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SUMMARY
We employ basic non-equilibrium thermodynamics to proposea general equation for the mean
grainsize evolution in a deforming medium, under the assumption that the whole grainsize dis-
tribution remains self-similar. We show that the grainsizereduction is controlled by the rate
of mechanical dissipation in agreement with recent findings. Our formalism is self consistent
with mass and energy conservation laws and allows a mixed rheology. As an example, we
consider the case where the grainsize distribution is lognormal, as is often experimentally ob-
served. This distribution can be used to compute both the kinetics of diffusion between grains
and of dynamic recrystallization. The experimentally deduced kinetics of grainsize coarsening
indicates that large grains grow faster than what is assumedin classical normal grain growth
theory. We discuss the implications of this model for a mineral that can be deformed under both
dislocation creep and grainsize sensitive diffusion creepusing experimental data of olivine.
Our predictions of the piezometric equilibrium in the dislocation-creep regime are in very good
agreement with the observations for this major mantle-forming mineral. We show that grain-
size reduction occurs even when the average grainsize is in diffusion creep, because the largest
grains of the grainsize distribution can still undergo recrystallization. The resulting rheology
that we predict for olivine is time-dependent and more non-linear than in dislocation creep. As
the deformation rate remains an increasing function of the deviatoric stress, this rheology is not
localizing.
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1 INTRODUCTION

The localization of deformation in narrow shear bands is necessary
for plate tectonics to occur (see e.g., Bercovici et al. 2000). Weak
faults can be formed during deformation but their weakness can
persist even after a reorganization of the large scale stress pattern
(e.g., Gurnis et al. 2000). This indicates that the rheology is not
only controlled by the instantaneous stress field but has memory
and healing.

Localization occurs by a feed-back between the rheological
law and the deformation wherein a faster deformation can be ob-
tained with a lower stress. In simple shear experiments, this hap-
pens when the derivative of deviatoric stressτ with respect to
strain-rateǫ̇ is negative (Bercovici 1993; Montési & Zuber 2002).
The fact that the rheology of silicates is often expressed by a non-
linear expression withǫ ∝ τn and n ≥ 1 (Ranalli 1995) does
not lead to strike slip localization asτ remains a monotonically in-
creasing function oḟǫ (Bercovici 1995). Non-linear rheologies with
large positive exponents tend, however, to narrow the zones of de-
formation (Weinstein & Olson 1992; Landuyt & Bercovici 2009).

Shear heating has often been proposed as a source of local-
ization that provides some long term memory to the rheology (the

thermal diffusion time) (Fleitout & Froidevaux 1980; Leloup et al.
1999; Kameyama et al. 1997). Unfortunately, although shear heat-
ing is necessarily associated with localization, it does not seem to
explain either the narrowness of plate boundaries, or their geome-
tries (e.g., Bercovici & Karato 2003). A local increase of poros-
ity/microcraks occurring during deformation has also been invoked
for localizing the deformation (Bercovici 1998; Ogawa 2003) but
this process is not efficient in 3D simulations at generating toroidal
motions, e.g. shearing between plates and plate rotations (Bercovici
& Ricard 2005). Anisotropic mechanical behaviour due to an in-
herited preferred orientation of crystals could also control or favor
the localization (e.g., Tommasi et al. 2009; Bystricky et al. 2000).
Once the localization is effective, minor mineralogical phases like
serpentine can also lubricate the motion (Hilairet et al. 2007).

Grainsize reduction seems the most attractive physical pro-
cess for explaining the initial localization of the deformation. Cat-
aclastic fracturing and recrystallisation are well known mecanisms
of grainsize reduction and the ductile deformation in the diffusive
regime is facilitated in the presence of small grains (Kelemen &
Hirth 2007). However, models of localization by grainsize reduc-
tion are not self-consistent. Recrystallisation is observed in the
dislocation regime (i.e., when the microscospic deformation pro-
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ceeds by coherent motion of crystal dislocations rather than by the
individual diffusion of atoms and vacancies). Grainsize reduction
and localization by grainsize sensitive rheology occur therefore in
somewhat exclusive regimes (Karato et al. 1980; Derby & Ashby
1987). Various models have however discussed the possible inter-
actions between large scale deformation and grainsize evolution
(Kameyama et al. 1997; Braun et al. 1999; Montési & Hirth 2003;
Bercovici & Ricard 2005).

Up to now, most attempts to model the evolution of grain-
sizes have been derived from phenomenologic laws involving only
a mean grainsize. A few attempts have been made to describe in a
very general way the evolution of an assemblage of grains under
deformation (e.g., Slotemaker 2006; Ricard & Bercovici 2009). In
these approaches, one has to consider the complete distribution of
grainsν(R,X, t) (which is the number of grains per unit volume
near the positionX and at timet, having a size betweenR and
R + dR). Although a general and physically consistent theory has
been proposed (Ricard & Bercovici 2009), the mathematical for-
malism remains cumbersome and a general implementation in a
3D and time dependent geodynamic simulation seems implausible.

