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SUMMARY

We employ basic non-equilibrium thermodynamics to propgeneral equation for the mean
grainsize evolution in a deforming medium, under the assiomphat the whole grainsize dis-
tribution remains self-similar. We show that the graingieduction is controlled by the rate
of mechanical dissipation in agreement with recent findil@s formalism is self consistent
with mass and energy conservation laws and allows a mixeolagg As an example, we
consider the case where the grainsize distribution is logag as is often experimentally ob-
served. This distribution can be used to compute both thetikg of diffusion between grains
and of dynamic recrystallization. The experimentally dastiikinetics of grainsize coarsening
indicates that large grains grow faster than what is assumelassical normal grain growth
theory. We discuss the implications of this model for a mhdrat can be deformed under both
dislocation creep and grainsize sensitive diffusion cregipg experimental data of olivine.
Our predictions of the piezometric equilibrium in the disdtion-creep regime are in very good
agreement with the observations for this major mantle-fognmineral. We show that grain-
size reduction occurs even when the average grainsize iusidn creep, because the largest
grains of the grainsize distribution can still undergo ystallization. The resulting rheology
that we predict for olivine is time-dependent and more rinadr than in dislocation creep. As
the deformation rate remains an increasing function of éwedioric stress, this rheology is not
localizing.
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1 INTRODUCTION thermal diffusion time) (Fleitout & Froidevaux 1980; Leloup et al.
o o ) 1999; Kameyama et al. 1997). Unfortunately, although shear heat-
The localization of deformation in narrow shear bands is necessarying is necessarily associated with localization, it does not seem to

for plate tectonics to occur (see e.g., Bercovici et al. 2000). Weak explain either the narrowness of plate boundaries, or their geome-
faults can be formed during deformation but their weakness can tries (e'g_’ Bercovici & Karato 2003) A local increase of poros-
persist even after a reorganization of the large scale stress patternyty/microcraks occurring during deformation has also been invoked
(e.g., Gurnis et al. 2000). This indicates that the rheology is not for |ocalizing the deformation (Bercovici 1998; Ogawa 2003) but
only controlled by the instantaneous stress field but has memory this process is not efficient in 3D simulations at generating toroidal
and healing. motions, e.g. shearing between plates and plate rotations (Bercovici
Localization occurs by a feed-back between the rheological & Ricard 2005). Anisotropic mechanical behaviour due to an in-
law and the deformation wherein a faster deformation can be ob- herited preferred orientation of crystals could also control or favor
tained with a lower stress. In simple shear experiments, this hap-the localization (e.g., Tommasi et al. 2009; Bystricky et al. 2000).
pens when the derivative of deviatoric stressvith respect to Once the localization is effective, minor mineralogical phases like
strain-rate¢ is negative (Bercovici 1993; Mo@si & Zuber 2002). serpentine can also lubricate the motion (Hilairet et al. 2007).
The fact that the rheology of silicates is often expressed by a non-

' i g ) Grainsize reduction seems the most attractive physical pro-
linear expression withk « 7" andn > 1 (Ranalli 1995) does

- ] S . ; ) cess for explaining the initial localization of the deformation. Cat-
not lead to strike slip localization asremains a monotonically in- cjastic fracturing and recrystallisation are well known mecanisms
creasing function of (Bercovici 1995). Non-linear rheologies with 4t grainsize reduction and the ductile deformation in the diffusive
large positive exponents tend, however, to narrow the zones of de-regime is facilitated in the presence of small grains (Kelemen &
formation (Weinstein & Olson 1992; Landuyt & Bercovici 2009).  Hirth 2007). However, models of localization by grainsize reduc-

Shear heating has often been proposed as a source of localtion are not self-consistent. Recrystallisation is observed in the
ization that provides some long term memory to the rheology (the dislocation regime (i.e., when the microscospic deformation pro-
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ceeds by coherent motion of crystal dislocations rather than by the by coarsening of smaller grains (or continuous reduction of larger
individual diffusion of atoms and vacancies). Grainsize reduction grains). This can be described by introducing the rate of movement
and localization by grainsize sensitive rheology occur therefore in of the grain in size spacR = 9R(X,t)/0t (Lifshitz & Slyozov
somewhat exclusive regimes (Karato et al. 1980; Derby & Ashby 1961). Mathematically, this process occurs at constant total number
1987). Various models have however discussed the possible inter-of grains per unit volume (experimentally, smallest grains shrink
actions between large scale deformation and grainsize evolutionbelow observability). Second, the number of grains of a given size
(Kameyama et al. 1997; Braun et al. 1999; Masit& Hirth 2003; can be populated by a discontinuous transfer from remote popu-
Bercovici & Ricard 2005). lation bins. For example, large grains can be subdivided by the
Up to now, most attempts to model the evolution of grain- formation of sub-grain boundaries that nucleate new small grains
sizes have been derived from phenomenologic laws involving only (Hobbs 1968), or can be broken by cataclasis. We lcéiRt) the
a mean grainsize. A few attempts have been made to describe in aate at which grains are added to or removed from the bin of/gize
very general way the evolution of an assemblage of grains under by discontinuous process. This discontinuous process changes the
deformation (e.g., Slotemaker 2006; Ricard & Bercovici 2009). In total number of grains per unit volume. The balance of grain pop-
these approaches, one has to consider the complete distribution ofulation implies a continuity equation for the grainsize distribution
grainsv(R, X, t) (which is the number of grains per unit volume itself (Atkinson 1988; Hillert 1965; Ricard & Bercovici 2009)
near the positiorX and at timet, having a size betweeR and
R + dR). Although a general and physically consistent theory has — + =1, 2)
been proposed (Ricard & Bercovici 2009), the mathematical for- ot oR
malism remains cumbersome and a general implementation in aWheret is time. For simplicity we omit the space variableand the
3D and time dependent geodynamic simulation seems implausible.advection tern¥ - (v/) wherev (X, ¢) is the macroscopic velocity
The approach followed by Ricard & Bercovici (2009) shows ©f the grained medium (Ricard & Bercovici 2009).
that the grainsize reduction cannot be related to the stress or to Most attempts of modeling grain coarsening or damage have
the strain-rate tensor, alone, but necessarily to their scalar productassumed that the whole grainsize distribution can be obtained by
T : € (Wherer : € = X;;7;;¢;5). This result is based on the second  the knowledge of its mean grainsize (c.f., De Bresser et al. 2001;
law of thermodynamics that requires the positivity of the entropy Ricard & Bercovici 2009). Representing the whole grainsize dis-
sources. This theoretical requirement already used in Bercovici & tribution by only a single size scale (e.g., some average) means
Ricard (2005), has been confirmed empirically by Austin & Evans mathematically that the distribution is self-similar, i.e. that
(2007) that concluded that the grainsize is a "paleowattmeter” (i.e.,
a measure of the rate of dissipation) rather than a "paleo piezome- V(R t) = A(Ro)H (u), ®)

