
cation creep and the logarithm of the viscosity contrast is
given by:

log

(
η (Ts, τ0)

η (Tb, τ0)

)
= log

(
A1(Tb)

A1(Ts)

)
. (22)

Using equation (21), the numerical values of Table 1 and
n = 3, one can easily compute an activation energy which
corresponds to the stagnant-sluggish boundary. The stag-
nant lid is formed for an activation energy E1 greater than
266 kJ mol−1 (see the blue dashed line on the right in figure
2).

In the reference simulations (which completely exclude
diffusion creep to obtain the maximal stress, as explained in
section 2.3.1) I observe that the boundary between transi-
tional and stagnant lid regimes is exactly located at E1 '
266 kJ mol−1.

Solomatov [1995] also provides an equation similar to
equation (21) for the transition from isoviscous to sluggish
regime. This boundary depends on the bottom Rayleigh
number, which is not the case of the boundary with stagnant
lid. Again, using the parameters of Table 1, the transition
from transitional (sluggish) to isoviscous regime is located

Figure 6. Top and bottom Nusselt numbers in the
episodic regime as a function of time (from left to right)
(Ω = 3 10−3, E1 = 374 kJ mol−1). I show that the
Nusselt number reaches very high values when the cold
boundary layer detaches and sinks in the mantle. The
star symbols indicate the times at which the snapshots
of figure 4 are taken. The dashed line show the average
value I obtained in this case.



X - 8 A. ROZEL: CONVECTION AND GRAIN SIZE

at E1 ' 184 kJ mol−1. The isoviscous regime is then never
reached in the computations presented here.
3.3.2. Diffusion creep dominant

When Ω < 1, as previously explained, the top of the do-
main is located in diffusion creep. In this case, the viscosity
of the mantle can be obtained using the Rayleigh number
and the parameters of Table 1. However, for Ω << 1, the
diffusion creep layer may reach the whole mantle. In this
case, the viscosity of the whole mantle is decreased because
the diffusion creep rheology becomes dominant. Then, the
Rayleigh number defined in equation (5) does not allow to
compute directly the viscosity of the mantle anymore.

For Ω << 1, I can then assume that the whole domain un-
dergoes diffusion creep only, which means that the viscosity
contrast becomes

log

(
η (Ts, τ0)

η (Tb, τ0)

)
= log

(
A′2(Tb)

A′2(Ts)

)
. (23)

With n′ = 5, the boundary between sluggish and stagnant
lid regime corresponds to an activation energy for diffusion
E2 = 337 kJ mol−1. As I perform my simulations with
a constant ratio E2/E1 = 0.7, this situation should occur
when I use E1 = 480 kJ mol−1 (blue dashed line on the left
in figure 2). Unfortunately, I did not observe this boundary
because it is located beyond the borders of the parameter
space reachable by the Stokes solver.

For very low values of the transition stress (non dimen-
sional stress Ω = 10−3, Figure 2), due to convergence is-
sues, I have only been able to observe the boundary between
episodic and full diffusion creep. In these simulations, the
whole mantle is located in the diffusion regime most of the
time but resurfacing events still occur. When the activity
of convection is low and stresses drop to a small value, the
mantle can still reach dislocation creep for a very small time
before the convection restarts.

The transition between sluggish and isoviscous creep in
the diffusion regime is more difficult to compute because,
as previously mentioned, the corresponding viscosity con-
trast depends on the bottom Rayleigh number [Soloma-
tov , 1995]. In the diffusion creep regime, the bottom
Rayleigh number may be computed using the definition of
the composite viscosity but the viscosity may not be a per-
fectly monotonous function of temperature because of the
temperature-dependent calibration of the piezometric rela-
tion. The analytical definition of the viscosity contrast in
this case would then be more hazardous. Moreover, the full
diffusion creep regime is not observed in my computations,
which always remain in the episodic regime, even for a the
smallest Ω. This means that an end-member computation
neglecting dislocation creep would not be applicable.

Yet, a first order approximation of the diffusion creep rhe-
ology, in which I neglected the temperature-dependence of
the rheological prefactor χ, defined in equation (10), shows
that the isoviscous regime may potentially be reached for
very small Ω and high activation energy (top left region in
figure 2). However, regarding the high internal tempera-
tures and the asymmetrical geometry of the plumes in the
concerned simulations, I observe that the sluggish regime is
always chosen by the composite and time-dependent rheol-
ogy. So, though an isoviscous-stagnant lid transition may
exists in the full diffusion creep regime, it is not reached in
the parameter range I explored.