The approach followed by Ricard & Bercovici (2009) shows
that the grainsize reduction cannot be related to the stress or to
the strain-rate tensor, alone, but necessarily to their scalar product
τ : ǫ̇ (whereτ : ǫ̇ = Σijτij ǫ̇ij). This result is based on the second
law of thermodynamics that requires the positivity of the entropy
sources. This theoretical requirement already used in Bercovici &
Ricard (2005), has been confirmed empirically by Austin & Evans
(2007) that concluded that the grainsize is a ”paleowattmeter” (i.e.,
a measure of the rate of dissipation) rather than a ”paleo piezome-
ter” (i.e., a measure of the deviatoric stress).

At a microscopic level and laboratory scale there are a large
number of observations regarding the evolution of silicate rheol-
ogy with grainsize, pressure, temperature and stress (but also, water
content, oxygen fugacity, porosity...). At the same time, models of
mantle convection simulate the existence of plates with ad hoc rhe-
ologies (Tackley 2000a,b; Stein et al. 2004). Up to now, these mod-
els are not based on experiments but often assume that the litho-
sphere has a linear viscosity with a plasticity threshold. The goal of
this paper is to provide a theory based on laboratory experiments
that could be used in large scale geodynamic modeling.

2 EVOLUTION OF GRAINSIZE DISTRIBUTION

Within a volume of material, there is a continuous distribution of
grainsizes,ν(R,X, t), so that the number of grainsdn with sizes
betweenR andR + dR, per unit volumedV , at positionX and
time t is

dn(R,X, t) = ν(R,X, t) dRdV. (1)

The distributionν has units ofm−4. From this distribution, average
quantities like the mean grainsize can be computed. The equations
for grainsize evolution that have been proposed are empirical and
consider the mean grainsize only. Here, we also derive an equation
for the mean grainsize but from theoretical thermodynamic con-
siderations, starting explicitly from the existence of the grainsize
distribution.

The grainsize distribution evolves through two different pro-
cesses. First, mass transfer between grains can occur continuously
through grain boundary migration or diffusion. This involves a
change in the number of grainsdn in the bin of sizeR (i.e., a
change in the number of grains of sizes betweenR andR + dR)

by coarsening of smaller grains (or continuous reduction of larger
grains). This can be described by introducing the rate of movement
of the grain in size spacėR = ∂R(X, t)/∂t (Lifshitz & Slyozov
1961). Mathematically, this process occurs at constant total number
of grains per unit volume (experimentally, smallest grains shrink
below observability). Second, the number of grains of a given size
can be populated by a discontinuous transfer from remote popu-
lation bins. For example, large grains can be subdivided by the
formation of sub-grain boundaries that nucleate new small grains
(Hobbs 1968), or can be broken by cataclasis. We callΓ(R) the
rate at which grains are added to or removed from the bin of sizeR

by discontinuous process. This discontinuous process changes the
total number of grains per unit volume. The balance of grain pop-
ulation implies a continuity equation for the grainsize distribution
itself (Atkinson 1988; Hillert 1965; Ricard & Bercovici 2009)

∂ν

∂t
+

∂Ṙν

∂R
= Γ, (2)

wheret is time. For simplicity we omit the space variableX and the
advection term∇ ·(vν) wherev(X, t) is the macroscopic velocity
of the grained medium (Ricard & Bercovici 2009).

Most attempts of modeling grain coarsening or damage have
assumed that the whole grainsize distribution can be obtained by
the knowledge of its mean grainsize (c.f., De Bresser et al. 2001;
Ricard & Bercovici 2009). Representing the whole grainsize dis-
tribution by only a single size scale (e.g., some average) means
mathematically that the distribution is self-similar, i.e. that

ν(R, t) = A(R0)H(u), (3)

whereR0 is some average grainsize function oft that will be de-
fined later,u = R/R0 is the self-similarity variable, andA is
an amplitude. This self-similarity assumption is supported exper-
imentally (e.g., Slotemaker 2006) although exceptions exist such
as abnormal grain growth (Hillert 1965). Self-similarity has also a
mathematical justification. If one solves the equation (2) starting
from any arbitrary distribution, and for quite general assumptions
for Ṙ or Γ, the distribution evolves toward a self-similar solution
like (3), after sufficiently long time. This mathematical result has
been used in various classical studies of grain coarsening (Lifshitz
& Slyozov 1961; Wagner 1961; Hillert 1965), grain fragmentation
or aggregation (Collet 2004) and is valid under more general as-
sumptions (Ricard & Bercovici 2009). Our basic start is therefore
that although the self-similarity may not be strictly valid, the sys-
tem remains close enough to a self-similar state than a mean size
theory remains useful and is a reasonable compromise between the
complexity of a general grainsize distribution theory and what can
be constrained by the available observations. Future observations
of time evolution of grainsize variance, skewness and other higher
moments of the grainsize distribution will be needed to adjust the
parameters of a more general theory.

The mass conservation equation, assuming a constant density
of grains, implies that the unit volume is just the sum of the volumes
of grains, which leads to the normalization

∫

∞

0

v̆ν(R) dR = 1, (4)

where

v̆ =
4

3
πR3, (5)

is the grain volume. The notations follow Ricard & Bercovici
(2009) and the breve accent (e.g.,˘ ) represents variables at the
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grainsize level. The grains are assumed to be spherical, but more
complex shapes could be handled easily by replacingπ by a com-
parable factor accounting for polyhedral grain shapes (see Ricard
& Bercovici 2009). In the normalization (4), we omit the space and
time variables, and we integrate the distribution over all grainsizes,
potentially fromR = 0 to R = +∞ (we assume thatH is zero af-
ter some finite value or is well-behaved enough that all the integrals
containingH converge atu = +∞).