ter” (i.e., a measure of the deviatoric stress). whereR, is some average grainsize functiontahat will be de-

At a microscopic level and laboratory scale there are a large fineq later,u = R/Ro is the self-similarity variable, and! is
number of observations regarding the evolution of silicate rheol- g amplitude. This self-similarity assumption is supported exper-
ogy with grainsize, pressure, temperature and stress (but also, watefmentally (e.g., Slotemaker 2006) although exceptions exist such
content, oxygen fugacity, porosity...). At the same time, models of a5 abnormal grain growth (Hillert 1965). Self-similarity has also a
mantle convection simulate the existence of plates with ad hoc rhe- mathematical justification. If one solves the equation (2) starting
ologies (Tackley 2000a,b; Stein et al. 2004). Up to now, these mod- from any arbitrary distribution, and for quite general assumptions
els are not based on experiments but often assume that the lithofor 2 or T, the distribution evolves toward a self-similar solution
sphere has a linear viscosity with a plasticity threshold. The goal of |ike (3), after sufficiently long time. This mathematical result has
this paper is to provide a theory based on laboratory experimentsyeen used in various classical studies of grain coarsening (Lifshitz
that could be used in large scale geodynamic modeling. & Slyozov 1961; Wagner 1961; Hillert 1965), grain fragmentation

or aggregation (Collet 2004) and is valid under more general as-
sumptions (Ricard & Bercovici 2009). Our basic start is therefore
2 EVOLUTION OF GRAINSIZE DISTRIBUTION that although the self-similarity may not be StriCtly valid, the Sys-
tem remains close enough to a self-similar state than a mean size
Within a volume of material, there is a continuous distribution of theory remains useful and is a reasonable compromise between the

ov  ORv

grainsizesy(R, X, t), so that the number of grains: with sizes complexity of a general grainsize distribution theory and what can

petwe_errR andR + dR, per unit volumedV/, at positionX and be constrained by the available observations. Future observations

timetis of time evolution of grainsize variance, skewness and other higher
dn(R, X, t) = v(R, X, t) dRAV. @ moments of the grainsize distribution will be needed to adjust the

parameters of a more general theory.
The distributionv has units ofn~*. From this distribution, average . . . .
uantities like the mean grainsize can be computed. The equations The mass conservation equation, assuming a constant density
4 L . Y P : °q of grains, implies that the unit volume is just the sum of the volumes
for grainsize evolution that have been proposed are empirical and - . o
) A . . of grains, which leads to the normalization
consider the mean grainsize only. Here, we also derive an equation

for the mean grainsize but from theoretical thermodynamic con- <.

: . . L : o vw(R)dR =1, (4)
siderations, starting explicitly from the existence of the grainsize 0
distribution. where

The grainsize distribution evolves through two different pro-

cesses. First, mass transfer between grains can occur continuously v = éﬂR{ (5)
through grain boundary migration or diffusion. This involves a 3
change in the number of graird: in the bin of sizeRr (i.e., a is the grain volume. The notations follow Ricard & Bercovici

change in the number of grains of sizes betw®eandR + dR) (2009) and the breve accent (e.g),represents variables at the
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grainsize level. The grains are assumed to be spherical, but moreThe first condition is already verified provided thétH is zero for

complex shapes could be handled easily by replagiby a com-

parable factor accounting for polyhedral grain shapes (see Ricard
& Bercovici 2009). In the normalization (4), we omit the space and
time variables, and we integrate the distribution over all grainsizes,

potentially fromR = 0to R = +oo (we assume thatl is zero af-

u = 0 andu = +o0. Then, by using an integration by parts,

X U X n X
/ <3u2/ Hdv> du = {ug/Hdu] f/ wH du
0 0 0 0
(13)

ter some finite value or is well-behaved enough that all the integrals in the limit of X' — +oo, we therefore prove that mass conserva-

containingH converge at. = +00).

Using the self similar expression (3), this normalization con-

dition implies
3 1

A = —
(Ro) = 157 (6)
where we define, as in Ricard & Bercovici (2009),
An = / u" H (u)du. @)
0

The amplitudeA(Ro) is therefore related to the grainsize distribu-
tion H.

