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ABSTRACT

In this study, we test the ability of neural networks to deter-
mine the composition of magmatic rocks from their labora-
tory spectra.

We first describe the structure and behaviour of the multi-
layer perceptron that we implement and train for quantitative
characterization. For that purpose, reference laboratory spec-
tra of mafic minerals from both natural and synthetic samples
are used. As their composition in terms of the three mafic
minerals, olivine (OL), orthopyroxene (OPX) and clinopyrox-
ene (CPX) are known, those spectra are given as inputs during
the learning phase of the neural network.

In the analysis phase, we use the neural network to pro-
cess spectra acquired on SNCs (Shergottites, Nakhlites, Chas-
signites) meteorite samples that are considered to be repre-
sentative of Mars surface. The network outputs mineralogical
compositions very quickly, performing only explicit opera-
tions.

Our preliminary results show that neural networks are
able to quantify mafic minerals, especially in the case of
complex mixtures, with much improved computer efficiency
and comparable accuracy compared to usual methods. This
is very promising regarding future analysis of huge datasets.

Index Terms— Neural, Network, Hyperspectral, Detec-
tion, Meteorite

1. INTRODUCTION

Mafic minerals are key components when trying to under-
stand the geological history of planetary bodies like Mars.
Indeed, their presence in igneous rocks is directly related to
mantle properties and crystallization conditions. They also
partially control the nature of the alteration products which
could be formed subsequently. In this respect detection of
olivine and pyroxenes, and characterization of their respective
composition, is an important step that must be done carefully.
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Reflectance spectroscopy, hyperspectral remote sensing in
visible/near-infrared is a very powerful tool to achieve this
objective. Indeed, olivine and pyroxenes have characteristics
broad absorption features near 1 and 2 µm [1, 2] due to the
Fe2+ electronic transition. During the last decade, imaging
spectrometers onboard spacecraft have acquired huge amount
of such data and it is actually challenging to process them
both quickly and efficiently.

Several techniques (e.g. linear unmixing [3], radiative
transfer modeling [4]) aimed at deconvolving absorption
bands in terms of mineralogy. Modified Gaussian Model
[5] can also be used to quantitatively estimate the chemical
composition of each mineral in a rock. Such approach has
been successfully applied on OMEGA data [6]. However, the
results obtained with those techniques are basically not accu-
rate enough, these methods are time consuming and efforts
are still to be done to develop new algorithms. This is why we
test in this study the ability of neural networks to determine
the composition of minerals from their mafic signatures on
laboratory spectra.

2. NEURAL NETWORK IMPLEMENTATION

2.1. Structure of a Neural Network

A neural network is a learning machine which uses a set of
scalars as input (the data to analyse) and produces another set
of numbers, carefully chosen [7, 8]. In our case, the input
vector is the spectrum and the output vector is the modal or
the chemical composition (percentage of olivine, clinopyrox-
ene and orthopyroxene, cf. figure 2). Various schemes can be
used to connect the input to the output set. We use the mul-
tilayer perceptron method in which information propagates
forward in the analysis phase and backward in the learning
phase through adjacent layers. Each adjacent layers are linked
by non-linear weighted connections, as represented in figure
1. At each node, the contributions of all elements of the pre-
vious layer are summed up and a threshold is applied. It has
been shown that the use of the threshold has a fundamental
importance in the learning capacities of the neural network



[9]. This technique is sometimes used to obtain a result in
very non-linear problems.

2.2. Training phase of a Neural Network

Before using a neural network on unknown problems, it has
to be trained on known problems in a learning phase. The
network first learns to reproduce a sufficiently correct output
vectors using a set of spectra obtained on synthetic samples
with known compositions (the training set). The connexions
of the network start from a random state and are organized by
a learning algorithm following a uniform gradient descent in
the error space. We use the error backpropagation algorithm,
which decreases the weights of the connections contributing
to “wrong” outputs. We modify the neural weights forcing
an uniform convergence on the training set [9]. Thus, at the
end of the learning phase, the neural network is able to give a
“correct answer” on all the training set. The training is usually
the computationally time-consuming phase (about 10 minutes
on a single CPU machine in our case).

2.3. Analysis phase of the trained network

Second, once trained, the neural network can be used on an
unknown spectrum and will output a composition only per-
forming explicit operations. The answer of this type of neu-
ral network is then almost instantaneous (less than a second
on the same machine, mainly due to input/output on the hard
drive). To ensure an homogeneous coverage of the output
space, we assign a more important weight to the most sin-
gular spectra in the back-propagation routine. The weight of
each spectra i is defined bywi = 1/di, where di is the density
of training sample in the output space:

di = exp
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where Oi is the mineralogic or chemical composition (%) of
the known spectra andNj is the number of spectra used in the
learning.

Since the structure of a Neural Network is non-linear, one
can hardly predict its behavior outside the training set. Once
a network is trained, its answer on the training set is within
the user-specified tolerance defined during the training. If
an unknown input represents a combination of inputs of the
training set then the output of the neural network can be seen
as an interpolation between different outputs learnt during the
training. If an unknown input represents something different
from the elements of the training set, then the network tries to
extrapolate its answer from its training outputs.

If the unknown input vector is completely different from
the inputs on which the network has been trained, it is very
unlikely that a correct answer can be obtained. Neural net-
works are not designed for extrapolation. A completely new
situation cannot be learnt without training with the technique

(a) Neural Network Structure (multilayer perceptron). We
represent 6 hidden layers as an example, but less layers are

generally sufficient to obtain the expected predicting power.

(b) Neuron model (perceptron).