Using the self similar expression (3), this normalization con-
dition implies

A(R0) =
3

4πλ3

1

R
4
0

(6)

where we define, as in Ricard & Bercovici (2009),

λn =

∫

∞

0

unH(u)du. (7)

The amplitudeA(R0) is therefore related to the grainsize distribu-
tion H.

3 AVERAGE GRAIN COARSENING AND DAMAGE

The rules of differentiation applied to distribution (3) taking into
account the time dependence of the amplitude (6) lead to

∂ν

∂t
= − 3

4πλ3

1

R5
0

dR0

dt

1

u3

∂u4H

∂u
. (8)

This proves that∂ν/∂t is also a self similar function as it can be
written as a function ofR0 times a function ofu. As∂ν/∂t appears
in the evolution equation (2),∂Ṙν/∂R (and thereforeṘ) andΓ
must also be self similar (or have non self similar contributions
that cancel each other and are irrelevant to the grainsize evolution).
Γ is therefore the product of a time-dependent (orR0-dependent)
amplitudeC(R0) times a shape functions ofu = R/R0 such that

Γ =
3

4πλ3R
5
0

C(R0)
1

u3

∂u4H

∂u
, (9)

(the coefficient3/(4πλ3R
5
0) is included for subsequent simplifica-

tion). Similarly, given (2) and (8),̇R can be written as

Ṙ = B(R0)
1

H

(

b +

∫ u

0

1

v3

∂v4H

∂v
dv

)

= B(R0)

(

b

H
+ u +

3

H

∫ u

0

Hdv

)

, (10)

and whereB(R0) is an amplitude factor. The integration constant
b can be obtained from the condition of mass conservation (see
Ricard & Bercovici (2009))

∫

∞

0

v̆Γ(R)dR = 0 and

∫

∞

0

dv̆

dt
ν(R)dR = 0, (11)

wherĕv is the volume of a grain (see (5)). This assumes that mass is
conserved either during the fusion or fission of grains (first equal-
ity) or during continuous mass transfer between grains (second
equality). According to (3), (9) and (15), these two equations be-
come
∫

∞

0

du4H

du
du = 0 and

∫

∞

0

u2(b+uH +3

∫ u

0

H dv)du = 0.

(12)

The first condition is already verified provided thatu4H is zero for
u = 0 andu = +∞. Then, by using an integration by parts,
∫ X

0

(

3u2

∫ u

0

Hdv

)

du =

[

u3

∫

H du

]X

0

−
∫ X

0

u3H du

(13)
in the limit of X → +∞, we therefore prove that mass conserva-
tion implies

b = −3

∫ +∞

0

H du. (14)

which allows us to write

Ṙ = B(R0)

(

u − 3

H

∫ +∞

u

Hdv

)

. (15)

As theu-shapes ofΓ andṘ are derived from (2), which is itself
another expression of the condition of mass conservation, it is not
surprising that mass conservation is naturally satisfied.

When the self similar expressions (9) and (15) are introduced
back into (2), the shape function can be eliminated and only a dif-
ferential equation for the average sizeR0 remains

dR0

dt
= B(R0) − C(R0). (16)

Up to now the signs ofB(R0) andC(R0) are not known. The goal
is therefore to constrain these quantities which control the kinet-
ics of continuous and discontinuous grain processes, respectively
from observations guided by the necessary condition of positivity
of entropy production.

4 ENERGY CONSIDERATIONS

During deformation, part of the input energy is simply dissipated
(entropy) and part is stored reversibly (work). The irreversible en-
ergy is dissipated as heat although some minor entropy compo-
nent (here neglected) can be associated with interfaces when the
surface energy is temperature dependent (Bailyn 1994; Bercovici
et al. 2001a). Three reversible terms can be considered: the macro-
scopic elastic energy, the energy of dislocations (Karato 2008) and
the surface energy of grains,γ (in J m−2). The elastic energy
stored around dislocations is always negligible compared to the sur-
face energy of grains (see Shimizu 2008). When a material is de-
formed, some of the input energy is initally stored elastically, then
some is used to increase the density of dislocations (see, Kohlst-
edt & Weathers 1980; Karato & Jung 2003). At a given point, the
dislocations will rearrange to form subgrain boundaries and later,
grain boundaries. The elastic energy around dislocations is there-
fore mostly a temporary buffer converting some of the deforma-
tional work into surface energy. Our assumption is that, in the long
term, the energy balance is between the deformational work, the
viscous dissipation and the change of grain surfaces. Understanding
the grainsize evolution is therefore understanding how the macro-
scopic energy partitions between dissipation (through heat produc-
tion) and storage (by creation of new grain surface through a tem-
porary elastic stage).

Ricard & Bercovici (2009) show that the energy conservation
and the requirement of entropy positivity lead to

∫

∞

0

(

−2γ

R

dv̆

dt
ν(R) − 3

2

2γ

R
v̆Γ(R) + τ̆ : ˙̆ǫ v̆ν(R)

)

dR ≥ 0.