3 AVERAGE GRAIN COARSENING AND DAMAGE

The rules of differentiation applied to distribution (3) taking into
account the time dependence of the amplitude (6) lead to

v 3 1 dRo 1 Ou'H

GRS W R T ®

This proves thabr /0t is also a self similar function as it can be
written as a function oR, times a function of.. As dv /¢ appears
in the evolution equation (2)Rv/0R (and thereforeR) and I’

must also be self similar (or have non self similar contributions

tion implies
+oo
b=-3 H du. (14)
0
which allows us to write
. 3 [T
R = B(Ro) <u E/ Hdv> . (15)

As theu-shapes of” and R are derived from (2), which is itself
another expression of the condition of mass conservation, it is not
surprising that mass conservation is naturally satisfied.

When the self similar expressions (9) and (15) are introduced
back into (2), the shape function can be eliminated and only a dif-
ferential equation for the average sizg remains

% — B(Ro) — C(Ro).
Up to now the signs oB(Ro) andC'(Ro) are not known. The goal
is therefore to constrain these quantities which control the kinet-
ics of continuous and discontinuous grain processes, respectively
from observations guided by the necessary condition of positivity
of entropy production.

(16)

4 ENERGY CONSIDERATIONS

that cancel each other and are irrelevant to the grainsize evolution).During deformation, part of the input energy is simply dissipated

T is therefore the product of a time-dependentRordependent)
amplitudeC'(Ro) times a shape functions af= R /R such that

3 1 Ou*H

= ———=C(Ro)— )
AT AR ( 0)u3 ou

©

(the coefficienB/ (47 A\3Rj) is included for subsequent simplifica-
tion). Similarly, given (2) and (8)R can be written as

1 Y1 ovtH
B(Ro) <b+/ — gv dv)
0

v
b 3 [
0

R

(10)

and whereB(Ro) is an amplitude factor. The integration constant

(entropy) and part is stored reversibly (work). The irreversible en-
ergy is dissipated as heat although some minor entropy compo-
nent (here neglected) can be associated with interfaces when the
surface energy is temperature dependent (Bailyn 1994; Bercovici
et al. 2001a). Three reversible terms can be considered: the macro-
scopic elastic energy, the energy of dislocations (Karato 2008) and
the surface energy of grains, (in J m 2). The elastic energy
stored around dislocations is always negligible compared to the sur-
face energy of grains (see Shimizu 2008). When a material is de-
formed, some of the input energy is initally stored elastically, then
some is used to increase the density of dislocations (see, Kohlst-
edt & Weathers 1980; Karato & Jung 2003). At a given point, the
dislocations will rearrange to form subgrain boundaries and later,
grain boundaries. The elastic energy around dislocations is there-

b can be obtained from the condition of mass conservation (see fore mostly a temporary buffer converting some of the deforma-

Ricard & Bercovici (2009))

/ VI'(R)dR =0 and/ @u(n)dnzo, (11)
o o dt

tional work into surface energy. Our assumption is that, in the long
term, the energy balance is between the deformational work, the
viscous dissipation and the change of grain surfaces. Understanding
the grainsize evolution is therefore understanding how the macro-

wherey is the volume of a grain (see (5)). This assumes that mass is SCOpic energy partitions between dissipation (through heat produc-
conserved either during the fusion or fission of grains (first equal- tion) and storage (by creation of new grain surface through a tem-
ity) or during continuous mass transfer between grains (second porary elastic stage).

equality). According to (3), (9) and (15), these two equations be-

come

0o 4 oo u
du HduzO and uw?(b+uH +3 H dv)du = 0.
o du 0 0

(12)

Ricard & Bercovici (2009) show that the energy conservation
and the requirement of entropy positivity lead to

h (2% - 32

FiEv > 0.
= @ VI'(R) + T gvu(R)) drR >0

(17

0
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Although complex, the meaning of this equation is straigthforward.

koexp (—E4/(RT)) but we are not aware of an experimentally

The first term represents the continuous change of surface erfergy oobserved dependence on stress (cf. Table 1). We therefore use

grains and the second term the surface energy stored or removed by
the fusion or fission of grains. The third term represents the energy

deposited in each grain by the deformatiénandé are the stress
and strain-rate in each grain). We retain the tenyir as it appears

dRo o G
dt— pry~!

ff EWw(R)dR  (24)

in the Laplace expression for the excess pressure in a sphere due to

surface tensiony (v can either be interpreted as a surface energy
(in 3 m~2) or as the surface tension (in NTh) (see Bailyn 1994).

The likely most common case of grainsize evolution is when
the grain growth is dominated exclusively by the diffusive mass ex-
change in keeping with Lifshitz & Slyozov (1961); Wagner (1961);
Feltham (1957), but where grain reduction is driven by the de-
formation populating the material with small grains issued from

"breaking” large grains. This suggests we look for mechanisms that

independently obey to
<2y dy
- >
/O Rl (R)dR >0, (18)
and
i 32y, oo

(—77VF(R) +7: gvy(R)) drR > 0. (19)

0 2R

According to (3), (9) and (15) these two conditions can be readily
expressed. The first one, (18), just implies

e’} —+oo
_B(Ro)/ u (uH — 3/ Hdv> du = %B(Ro))\g >0,

where the equality is obtained by integration by parts (similar to
(13) withn = 2) and where\; is the positive integral defined in
(7). This inequality means th&(Ro) > 0, and therefore that con-

tinuous transport must always lead to grain coarsening. The second

inequality imposed by the positivity of entropy sources (19), be-

comes
32 0(re) < / ¥
0

R2 oW : €V (R) dR. (21)

THE CASE OF LOGNORMAL DISTRIBUTIONS
5.1 Experimental distributions

Various experimental studies have indicated that the grainsize dis-
tribution is lognormal (e.g., Feltham 1957; Slotemaker 2006; Faul
& Scott 2006). The distribution of grainsizes (1) is in this case, a
Gaussian when plotted as a functionofr, i.e.,

dn x exp (—(IHU;‘/ZQO)Z> dInRdV
i (25)
:% exp (_(hl(?(jfg)) dRdV.