Fig. 1. Schematic representations of (a) a multilayer percep-
tron and (b) a neuron. The input layer shown in (b) can repre-
sent the effective input vector or any previous hidden layer.



we use in this study. A reliable extrapolation can only be ex-
pected if the input is “close enough” to the training set, which
is hard to quantify since the input is unknown.

In the case of an interpolation, neural networks are known
to be able to perform very non-linear operations, which is on
purpose for absorption band deconvolving. However, to avoid
too non-linear outputs, it is important to keep the learning tol-
erance in a reasonable range. Neural networks can usualy be
forced to exactly reproduce the training outputs. Yet, in such
case, the connections between layers have lost all smoothness
and the network is not able to interpolate or extrapolate any-
more. To avoid this problem, we stopped the learning phase
when the average output error reaches 10 %.

3. TRAINING AND TESTING DATA SETS

All training spectra come from the Brown/RELAB library.
Most of them have already been used in [10] to improve
MGM approach and a reference list of RELAB files can be
found there. We select the wavelength range between 0.46
and 2.60 µm while keeping full spectral resolution (6.6 nm).
We remove the first order approximation of each spectrum to
give an input signal as insensitive as possible to acquisition
conditions and sample physical state to the neural network.

Our neural network has been trained on a set of 190 spec-
tra, some of them being representative of mixtures while oth-
ers are representative of mono-mineral samples with various
chemical compositions (mafic minerals only). Because of the
limitations of available laboratory measurements, very few
ternary mixtures are included in the learning set. We assign a
more important weight to these ternary mixtures in the learn-
ing phase. To do this, we apply the synapses penalties with
different magnitudes, according to the density of input sam-
ples in the training set (see eq. 1). An isolated spectrum in
the mineralogic composition space of the training set have
more importance than a spectrum closely surrounded by a
large number of neighbors.

To test our neural network, we choose to use spectra
of SNCs as those meteorites may be the most representative
samples of Mars surface measurable in laboratory. SNCs have
been intensively studied and their mineralogical compositions
are well known from independent analytical laboratory mea-
surements (e.g. [11] and references therein). We here used
a set of 11 spectra, representative of the different families of
SNCs.

4. RESULTS ON SNCS

Figures 2 and 3 show the results of the neural network on
the testing set (spectra of the SNCs meteorites). To explore
the reproductibility of the solution, we trained 10 identical
neural networks with different initial neural weights. All net-
works used here have only one hidden layer with 40 neurons.

Fig. 2. SNCs modal compositions estimated using neural
networks (dots) compared to literature (squares, from [11]).
Neural network is tested with different initial neural weights
so several dots are reported for each SNCs (see text for de-
tails). When different spectra exist for one SNC, results are
distinguished using labels around the colored fields.

Figures 2 and 3 show that the outputs of the networks (repre-
sented by colored dots) are concentrated in different localized
areas for each spectrum.

Figure 2 shows the outputs of the network as the OL-
CPX-OPX compositions of the tested spectra compared to
the average range expected for each meteorite (from [11]).
The position of the points in the triangle represents the min-
eralogic composition between the three poles. The points lo-
cated on the edges are bimodal. The different compositional
classes revealed by the network are shaded using the same
colors as the corresponding color dots. The network is clearly
able to detect pure and mixed compositions with a satisfactory
reproductibility. Discrepencies can nevertheless occur, espe-
cially when a mineral is much less abundant than the other.
This may be directly related to the absorption features which
could be masked in a mixture spectra and implies as other
deconvolution techniques to take detection thresholds into ac-
count.

Figure 3 shows the chemical composition of clinopyrox-
enes and olivines detected in each meteorite, using an other
version of the neural network, trained for chemical compo-
sition only. The composition of meteorites with very low
clinopyroxene contents are very scattered and thus not de-
picted in the top part of the figure 3 (similarly, we plot only
high olivine content outputs in the bottom part). Work is
still ongoing considering the orthopyroxene component. Al-
though the tested samples have similar CPX compositions, the
neural network is still able to distinguish tendencies within
the spectra. Localized compositional areas are clearly identi-
fied and all of them fall within the expected trends from lab-
oratory measurements [11]. However, iron content in olivine
is almost always overestimated (10 to 20 %).



Fig. 3. Chemical compositions of two individual mafic min-
erals in SNCs estimated using neural networks (dots) and
compared to literature (dashed lines, from [11]). The com-
position of clinopyroxenes is depicted on the top trapeze and
olivine composition is shown on the bottom line. Clinopyrox-
ene modal abundances in the meteorites are also reported.

The scattering of the outputs of the network actually
seems to be a good indicator of mineralogic enrichment and
provides a way to quantify the uncertainty of the output of
the neural network.

5. CONCLUSIONS

The neural network we developed in this study show promis-
ing results on SNCs. Indeed, only using laboratory data as a
training set (i.e., partial coverage of the whole range of pos-
sibility), we are able to detect and characterize each mineral
phase in an unknown spectrum.

The neural network approach used in this study is rela-
tively easy to implement and the weight connections recorded
at the end of the learning phase are very light. The most im-
portant limitation of this kind of approach lies in the potential
limitation of data available to train the neural network. Yet,
we show here that once a sufficient amount of training spectra
is collected, a multilayer perceptron network is comparable
to much computationaly intensive inverse techniques like the
Modified Gaussian Method.

In a next step, we will implement our neural network
within an automated procedure which will analyze each spec-
tra of individual CRISM image. CRISM [12] is an imaging
spectrometer onboard MRO (NASA) for exploring different
environments of Planet Mars. This implies to deal with some
additional difficulties (noise, weak absorption features, com-
plex photometry). Then, we should be able to process very
quickly and efficiently large amounts of data required to do
high precision geology for a large number of sites in the red

Planet.
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