(17)
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Although complex, the meaning of this equation is straigthforward.
The first term represents the continuous change of surface energy of
grains and the second term the surface energy stored or removed by
the fusion or fission of grains. The third term represents the energy
deposited in each grain by the deformation (τ̆ and ˙̆ǫ are the stress
and strain-rate in each grain). We retain the term2γ/R as it appears
in the Laplace expression for the excess pressure in a sphere due to
surface tensionγ (γ can either be interpreted as a surface energy
(in J m−2) or as the surface tension (in N m−1) (see Bailyn 1994).

The likely most common case of grainsize evolution is when
the grain growth is dominated exclusively by the diffusive mass ex-
change in keeping with Lifshitz & Slyozov (1961); Wagner (1961);
Feltham (1957), but where grain reduction is driven by the de-
formation populating the material with small grains issued from
”breaking” large grains. This suggests we look for mechanisms that
independently obey to

∫

∞

0

−2γ

R

dv̆

dt
ν(R) dR ≥ 0, (18)

and
∫

∞

0

(

−3

2

2γ

R
v̆Γ(R) + τ̆ : ˙̆ǫ v̆ν(R)

)

dR ≥ 0. (19)

According to (3), (9) and (15) these two conditions can be readily
expressed. The first one, (18), just implies

−B(R0)

∫

∞

0

u

(

uH − 3

∫ +∞

u

Hdv

)

du =
1

2
B(R0)λ2 ≥ 0,

(20)
where the equality is obtained by integration by parts (similar to
(13) with n = 2) and whereλ2 is the positive integral defined in
(7). This inequality means thatB(R0) ≥ 0, and therefore that con-
tinuous transport must always lead to grain coarsening. The second
inequality imposed by the positivity of entropy sources (19), be-
comes

3γ

R
2
0

λ2

λ3
C(R0) ≤

∫

∞

0

τ̆ : ˙̆ǫ v̆ν(R) dR. (21)

Notice that while the continuous coarsening of grains is necessarily
an entropy source (i.e.,B(R0) must be positive), the processes of
fragmentation/coagulation of grains can be either a source (when
C(R0) ≤ 0) or a sink (whenC(R0) ≥ 0) of entropy. The dissipa-
tion term itselfτ̆ : ˙̆ǫ is always positive.

The process reducing the grain size is an entropy sink
C(R0) ≥ 0. This term is bounded by the mechanical dissipation
expressed by the previous inequality. As advocated in a series of
papers (Bercovici et al. 2001a,b; Bercovici & Ricard 2005; Ricard
& Bercovici 2009), a reasonable and pragmatic choice is to intro-
duce a partitioning function̆f(R, τ), with 0 ≤ f̆(R, τ) ≤ 1 so
that

C(R0) =
R

2
0

3γ

λ3

λ2

∫

∞

0

f̆ τ̆ : ˙̆ǫ v̆ν(R) dR (22)

The general expression of the grainsize evolution (16) be-
comes therefore

dR0

dt
= B(R0) −

R
2
0

3γ

λ3

λ2

∫

∞

0

f̆ τ̆ : ˙̆ǫ v̆ν(R) dR (23)

The coarsening term is often given on the formB(R0) =
G/R0

p−1 (Hillert 1965; Atkinson 1988; Karato 2008) wherep
is of order 2 (corresponding to a coarsening law whereR0 ∝
t1/2). The kinetic term G is temperature dependent,G =

k0 exp (−Eg/(RT )) but we are not aware of an experimentally
observed dependence on stress (cf. Table 1). We therefore use

dR0

dt
=

G

pRp−1
0

− R
2
0

3γ

λ3

λ2

∫

∞

0

f̆ τ̆ : ˙̆ǫ v̆ν(R) dR (24)

5 THE CASE OF LOGNORMAL DISTRIBUTIONS

5.1 Experimental distributions

Various experimental studies have indicated that the grainsize dis-
tribution is lognormal (e.g., Feltham 1957; Slotemaker 2006; Faul
& Scott 2006). The distribution of grainsizes (1) is in this case, a
Gaussian when plotted as a function oflnR, i.e.,

dn ∝ exp

(

− (ln(R/R0)
2

2σ2

)

d lnRdV

=
1

R
exp

(

− (ln(R/R0)
2

2σ2

)

dRdV.

(25)

In this expression,σ is the dimensionless variance of the distribu-
tion of ln(R/R0) andR0 is the ”mean” grainsize.

The lognormality of observed grainsize distributions is only
approximate. In a recent compilation of quartz grainsizes, Stipp
et al. (2010) argue that the distribution is not lognormal but shows
modes indicative of the various processes occuring during dynamic
recrystallisation. However, to first order, the distribution observed
by Stipp et al. (2010) is, in fact, not far from lognormal when plot-
ted in appropriate logarithmic coordinates. We therefore introduce
the lognormal shape function

H(u) =
1√

2πσu
exp

(

− (ln u)2

2σ2

)

, (26)

(while experimentalists often use the common (base 10) logarithm,
we use the natural logarithm which makes the computations of
derivatives and integrals less confusing).