In this expressiong is the dimensionless variance of the distribu-
tion of In(R/Ro) andRy is the "mean” grainsize.

The lognormality of observed grainsize distributions is only
approximate. In a recent compilation of quartz grainsizes, Stipp
et al. (2010) argue that the distribution is not lognormal but shows
modes indicative of the various processes occuring during dynamic
recrystallisation. However, to first order, the distribution observed
by Stipp et al. (2010) is, in fact, not far from lognormal when plot-
ted in appropriate logarithmic coordinates. We therefore introduce

the lognormal shape function
! exp | —
V2rou ’

(while experimentalists often use the common (base 10) logarithm,
we use the natural logarithm which makes the computations of
derivatives and integrals less confusing).

In the following of the paper, we refer B, as a mean grain-
size, in agreement with experimental literature. However the real

(Inw)?
202

H(u) (26)

Notice that while the continuous coarsening of grains is necessarily mean grainsize is defined as

an entropy source (i.eB(Ro) must be positive), the processes of

fragmentation/coagulation of grains can be either a source (when <R >=

C(Ro) < 0) or asink (wherC'(Ro) > 0) of entropy. The dissipa-
tion term itselfr : € is always positive.

The process reducing the grain size is an entropy sink
C(Ro) > 0. This term is bounded by the mechanical dissipation

expressed by the previous inequality. As advocated in a series of

papers (Bercovici et al. 2001a,b; Bercovici & Ricard 2005; Ricard
& Bercovici 2009), a reasonable and pragmatic choice is to intro-
duce a partitioning functiorf (R, 7), with 0 < f(R,7) < 1 s0
that

RO )\3

C(Ro) = 3y )\2 f

H(

L& (R) dR (22)
The general expression of the grainsize evolution (16) be-
comes therefore

dRo o

pr ff Ew(R)dR

(23)

The coarsening term is often given on the forB(Ro)
G/RoP™" (Hillert 1965; Atkinson 1988; Karato 2008) whege
is of order 2 (corresponding to a coarsening law whRge o~
t'/?). The kinetic termG is temperature dependent;

[ [

while the true definition oRR is exp(< InR >) as using (3),

< In(R) >:/ dR//

The "mean” grainsize reported in most publications is indeed the
mean of the grainsize distribution plotted as a functiorlioR
rather than< R >. The difference betweeR, and< R > de-
creases with the decreasing variance of the distributicee (27).
For a monodisperse distribution of grainsizes (a Dirac distribution)
the two quantities become identical. The choice of a lognormal dis-
tribution allows us to compute explicitly the integrals that appear in
various equations (e.g. (27) or (28)). A similar exercise could have
been done with any other distribution.

The lognormal distribution means that when the maximum of
the grainsize distribution is &, the grains of sizes

Ro = Roexp(£ov2In2),

are two times less frequent. From observations on olivine
(Slotemaker 2006; Karato 2008),seems to be between 0.5 and
1. This indicates that grains, 3 times larger or 3 times smaller than

R)dR = Ro exp ( 22) (27)

= In(Ro) (28)

(29)
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the average grainsize are half less probable than grains of the grain-

size (this estimate uses= 0.93). In other words, the center of the
distribution covers already about one order of magnitude in sizes
(3%) and the tails of the distribution cover another order of magni-
tude.

With this choice of distribution law, we get

2

/u"H(u)du = —% exp <n202> erf (nch\;iln(U)) )
o
(30)
which implies
o] 2 2
An :/ u" H(u)du = exp( g ) , (31)
0
. 3 Inu
R = B(RO) |:u — merfc <\/§0—>:| N (32)

whereerfc is the complementary error functiofl, — erf), and fi-

nally,
H(u) (3 ) .

These distributions are plotted in Figure 1. The functibris
shaded and th& andT'u* normalized functions (i.e’R/B(Ro)
and4r A3 RyTu?/(3C(Ro))) are depicted in blue dot-dashed and
red dashed. We display a curve proportional'td’ instead ofl" to
emphasize the negative lobe of the damage term. These two curve
change sign roughly at the average grainsize arauad3. As ex-
pected the functiol’, accounting for the discontinuous formation
of grains, implies the breaking of large graifs & 0 for large
R), and thus the formation of small grains ¢~ 0 for large R).
Although theR function (32) seems very complex, it is a simple
monotonically increasing function.

3C(R0)

_ _ Inu
o 47T>\3R8

(33)

o2

Notice that Feltham (1957) in a well-known paper, using an
approach that is, in principle, equivalent, writes that a lognormal
distribution corresponds approximatively ® = C’(Ro) Inu/u.

His result is not in agreement with our findings. In his demonstra-
tion, Feltham (1957) identifies wrongly the grainsize distribution
with the size distribution of grain sections. The probability to have
a grain section of radius is actually the convolution of the grain-
size distribution by the probability to cut any grain of radius larger
thanr, at the specific grainsize section of radius

The grain growth lawR, is not much different from the func-
tions previously used (see Figure 2), which are based on the in-
ference that the kinetics of intergranular exchange is related to
2v/R — 2v/R 2v/Ro(1/w — 1/u), i.e., the difference be-
tween the pressure in a given grain due to its surface tension,
x 2v/R, and some average grain pressure writtenxagy/R
(whereR is related to the grainsize distribution through mass con-
servation, see (11)). When is large the shape ok looks like
u(1/uw — 1/u), while the shape used by Lifshitz & Slyozov (1961)
was1/u(l/w — 1/u), and the shape used by Hillert (1965) was
(1/w — 1/u) (see Figure 2). The stronger dependenc® efith R

at large grainsize, suggests that grains significantly larger than the

average grainsize are more favorable than expected by Lifshitz &
Slyozov (1961) or Hillert (1965). These other authors’ assumptions
yield narrow grainsize distributions of finite extent (see Ricard &
Bercovici (2009)) where the maximum grainsize is only twice the
average grainsize, while observations show distributions with much
longer tails (Faul & Scott 2006).