4. Discussion

The episodic regime had already been observed in simu-
lations including plastic yielding but was always located in
very narrow range of parameters. In [Moresi and Solomatov ,

1998; Stein et al., 2004] a variation of the yield stress by a
factor 2 is sufficient to bring the convection regime back from
episodic to stagnant or mobile lid. On the contrary, in the
present study, this regime is rather easily reached. The tran-
sition stress between diffusion and dislocation creeps Ω can
be modified on several orders of magnitude without bringing
the convection back entirely in mobile or stagnant lid.

The new model investigated here is different from the
usual plastic yielding formalism because no ad hoc stress
limiter is imposed. However, the transition between dislo-
cation and diffusion creep is very similar to a stress limiter
because the viscosity is actually decreased when the diffu-
sion regime is reached. So the present study shows that
grain size reduction could be the mechanism responsible for
plastic yielding in the lithosphere.

The present approach also provides a link between a mi-
croscopic behavior observed in the laboratory, the grain size,
and the macroscopic behavior of the mantle. Several pa-
rameters might have a significant impact on the convection
regimes. However, the wide range of parameter space in
which I find the episodic regime shows that the grain size
assisted episodic overturns are likely to happen in telluric
planets. The incorporation of the non-equilibrium grain size
dynamics (i.e., solving for dR/dt in equation (7) rather than
assuming steady state), is unlikely to modify by itself the be-
havior of the mantle as the time of equilibration are short
[Rozel et al., 2010] (at least using the experiments of Karato
[1989]). In a real polycrystalline mantle, the various phases
should slow down the grain growth [Bercovici and Ricard ,
2012]. This phenomenon is generally known as Zener pin-
ning [Smith, 1948] and is documented for olivine-pyroxene
mixtures [Hiraga et al., 2010]. However the evolution of
grain growth at very long time does not really affect my
simulations: in the deep mantle, as soon as grains are large
enough to deform under dislocation the rheology becomes
independent of their sizes.

Another limitation of this model could be the fact that a
sufficient amount of stress is necessary to activate disloca-
tion creep [Weertman and Weertman, 1992]. If this critical
stress is not reached, deformation can still be accommodated
in diffusion creep. In the case of the episodic regime, when
convection almost stops after an overturn, the stresses drop
to a very small value. In this model, the grain size increases
to large values because it is directly linked to the stresses.
The rheology switches then instantaneously to dislocation
creep. If we consider that a sufficient stress must be reached
before the activation of dislocation creep, it means that the
convection will restart in diffusion creep. But anyhow, the
stress will increase with the restart of convection and it is
likely that the sufficient amount of stress needed to activate
dislocation creep will be reached. Considering this thresh-
old effect would probably slightly change the dynamics of
the episodic regime, but would not affect much the whole
convection regime. However, this phenomenon is not the
only one which can add some complexity to the new model
I propose. The idea that the density of dislocations is di-
rectly linked to the stress state is a big simplification of the
dislocation dynamics. From this point of view, the model
proposed in Rozel et al. [2010] is very simple but I show here
that it is sufficient to affect the convection styles of planets
in itself, even without considering the full complexity of dis-
location dynamics.

The grain size-dependent rheology presented in this pa-
per seems to be insufficient to produce a plate-like behavior
by itself. It is at least missing a memory and solving for the
time dependence of the grain size seems to provide a too fast
healing. A multiphase rheology that includes Zener pinning
might allow the necessary slower rheology. A free surface
and the consideration of other rheologies (grain boundary
sliding or Peierls creep) could also have a non-negligible im-
pact on the convection regimes.
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5. Conclusion

I have tested the new grain size equilibrium state pre-
dicted in a previous paper [Rozel et al., 2010] in a set of
numerical simulations of mantle convection. I compute a
composite viscosity calibrated for olivine using experimental
data allowing both dislocation and diffusion creep regimes,
depending on the stress state. Although, for numerical rea-
sons, I cannot use the exact observed parameters, I tried to
remain as close as presently possible from the experimental
observations. The grain size and viscosities used in the sim-
ulations presented here are always in an acceptable range.

I showed that a grain size-dependent rheology dramat-
ically affects the convection regime of the telluric planets.
The rheology derived by Rozel et al. [2010] is sufficient to
break the stagnant lid for a wide range of parameters. In
most cases, the convection regime reaches an episodic behav-
ior composed of resurfacing events that might be relevant to
the evolution of Venus. I show that the cooling rate of the
mantle is largely influenced by the consideration of an ex-
perimentally calibrated grain size-dependent rheology.
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