In the following of the paper, we refer toR0 as a mean grain-
size, in agreement with experimental literature. However the real
mean grainsize is defined as

< R >=

∫

∞

0

Rν(R)dR/

∫

∞

0

ν(R)dR = R0 exp

(

σ2

2

)

(27)

while the true definition ofR0 is exp(< lnR >) as using (3),

< ln(R) >=

∫

∞

0

ln(R)ν(R)dR/

∫

∞

0

ν(R)dR = ln(R0) (28)

The ”mean” grainsize reported in most publications is indeed the
mean of the grainsize distribution plotted as a function oflnR

rather than< R >. The difference betweenR0 and< R > de-
creases with the decreasing variance of the distributionσ, see (27).
For a monodisperse distribution of grainsizes (a Dirac distribution)
the two quantities become identical. The choice of a lognormal dis-
tribution allows us to compute explicitly the integrals that appear in
various equations (e.g. (27) or (28)). A similar exercise could have
been done with any other distribution.

The lognormal distribution means that when the maximum of
the grainsize distribution is atR0, the grains of sizes

Rσ = R0 exp(±σ
√

2 ln 2), (29)

are two times less frequent. From observations on olivine
(Slotemaker 2006; Karato 2008),σ seems to be between 0.5 and
1. This indicates that grains, 3 times larger or 3 times smaller than
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the average grainsize are half less probable than grains of the grain-
size (this estimate usesσ = 0.93). In other words, the center of the
distribution covers already about one order of magnitude in sizes
(32) and the tails of the distribution cover another order of magni-
tude.

With this choice of distribution law, we get
∫

unH(u)du = −1

2
exp

(

n2σ2

2

)

erf

(

nσ2 − ln(u)√
2σ

)

,

(30)
which implies

λn =

∫

∞

0

unH(u)du = exp

(

n2σ2

2

)

, (31)

Ṙ = B(R0)

[

u − 3

2H(u)
erfc

(

ln u√
2σ

)]

, (32)

whereerfc is the complementary error function,(1 − erf), and fi-
nally,

Γ =
3C(R0)

4πλ3R
5
0

H(u)
(

3 − ln u

σ2

)

. (33)

These distributions are plotted in Figure 1. The functionH is
shaded and thėR andΓu3 normalized functions (i.e.,̇R/B(R0)
and4πλ3R

5
0Γu3/(3C(R0))) are depicted in blue dot-dashed and

red dashed. We display a curve proportional toΓu3 instead ofΓ to
emphasize the negative lobe of the damage term. These two curves
change sign roughly at the average grainsize aroundu = 3. As ex-
pected the functionΓ, accounting for the discontinuous formation
of grains, implies the breaking of large grains (Γ < 0 for large
R), and thus the formation of small grains (Γ > 0 for largeR).
Although theṘ function (32) seems very complex, it is a simple
monotonically increasing function.

Notice that Feltham (1957) in a well-known paper, using an
approach that is, in principle, equivalent, writes that a lognormal
distribution corresponds approximatively toṘ = C′(R0) ln u/u.
His result is not in agreement with our findings. In his demonstra-
tion, Feltham (1957) identifies wrongly the grainsize distribution
with the size distribution of grain sections. The probability to have
a grain section of radiusr is actually the convolution of the grain-
size distribution by the probability to cut any grain of radius larger
thanr, at the specific grainsize section of radiusr.

The grain growth law,̇R, is not much different from the func-
tions previously used (see Figure 2), which are based on the in-
ference that the kinetics of intergranular exchange is related to
2γ/R − 2γ/R = 2γ/R0(1/u − 1/u), i.e., the difference be-
tween the pressure in a given grain due to its surface tension,
∝ 2γ/R, and some average grain pressure written as∝ 2γ/R
(whereR is related to the grainsize distribution through mass con-
servation, see (11)). Whenu is large the shape oḟR looks like
u(1/u − 1/u), while the shape used by Lifshitz & Slyozov (1961)
was1/u(1/u − 1/u), and the shape used by Hillert (1965) was
(1/u− 1/u) (see Figure 2). The stronger dependence ofṘ with R

at large grainsize, suggests that grains significantly larger than the
average grainsize are more favorable than expected by Lifshitz &
Slyozov (1961) or Hillert (1965). These other authors’ assumptions
yield narrow grainsize distributions of finite extent (see Ricard &
Bercovici (2009)) where the maximum grainsize is only twice the
average grainsize, while observations show distributions with much
longer tails (Faul & Scott 2006).
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Figure 1. The lognormal distributionH is shaded. The normalized function
Γu3 is depicted with a red dashed line, the normalized grain growth Ṙ by
a blue dot-dashed line. The valueσ = 0.6 has been used.

5.2 Microscopic rheology

At grainsize level, and for mantle conditions, the olivine rheol-
ogy is generally found as a mixture of diffusion and dislocation
creep (Ranalli 1995; Karato 2008; Hirth & Kohlstedt 1995a,b). At
very high stress regimes, other deformation mechanisms might be
present like grain boundary sliding (Kohlstedt & Wang 2001; Hirth
& Kohlstedt 2003; Drury 2005; Langdon 2006; Kohlstedt 2007) or
Peierls mechanisms (Evans & Goetze 1979; Frost & Ashby 1982;
Raterron et al. 2004; Katayama & Karato 2008; Kohlstedt 2007).
We only consider diffusion and dislocation creep laws for simplifi-
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cations, but other mechanisms could be added. We use

˙̆ε = (aτ̆n−1 + bR−m)τ̆ (34)

assuming that the mechanisms of deformation occur in parallel (and
τ̆ is the second invariant of̆τ ). In (34), the two terms correspond
to the dislocation stress-dependent mechanism and to the diffusion
grainsize-dependent mechanism. Typicallyn ∼ 3 and m ∼ 3
(Hirth & Kohlstedt 2003; Kohlstedt 2007).