S

3 ——

— Grain Sizq
- = dR/dt

- I'u3

Amplitude

=
o1

Ll L "

0
10
Normalized Grainsize u

_1, L L L

Figurel. The lognormal distributiod! is shaded. The normalized function
I'u is depicted with a red dashed line, the normalized grain dréwby
a blue dot-dashed line. The valae= 0.6 has been used.

5.2 Microscopic rheology

At grainsize level, and for mantle conditions, the olivine rheol-
ogy is generally found as a mixture of diffusion and dislocation
creep (Ranalli 1995; Karato 2008; Hirth & Kohlstedt 1995a,b). At
very high stress regimes, other deformation mechanisms might be
present like grain boundary sliding (Kohlstedt & Wang 2001; Hirth
& Kohlstedt 2003; Drury 2005; Langdon 2006; Kohlstedt 2007) or
Peierls mechanisms (Evans & Goetze 1979; Frost & Ashby 1982;
Raterron et al. 2004; Katayama & Karato 2008; Kohlstedt 2007).
We only consider diffusion and dislocation creep laws for simplifi-

10 T — T T
| dR/dt |
— — — u(l/u-1/u)
SF|- = - = (1)
|- =—-- 2/u(/y-1/u)
e ——
§ -
o -5
© L
_10_
'15_ /.
i / u
_20 L | i C i
10" 10’ 10'

Normalized Grain Size u

Figure 2. The shape of the functioR, similar to Figure 1 but with a dif-
ferent scale, is depicted with a black line. Previous stutli@ve assumed
that R was given by the red (dashed) (Ricard & Bercovici 2009), furp
(dot-dashed) (Hillert 1965) or blue (double-dot-dashedishitz & Sly-
ozov 1961) lines. We arbitrary choose the amplitudes of thies= later
curves so they change sign with the same slopes.
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cations, but other mechanisms could be added. We use +° R T
. i | b—m e —
= (a7 bR @4 = .
() I
assuming that the mechanisms of deformation occur in parallel (and'© 0,8 :
7 is the second invariant af). In (34), the two terms correspond uq:) I
to the dislocation stress-dependent mechanism and to the diffusiono 0.6 I
grainsize-dependent mechanism. Typically~ 3 andm ~ 3 O F DIFFUSION DISLOCATION

(Hirth & Kohlstedt 2003; Kohlstedt 2007). 2 04 CREEP I CREEP -
The macroscopic rheology = 2né is obtained by comput- 'S s :
ing the volume average deformation rate and stress (see Ricardg 0,2 I _
& Bercovici (2009) for more details). This can be done numeri- £ :
cally but not analytically in the more general case although some @ I |
variational estimates might be possible as in Hashin & Shtrikman o ) L : ) L
(1963). As a simple case, we assume that the stress tensor at th 10* 10° 10*
grainsize lever is uniform and therefore equal to the macroscopic RO/R
stressr. This is akin to the Reuss averaging in elasticity (Reuss ¢
1930). In this case, Figure3. The normalized partitioning functiofy / fo (solid blue curve) for
+oo a mean grainsize varying betwet®d—! and10 times the critical grain size
é= I/ (aTnfl + bR (R)dR (35) at the macroscopic boundary between diffusion and dislocatieep. The
0 transition between diffusion and dislocation creeps cetrough a large

and the use of a selfsimilar distribution (3) allows us to express this range of grainsizes.

relation as a function of average grainsizg and stress.

. n—1 )\37777. —m n—1 Re\™ H : H : : H
é= (CLT +b Ro ) T =ar (1 + ( ) ) T ing of energy only occurs during dislocation creep (in each grain,
As Ro (36) the strain-rate is determined by a mixture of diffusion and disloca-
where tion creep, but only the mechanical work done by dislocation creep
can be used to form new grains). This means that
b >\37'm 1—n 1/m
Re = (a Y T ) (37) dRo G 723 A3 .
H PR ’ . . . dt - RP*1 - Oﬂgz'gdisloc
is the average grainsize at the macroscopic transition between dif- Pro ) (40)
fusion and dislocation creeps. The macroscopic rheology is thus a _ G filr RO)&ﬁT e
function of the mean grainsiz, and the grainsize distribution pRg‘l ’ 3y A
throughAs_.»/As. Notice that when the average grainsizeRis, where
the macroscopic material is exactly at the transition between dif-
fusion and dislocation, the individual grain with the same radius is fi(T,Ro) = fo%, (41)
still largely in the diffusion regime a&s_,. /A3 ~ 0.1 according 1+ (Re/Ro)

to (31). The experimentalist that works with a sample containing a which is depicted in Figure 3. The function goes from 0 (ho grain
distribution of grainsizes cannot measure directly the microscopic reduction occurs when the mean grain is largely in the diffusion
rheological factor of diffusion credp but only get the macroscopic  regime) tof, (all the grains are in the dislocation regime and they
coefficienth(As—n. /As). This coefficient together with the rheolog-  all shrink). The partitioning function is independentgthe spread
ical factora of dislocation creep, are both temperature dependent of the grainsize distribution.

with an Arrhenius form and their own activation energies, i.e.,

)\B—m o E2
= = Agexp (— RT) . (38)

a = Ajexp (—%) and b

whereR is the gas constant. 6 APPLICATION TO OLIVINE

In order to provide a simpler expression for the grainsize evo- The creep map of olivine has been described by various authors
lution than the general expression (24), we need to know the value (Chopra & Paterson 1981; Karato et al. 1986; Karato & Wu 1993;
of the partitioning energy factof. In the absence of direct obser-  Hirth & Kohlstedt 2003; Korenaga & Karato 2008). We compiled

vations, we can make two simple guesses: some reference values for exponents, prefactors and activation en
. ergies appropriate for dry olivine in Table 1. The exponengnd
(i) The simplest case is to assume a constant partitiofiing m are close to ~ 3.5 andm ~ 3 for dry olivine although Kore-
fo. naga & Karato (2008) suggest a largeexponenty ~ 4.94 for
The partitioning is the same irrespective of the deformation mecha- dislocation creep.
nism itself. In this case the general grainsize evolution would obey There are few studies and more uncertainty for the grain
dRo G RZNs . growth kinetics. As a refgrence case we use a vaItpe@fQ taken
o T ot g TiE (39) from Karato (1989) and in agreement with the theoretical model of
PRy Y A2

Hillert (1965), and the form ofs = ko exp(—FE,/RT) (see Table

(i) The creation of new grains occurs by formation of subgrain 1) isidentical to that chosen in Kameyama et al. (1997). This choice
boundaries (Twiss 1977; Derby 1990, 1991; Shimizu 1998a,b, based on Karato (1989) leads to a grain growth much faster than
1999; Bresser et al. 1998; Bresser 2002). This requires the pres-what is obtained in Evans et al. (2001) or Faul & Scott (2006) who
ence of dislocations density and it can be argued that the partition-usep = 4.3 and much larger than what is expected from observa-
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tions of natural peridotites. Grain boundary pinning by impurities 10*

and minor phases may explain this discrepancy. — B Karato ot al. 198h ]

Equations (39) and (40) imply the existence of steady state 5_5 .= f,0=06 ]
regime,dRo/dt = 0 where a constant grainsize results from bal- = 10° — f,,0=0.6 4
ancing grain coarsening by dynamic recrystallization. If we use >~ 3
(40), coarsening can only be driven by energy subtracted from the 0 DISLOCATION 1

dissipation associated with dislocations. In this case, the steadyg ¢ CREEP

state regime usually called piezometric equilibrium (Van der Wal )
-

et al. 1993; Bresser et al. 1998) satisfies G ]
1/(p+1) ] 1 1

Ro— (2 C (D) /(1) (42) & 10 3

p fa

—1.5 .

This equilibrium, whereRg o , occurs both in the disloca-

(0] i
tion and d_iffu_sion regin_ies_ bec_aus_e even in thg diffu;ive regime, the 1010- 100 10t 102 103 1¢*
larger grains in the grainsize distribution are still subject to dynamic Grain Size |(1m)

recrystallization. If even the energy subtracted from dissipation in
the diffusive regime contributes to grainsize reduction, as in (39), Figure 4. Equilibrium curves using our two approximations. We use the

another equilibrium can be reached with standard set of rheologies displayed in tabld'l= 1923K, P = 1 atm.
1/ (p+1—m) The green shaded area corresponds to the zone where theghéopre-

Ry — 3y G P —2/(p+1—m) 43 dominantly in the diffusive regime. The equilibrium state §@zometer) in

0= ? FbAz—m T : (43) the dislocative regime goes through the experimental poidsato et al.

1980). A plasticity threshold is predicted for the case d=fihy (39) (label

In the casep = 2 andm = 3, asp + 1 — m = 0, this equilib- fo)-

rium becomes independent &, and simply defines a plasticity

thresholds. = (37G 2 /pfbAs—m)"/2. _ _ _ _ -
Figure 4, depicts the domains of dislocation dominant and dif- bgcomes itself atlmc_a depen_dt_ent fUi‘lCtlon. We |IIustra_1te _this pointin

fusion dominant creeps for olivine at 1923 K. The dot-dashed black Figure 6. We start with an olivine with very small grainsize ¢h)

and solid blue curves indicate the equilibrium stat&g(/dt = 0) and impose a constant dewgtqri_c_stress at a temperature of _1100

predicted by (42) and (43) when we chogse= 1.5 10~ (f con- K. I_n this case, the rheplogy is initially Newtor_iian, i.e., in the dlf-_

trols the intercepts of the theoretical piezometers, not their slopes). fusion creep (dashed line). However, the grains coarsen or shrink

All grains below these curves grow until they reach the piezomet- (8t Very large stress) and the rheology becomes non-linear. For low

ric curve and reciprocally, above these curves the dynamic recrys-deV'atO”C stresses (below 300 MPa), the equilibrium rheology is

tallization dominates and the grainsize decreases. Purple squaredislocative (stress exponent 3). For larger stresses, the grains de-
represent experimental data from Karato et al. (1980) which fit our form under diffusion creep but as the grainsize is stress dependent,

model for the choserfi. In the diffusion creep domain, no exper- the equilibrium rheolpgy is alsq non-linear (stress exponent 5.5):
imental points are available. This is reasonable because if the hy- ~ Another illustration of the time dependence of the rheology is
pothesis (39) is true, the plasticity threshold forbids any equilibrium Provided in Figure 7. We compute a stress profile within an oceanic
in the diffusive regime. Even in the case where the recrystallization lithosphere with age 50 Myrs (the temperature is an errfnlrrfunc-
is only controlled by the dislocation, i.e., using (40) (Figure 4, blue 10N with standard parameters). A uniform strain-rate- 10~
curve), the equilibrium in the diffusive domain may be difficult to S IS imposed (Goetze & Evans 1979). We assume that the aver-