The macroscopic rheologyτ = 2ηǫ̇ is obtained by comput-
ing the volume average deformation rate and stress (see Ricard
& Bercovici (2009) for more details). This can be done numeri-
cally but not analytically in the more general case although some
variational estimates might be possible as in Hashin & Shtrikman
(1963). As a simple case, we assume that the stress tensor at the
grainsize level̆τ is uniform and therefore equal to the macroscopic
stressτ . This is akin to the Reuss averaging in elasticity (Reuss
1930). In this case,

ǫ̇ = τ

∫ +∞

0

(aτn−1 + bR−m)v̆ν(R)dR (35)

and the use of a selfsimilar distribution (3) allows us to express this
relation as a function of average grainsizeR0 and stressτ .

ǫ̇ =
(

aτn−1 + b
λ3−m

λ3
R

−m
0

)

τ = aτn−1
(

1 +
(

Rc

R0

)m)

τ

(36)
where

Rc =
(

b

a

λ3−m

λ3
τ1−n

)1/m

(37)

is the average grainsize at the macroscopic transition between dif-
fusion and dislocation creeps. The macroscopic rheology is thus a
function of the mean grainsizeR0 and the grainsize distribution
throughλ3−m/λ3. Notice that when the average grainsize isRc,
the macroscopic material is exactly at the transition between dif-
fusion and dislocation, the individual grain with the same radius is
still largely in the diffusion regime asλ3−m/λ3 ∼ 0.1 according
to (31). The experimentalist that works with a sample containing a
distribution of grainsizes cannot measure directly the microscopic
rheological factor of diffusion creepb, but only get the macroscopic
coefficientb(λ3−m/λ3). This coefficient together with the rheolog-
ical factora of dislocation creep, are both temperature dependent
with an Arrhenius form and their own activation energies, i.e.,

a = A1 exp
(

− E1

RT

)

and b
λ3−m

λ3
= A2 exp

(

− E2

RT

)

, (38)

whereR is the gas constant.
In order to provide a simpler expression for the grainsize evo-

lution than the general expression (24), we need to know the value
of the partitioning energy factor̆f . In the absence of direct obser-
vations, we can make two simple guesses:

(i) The simplest case is to assume a constant partitioningf̆ =
f0.
The partitioning is the same irrespective of the deformation mecha-
nism itself. In this case the general grainsize evolution would obey

dR0

dt
=

G

pRp−1
0

− f0
R

2
0

3γ

λ3

λ2
τ : ǫ̇ (39)

(ii) The creation of new grains occurs by formation of subgrain
boundaries (Twiss 1977; Derby 1990, 1991; Shimizu 1998a,b,
1999; Bresser et al. 1998; Bresser 2002). This requires the pres-
ence of dislocations density and it can be argued that the partition-
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Figure 3. The normalized partitioning functionf1/f0 (solid blue curve) for
a mean grainsize varying between10−1 and10 times the critical grain size
at the macroscopic boundary between diffusion and dislocation creep. The
transition between diffusion and dislocation creeps occurs through a large
range of grainsizes.

ing of energy only occurs during dislocation creep (in each grain,
the strain-rate is determined by a mixture of diffusion and disloca-
tion creep, but only the mechanical work done by dislocation creep
can be used to form new grains). This means that

dR0

dt
=

G

pRp−1
0

− f0
R

2
0

3γ

λ3

λ2
τ : ǫ̇disloc

=
G

pRp−1
0

− f1(τ,R0)
R

2
0

3γ

λ3

λ2
τ : ǫ̇,

(40)

where

f1(τ,R0) = f0
1

1 + (Rc/R0)m
. (41)

which is depicted in Figure 3. The function goes from 0 (no grain
reduction occurs when the mean grain is largely in the diffusion
regime) tof0 (all the grains are in the dislocation regime and they
all shrink). The partitioning function is independent ofσ, the spread
of the grainsize distribution.

6 APPLICATION TO OLIVINE

The creep map of olivine has been described by various authors
(Chopra & Paterson 1981; Karato et al. 1986; Karato & Wu 1993;
Hirth & Kohlstedt 2003; Korenaga & Karato 2008). We compiled
some reference values for exponents, prefactors and activation en-
ergies appropriate for dry olivine in Table 1. The exponentsn and
m are close ton ≃ 3.5 andm ≃ 3 for dry olivine although Kore-
naga & Karato (2008) suggest a largern exponent,n ≃ 4.94 for
dislocation creep.

There are few studies and more uncertainty for the grain
growth kinetics. As a reference case we use a value ofp = 2 taken
from Karato (1989) and in agreement with the theoretical model of
Hillert (1965), and the form ofG = k0 exp(−Eg/RT ) (see Table
1) is identical to that chosen in Kameyama et al. (1997). This choice
based on Karato (1989) leads to a grain growth much faster than
what is obtained in Evans et al. (2001) or Faul & Scott (2006) who
usep = 4.3 and much larger than what is expected from observa-
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tions of natural peridotites. Grain boundary pinning by impurities
and minor phases may explain this discrepancy.

Equations (39) and (40) imply the existence of steady state
regime,dR0/dt = 0 where a constant grainsize results from bal-
ancing grain coarsening by dynamic recrystallization. If we use
(40), coarsening can only be driven by energy subtracted from the
dissipation associated with dislocations. In this case, the steady
state regime usually called piezometric equilibrium (Van der Wal
et al. 1993; Bresser et al. 1998) satisfies

R0 =

(

3γ

p

G

fa

)1/(p+1)

τ−(n+1)/(p+1). (42)

This equilibrium, whereR0 ∝ τ−1.5, occurs both in the disloca-
tion and diffusion regimes because even in the diffusive regime, the
larger grains in the grainsize distribution are still subject to dynamic
recrystallization. If even the energy subtracted from dissipation in
the diffusive regime contributes to grainsize reduction, as in (39),
another equilibrium can be reached with

R0 =

(

3γ

p

Gλ2

fbλ3−m

)1/(p+1−m)

τ−2/(p+1−m). (43)

In the casep = 2 andm = 3, asp + 1 − m = 0, this equilib-
rium becomes independent ofR0 and simply defines a plasticity
threshold,τc = (3γGλ2/pfbλ3−m)1/2.

Figure 4, depicts the domains of dislocation dominant and dif-
fusion dominant creeps for olivine at 1923 K. The dot-dashed black
and solid blue curves indicate the equilibrium states (∂R0/∂t = 0)
predicted by (42) and (43) when we choosef0 = 1.5 10−6 (f0 con-
trols the intercepts of the theoretical piezometers, not their slopes).
All grains below these curves grow until they reach the piezomet-
ric curve and reciprocally, above these curves the dynamic recrys-
tallization dominates and the grainsize decreases. Purple squares
represent experimental data from Karato et al. (1980) which fit our
model for the chosenf0. In the diffusion creep domain, no exper-
imental points are available. This is reasonable because if the hy-
pothesis (39) is true, the plasticity threshold forbids any equilibrium
in the diffusive regime. Even in the case where the recrystallization
is only controlled by the dislocation, i.e., using (40) (Figure 4, blue
curve), the equilibrium in the diffusive domain may be difficult to
identify. Indeed, as the equilibrium grainsize is stress dependent,
R0 ∝ τ−1.5, the diffusive grainsize dependent rheology appears,
at equilibrium, more stress dependent than in the dislocation do-
main sinceǫ̇ ∝ R

−3
0 τ = τ5.5. The experimentalist may interpret

the data as an indication of grain boundary sliding rather than dif-
fusion.

Figure 4 is computed atT = 1923 K. Other experimen-
tal piezometers have been proposed at different temperature and
for olivine with different water contents (Post 1977; Ross et al.
1980; Karato et al. 1980; Van der Wal et al. 1993; Zhang et al.
2000; Jung & Karato 2001; Jung et al. 2006). For each set of ex-
periments we can obtain an appropriate value forf0. These dif-
ferent values are depicted in Figure 5. We also infer an empirical
fit f0 = exp(−2.0(T/1000)2.9) that agrees with the requirement
0 ≤ f0 ≤ 1. The partitioning factor decreases significantly with
temperature and does not seem to vary much with pressure or water
content (f0 might decrease slightly with water content and increase
slightly with pressure). The non equilibrium thermodynamics im-
poses the form of the evolution equation and bounds the possible
values off0, but at this stage, we have not tried to derive this pa-
rameter from a microscopic kinetic model.

When the grainsize evolves with time and stress, the rheology

10
-1

10
0

10
1

10
2

10
3

10
4

Grain Size (µm)

10
0

10
1

10
2

10
3

10
4

S
he

ar
t S

tr
es

s 
(M

P
a) Karato et al. 1980

f
0
, σ=0.6

f
1
, σ=0.6

DIFFUSION
    CREEP

DISLOCATION
       CREEP

Figure 4. Equilibrium curves using our two approximations. We use the
standard set of rheologies displayed in table 1,T = 1923K, P = 1 atm.
The green shaded area corresponds to the zone where the rheology is pre-
dominantly in the diffusive regime. The equilibrium state (orpiezometer) in
the dislocative regime goes through the experimental points (Karato et al.
1980). A plasticity threshold is predicted for the case defined by (39) (label
f0).

becomes itself a time dependent function. We illustrate this point in
Figure 6. We start with an olivine with very small grainsize (1µm)
and impose a constant deviatoric stress at a temperature of 1100
K. In this case, the rheology is initially Newtonian, i.e., in the dif-
fusion creep (dashed line). However, the grains coarsen or shrink
(at very large stress) and the rheology becomes non-linear. For low
deviatoric stresses (below 300 MPa), the equilibrium rheology is
dislocative (stress exponent 3). For larger stresses, the grains de-
form under diffusion creep but as the grainsize is stress dependent,
the equilibrium rheology is also non-linear (stress exponent 5.5).