identify. Indeed, as the equilibrium grainsize is stress dependent, 29€ grainsize is initiallyzo = 1 m and, except in the shallower
Ro o 715, the diffusive grainsize dependent rheology appears, ZO"€ where the stress is limited by Byerlee failure criterion (Byer-

at equilibrium, more stress dependent than in the dislocation do-

. . . _ . . . 0
main sinceé « Ry 7 = 7°°. The experimentalist may interpret O e LI S B —
the data as an indication of grain boundary sliding rather than dif- i o Dry, zero pressure
fusion. ICIE T o Wet, zero pressufe

o o Dry, ~1GPa
A Wet, ~1GPa

Figure 4 is computed al’ = 1923 K. Other experimen- g E
tal piezometers have been proposed at different temperature anc® 10‘2;
for olivine with different water contents (Post 1977; Ross et al.
1980; Karato et al. 1980; Van der Wal et al. 1993; Zhang et al. 10°F
2000; Jung & Karato 2001; Jung et al. 2006). For each set of ex- .
periments we can obtain an appropriate value fiar These dif-
ferent values are depicted in Figure 5. We also infer an empirical :

ing Pa

tition
S
T

fit fo = exp(—2.0(T/1000)*°) that agrees with the requirement G 10°F

0 < fo < 1. The partitioning factor decreases significantly with 0- E

temperature and does not seem to vary much with pressure or watel ol ) | ) | ) . ) . )
content (fo might decrease slightly with water content and increase 18000 1200 1400 1600 1800 2(
slightly with pressure). The non equilibrium thermodynamics im- Temperature (K)

poses the form of the evolution equation and bounds the possible
values offy, but at this stage, we have not tried to derive this pa-
rameter from a microscopic kinetic model.

When the grainsize evolves with time and stress, the rheology

Figure5. Various experimental piezometers can be fitted by chooging
exp(—2.0(T'/1000)2-?). The fit does not seem to depend much on the
pressure or the water content.
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Figure 6. Evolution of the rheology with increasing grain size (frapm).

The shear stress varies initially with the strain-ratergg@liffusive case),
then asr!/3-5 (dislocative case, for < 300 MPa), or as-/5-? (diffusive

case with stress dependent grainsize).

lee 1978), diffusion creep prevails. The grainsize then evolves quite 5

rapidly and the strength of the lithosphere increases with time. The
lithosphere recovers in a few 10 kyrs. At equilibrium, the litho-
sphere is in the dislocation regime at large depth (above 50 km).

From 20 to 50 km, the presence of small average grainsizes places

the rheology in the diffusive regime. In this layer whose deeper
limit is marked by a kink in the equilibrium grainsize (see Figure

7, bottom panel), the rheology is in fact more stress-dependent than

in the underlying layer undergoing dislocation creep.

7 DISCUSSION AND CONCLUSION

In this paper, we started from simple thermodynamics require-
ments to derive a very general equation for grainsize evolution. Our

=
o

== Equilibrium .
L — Dislocation ]
- = Byerlee

N
o

t=100 yrs|
[ t=1 kyrs 1

Depth (km)
s 3

A
o

60 :

400 600 800
Shear Stress (MPa)

L
200

< 30+

)]
0 40

50

o —"
10"

10 1
Grain Size jim)

Figure 7. Time dependent stress profile (top) and time dependent grainsi
profile (bottom). The initial grain size i§ = 1um, a constant and uniform
strain-rate is assumed, across a 50 Myrs oceanic lithosphere

method takes into account the spread of the grainsize distribution all grains deform with the same creep mechanism. Large grains can
and considers that, at a given time and around a given position, notbe submitted to recrystallization while the small grains can deform

Table 1. Chosen sets of parameters:fom Duyster & Stockhert (2001),
2 from Hirth & Kohlstedt (2003)? from Kameyama et al. (1997).

Reference

case

Parameter  Value Unit

~ 1 Jm 2 Surface tensioh
Eq 530 kJ mol—1! Act. Energy (disl.}
A 1.110° MPa "s ! Prefactof

\% 210-%  Jmol! Pa? Act. volume?

n 3.5 disl. exponent

Es 375 kJ mot—1 Act. Energy (diff.?
Ao 1.510% pm™ MPa !s~!  Prefactof

Va 510=6  Jmol! Pa? Act. volume?

m 3 diff. exponent

Ey 200 kJ mol—1 Act. Energy (growth)
ko 2.010* pump st Kinetic factoP

D 2 growth exponerit

then coarsen in the diffusive regime. A corollary of our approach
is that the kinetics of coarsening and recrystallisation can be esti-
mated from the grainsize distribution itself. Experimental observa-
tions suggest that the growth of large grains is faster than what was
considered in the classic theories of Lifshitz & Slyozov (1961) or
Hillert (1965).