Another illustration of the time dependence of the rheology is
provided in Figure 7. We compute a stress profile within an oceanic
lithosphere with age 50 Myrs (the temperature is an error func-
tion with standard parameters). A uniform strain-rateǫ̇ = 10−15

s−1 is imposed (Goetze & Evans 1979). We assume that the aver-
age grainsize is initiallyR0 = 1 µm and, except in the shallower
zone where the stress is limited by Byerlee failure criterion (Byer-
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lee 1978), diffusion creep prevails. The grainsize then evolves quite
rapidly and the strength of the lithosphere increases with time. The
lithosphere recovers in a few 10 kyrs. At equilibrium, the litho-
sphere is in the dislocation regime at large depth (above 50 km).
From 20 to 50 km, the presence of small average grainsizes places
the rheology in the diffusive regime. In this layer whose deeper
limit is marked by a kink in the equilibrium grainsize (see Figure
7, bottom panel), the rheology is in fact more stress-dependent than
in the underlying layer undergoing dislocation creep.

7 DISCUSSION AND CONCLUSION

In this paper, we started from simple thermodynamics require-
ments to derive a very general equation for grainsize evolution. Our
method takes into account the spread of the grainsize distribution
and considers that, at a given time and around a given position, not

Table 1. Chosen sets of parameters: (1 from Duyster & Stockhert (2001),
2 from Hirth & Kohlstedt (2003),3 from Kameyama et al. (1997).

Reference
case

Parameter Value Unit

γ 1 J m−2 Surface tension1

E1 530 kJ mol−1 Act. Energy (disl.)2

A1 1.1 105 MPa−n s−1 Prefactor2

V1 2 10−5 J mol−1 Pa−1 Act. volume2

n 3.5 disl. exponent2

E2 375 kJ mol−1 Act. Energy (diff.)2

A2 1.5 109 µmm MPa−1 s−1 Prefactor2

V2 5 10−6 J mol−1 Pa−1 Act. volume2

m 3 diff. exponent2

Eg 200 kJ mol−1 Act. Energy (growth)3

k0 2.0 104 µmp s−1 Kinetic factor3

p 2 growth exponent3
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Figure 7. Time dependent stress profile (top) and time dependent grainsize
profile (bottom). The initial grain size isd = 1µm, a constant and uniform
strain-rate is assumed, across a 50 Myrs oceanic lithosphere.

all grains deform with the same creep mechanism. Large grains can
be submitted to recrystallization while the small grains can deform
then coarsen in the diffusive regime. A corollary of our approach
is that the kinetics of coarsening and recrystallisation can be esti-
mated from the grainsize distribution itself. Experimental observa-
tions suggest that the growth of large grains is faster than what was
considered in the classic theories of Lifshitz & Slyozov (1961) or
Hillert (1965).

We infer a grainsize equation of the form

dR0

dt
=

G

pRp−1
0

− f0
1

1 + (Rc/R0)m

R
2
0

3γ

λ3

λ2
τ : ǫ̇, (44)

whereRc is the transitional grain radius between diffusion and dis-
location. This equation assumes the self similarity of the grainsizes
within a lognormal distribution. As already stated, self-similarity
is approximately verified experimentally and is the consequence of
the equation of grainsize distribution itself (2) whose solutions tend
to self-similarity. If we reject this hypothesis, then we need to de-
rive the expressions foṙR andΓ directly from observations. The
difficulty is then not so much with the mathematics than with the
experiments: reporting the evolution of the average grainsize but
not the evolution of the grainsize distribution itself is not sufficient
to constrain the kinetics of grain diffusion and recrystallization.

The rheology of the grained material is naturally non-linear
and time-dependent (it could also be anisotropic which is another
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complexity not accounted for in this paper (Tommasi et al. 2009)).
This provides a memory to the mechanical behavior of the litho-
sphere, an ingredient that is missing to the models of convection
with self-consistent plates (i.e. Tackley 2000a,b; Stein et al. 2004).
When the grainsize-stress relation is taken into account, we pre-
dict that the diffusive rheology is more stress-dependent than the
dislocative rheology, in contradiction with traditional rheological
models.

At equilibrium, the strain-rate remains an increasing function
of the stress and the rheology appears to be monotonic and simply
non-linear with an exponent varying from 3.5 to 5.5. This is how-
ever, a very partial view of the rich dynamics implied by equation
(44). In a realistic time dependent situation, the rheology maybe far
from equilibrium and the effective stress–strain-rate relation can be
much more complex than at equilibrium. The dynamics is also af-
fected by the feedback between deformation and heat production
by viscous dissipation as various parameters are temperature de-
pendent. All these aspects are beyond the scope of the present paper
but will be studied in the future.

The equation (44) can be compared to what is used in various
publications (Braun et al. 1999; Kameyama et al. 1997; Bercovici
& Karato 2003).

dR0

dt
= s

G

pRp−1
0

− ǫ̇

ǫ̇T
(R0 −RP ), (45)

wheres goes from 1 in the diffusion domain to 0 in the dislocation
domain,ǫ̇T is an experimental parameter andRP the equilibrium
grainsize function of stress.

Our formalism (44) differs from what has been used previ-
ously (45) by various points. We assume that coarsening occurs
even in the dislocation regime while (45) considers that it only hap-
pens in the diffusion regime (although Bercovici & Karato (2003)
use (45) withs = 1). Using non-equilibrium thermodynamics, we
prove that grain reduction is related to the energy dissipated in the
system, not to the strain-rate alone. In our model, the term repre-
senting recrystallization always reduces the grainsize while in (45),
recrystallization facilitates grain coarsening whenR0 < RP . At
last, we predict the piezometric equilibrium while (45) must in-
clude an equilibrium radiusRP which is not consistently deduced
by the model itself.
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