We infer a grainsize equation of the form

dRo G 1 RE Xz .
=0 _ - 058 44
&~ preT fo1+ RoJRo)™ 3y Al © (44)

whereR. is the transitional grain radius between diffusion and dis-
location. This equation assumes the self similarity of the grainsizes
within a lognormal distribution. As already stated, self-similarity
is approximately verified experimentally and is the consequence of
the equation of grainsize distribution itself (2) whose solutions tend
to self-similarity. If we reject this hypothesis, then we need to de-
rive the expressions for andI" directly from observations. The
difficulty is then not so much with the mathematics than with the
experiments: reporting the evolution of the average grainsize but
not the evolution of the grainsize distribution itself is not sufficient
to constrain the kinetics of grain diffusion and recrystallization.
The rheology of the grained material is naturally non-linear
and time-dependent (it could also be anisotropic which is another
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complexity not accounted for in this paper (Tommasi et al. 2009)).  Bercovici, D., 1998. Generation of plate tectonics froidi&phere-mantle
This provides a memory to the mechanical behavior of the litho-  flow and void-volatile self-lubricatiorEarth Planet. Sci. Lett154, 139—
sphere, an ingredient that is missing to the models of convection 151. _ _

with self-consistent plates (i.e. Tackley 2000a,b; Stein et al. 2004). Bercovici, D. & Karato, S., 2003. Theoretical analysis oéahlocal-
When the grainsize-stress relation is taken into account, we pre- |zat|o_n in the I|thc_)sphere,_ iReviews in Mineralogy and Geochemistry:
dict that the diffusive rheology is more stress-dependent than the " 2stic Deformation of Minerals and Rogkeol. 51, chap. 13, pp. 387~

dislocati heol . tradicti ith traditi | theoloaical 420, eds Karato, S. & Wenk, H., Min. Soc. Am., Washington, DC.
IS((j)Cla Ive rheoiogy, In contradiction with traditional rheclogica Bercovici, D. & Ricard, Y., 2005. Tectonic plate generationd two-phase
models.

o ) ) ] ) ) damage: void growth versus grainsize reductibrGeophys. Resl10,
At equilibrium, the strain-rate remains an increasing function  Bp3401, doi:10.1029/2004JB003181.

of the stress and the rheology appears to be monotonic and simply Bercovici, D., Ricard, Y., & Richards, M., 2000. The relatibetween
non-linear with an exponent varying from 3.5 to 5.5. This is how- mantle dynamics and plate tectonics: A primeitistory and Dynamics
ever, a very partial view of the rich dynamics implied by equation of Global Plate Motions, Geophys. Monogr. Seel. 121, pp. 5-46, eds
(44). In arealistic time dependent situation, the rheology maybe far ~ Richards, M. A., Gordon, R., & van der Hilst, R., Am. Geophysidh,
from equilibrium and the effective stress—strain-rate relation can be ~_Washington, DC.

much more complex than at equilibrium. The dynamics is also af- Bercovici, D., Ricard, ., & Schubert, G., 2001a. A two-paasodel of

fected by the feedback between deformation and heat production ggrgff‘gggg and damage, 1. general thednGeophys. Res106(B5),

by viscous dissipation as various parameters are temperature de- Bercovici, D., Ricard, Y., & Schubert, G., 2001b. A two-phasodel of
pendent. All these aspects are beyond the scope of the present paper compaction and damage, 3. applications to shear localizatiorplate
but will be studied in the future. boundary formation]. Geophys. Resl06(B5), 8925-8940.

The equation (44) can be compared to what is used in various Braun, J., Chery, J., Poliakov, A., Mainprice, D., Vauch&zTomassi, A.,
publications (Braun et al. 1999; Kameyama et al. 1997; Bercovici & Daignieres, M., 1999. A simple parameterization of stracelzation

& Karato 2003). in the ductile regime due to grain size reduction: A case stadglivine,
. J. Geophysical Research-solid Earil94, 25167-25181.
@ = G i(Ro —Rp) (45) Bresser, J. H. P. D., 2002. On the mechanism of dislocaticepapécal-
dt PRS_I ér 7 cite at high temperature: Inferences from experimentally nregispres-

sure sensitivity and strain rate sensitivity of flow stresszeophysical

wheres goes from 1 in the diffusion domain to 0 in the dislocation Research-solid EartHi0?.

domaip,éT is an experimental parameter arg the equilibrium Bresser, J. H. P. D., Peach, C. J., Reijs, J. P. J., & Spietk, €998, On

grainsize function of stress. dynamic recrystallization during solid state flow: Effecfsstress and
Our formalism (44) differs from what has been used previ-  temperatureGeophysical Research Let25, 3457—3460.

ously (45) by various points. We assume that coarsening occurs Byerlee, J. D., 1978. Friction of rock®ure Applied Geophysicd16,

even in the dislocation regime while (45) considers that it only hap-  615-626.

pens in the diffusion regime (although Bercovici & Karato (2003)  Bystricky, M., Kunze, K., Burlini, L., & Burg, J.-P., 2000. igh Shear

use (45) withs = 1). Using non-equilibrium thermodynamics, we Strain of Olivine Aggregates: Rheological and Seismic Cqnsaces,

prove that grain reduction is related to the energy dissipated in the ~Science290(5496), 1564-1567. _ '

system, not to the strain-rate alone. In our model, the term repre- Chopra. P.N. & Paterson, M. S., 1981. The experimental deftomaf

senting recrystallization always reduces the grainsize while in (45), _dunite.Tectonophysics’s, 453-473,

tallization facilitat . . hen R At Collet, J.-F., 2004. Some modelling issues in the theory gffrentation-
recrystaflization faciiitates grain coarsening w < Rp. coagulation system§ommun. Math. Sgi2(Supplemental Issue 1), 35—

last, we predict the piezometric equilibrium while (45) must in- 54,
clude an equilibrium radiug » which is not consistently deduced De Bresser, J. H. P., Heege, J. H. T., & Spiers, C. J., 2001inGize
by the model itself. reduction by dynamic recrystallization: can it result in ndfeeological

weakening?Int. J. Earth Science$0, 28—-45.
Derby, B., 1990. Dynamic recrystallization and grain sind)éformation
Processes in Minerals, Ceramics and Rogls 354—-364, eds Barber, D.
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