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SUMMARY

We present a calibration of the mixing-length parameter in the local mixing-length theory

used to model thermal convection inside rocky planets. The parameterization is derived from

a comparison of three-dimensional (3-D) numerical simulation experiments to predictions by

the one-dimensional (1-D) mixing-length theory with a depth-dependent mixing length. The

comparison encompasses a wide variety of parameters, i.e., Rayleigh numbers ranging from

104 to 1010 and viscosity contrasts up to 106 have been investigated for a convective system

heated either solely from below or from both below and within. We find that the mixing length

is sensitive to both viscosity contrast and Rayleigh number. With the commonly used scaling

relationship, mixing-length theory is unable to reproduce simultaneously heat flux and tem-

perature of the numerical simulation experiments with satisfactory accuracy. According to the

calibration, we identify that the mixing length depends on the convection regime. In particu-

lar, stagnant-lid convection should be separated from sluggish-lid and mobile-lid convection.

In the mobile-lid regime, the mixing length is generally much larger than in the stagnant-lid

regime. The presented parameterization yields thermal profiles in excellent agreement with

those obtained from fully dynamic convection simulations and important physical properties

such as surface heat flux and average mantle temperature can be computed with small errors.

This establishes the mixing-length theory as a viable alternative to other parameterized con-
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vection models including the widely used boundary-layer theory and offers the possibility to

study the thermal state of a large number of Earth-like planets.

Key words: mixing-length theory, mixing-length calibration, mantle convection, terrestrial

planets, Nusselt number, average temperature

1 INTRODUCTION

The internal dynamics and thermal evolution of terrestrial planets is mainly governed by the effi-

ciency of convective heat transport through the viscous mantle (Schubert et al. 2001). Since it is

computationally challenging to investigate a large parameter space while precisely modeling the

full convective heat flux, parameterized descriptions of thermal convection are essential. A simple

method to quickly calculate the convective heat transport is known as the mixing-length theory

(MLT).

MLT was originally developed by Taylor (1915) and Prandtl (1925) in the early 20th century.

The basic idea behind this theory is that heat is transported by thermal parcels over characteristic

length scales before dispersing into the surrounding fluid. The velocity of such parcels can then

be related to the local temperature gradient from which convective heat flux and temperature dis-

tribution is obtained. Today, mixing-length formulations are frequently used to numerically model

turbulent and convective motions in the atmospheric boundary layer (Priestley 1959; Holton &

Hakim 2013) or to estimate the convective energy transport within turbulent convecting stellar

interiors (Vitense 1953; Hansen et al. 2004).

Originally derived solely for fluids characterized by the combination of low Prandtl and high

Rayleigh numbers, Sasaki & Nakazawa (1986) extended the mixing-length theory by reformulat-

ing it for highly viscous fluids corresponding to low Reynolds numbers. The extension is based on

the estimation of vertical velocity by considering the balance between the buoyancy force operat-

ing on the thermal parcel and the viscous drag instead of the free-fall velocity. Abe (1995) later
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proposed the first parameterization of the depth-dependent mixing length actually applicable for

planetary mantles possessing top and bottom boundary layers.

A report assessing the efficiency of heat transport according to the mixing-length theory demon-

strated that the method can be used to calculate the radially averaged distribution of temperature

across a convective layer with strongly temperature-dependent viscosity (Yamagishi & Yanag-

isawa 2001-2002). Subsequently, a study carried out by Tachinami et al. (2011) compared the

mixing-length theory with conventional parameterized convection models (Sharpe & Peltier 1979)

and the commonly used boundary-layer theory (Stevenson et al. 1983); they found that all three

methods agree reasonably well for viscosity contrasts up to 104. However, a detailed compari-

son between sophisticated convection experiments and the mixing-length theory has not yet been

conducted. Furthermore, a highly variable viscosity and/or changes in how the fluid is heated

drastically influence convection pattern and separate scaling laws are required (Solomatov 1995).

Unfortunately, no systematic study describing such effects with respect to MLT is currently avail-

able.

Abe (1997) originally deployed the mixing-length theory to study the thermal and chemical

evolution of Earth’s global magma ocean during planet formation. Since then, MLT has occasion-

ally been used in the context of planetary science, e.g., to model the thermal evolution of early

Mars (Senshu et al. 2002), to investigate the metallic core and tectonic history of Jovian icy satel-

lites (Kimura et al. 2007; Kimura et al. 2009), and more recently to compute the interior structure

and thermal evolution of Saturnian icy satellites (Sohl et al. 2014; Kamata 2018). Furthermore,

Tachinami et al. (2011) used this method to assess the lifetime of self-generated magnetic fields

of Earth-like planets beyond the Solar System, while Wagner et al. (2011; 2012) applied such a

formulation to calculate the thermal state of the first rocky exoplanets.

In the present study, the extension of the mixing-length theory to highly viscous fluids is sys-

tematically reviewed. For this purpose, we conduct a wide variety of experiments with the mantle

convection code Gaia (Hüttig & Stemmer 2008; Hüttig et al. 2013). These numerical experiments

cover Rayleigh numbers from 104 to 1010 and viscosity contrasts up to 106 across a convecting

fluid heated either solely from below or from both below and within a spherical shell. We then
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calibrate the mixing-length parameter in the local mixing-length theory to accurately reproduce

the distributions of heat flux and temperature in three-dimensional (3-D) convection models. This

calibration is performed at the statistical steady-state stage for the fluid dynamic problem and at

steady state for the 1-D MLT model. Finally, it is demonstrated that the proposed calibration makes

the mixing-length approach an efficient and reliable tool to model the thermal state of planetary

interiors.

2 METHOD

2.1 Mixing Length

We consider the two standard convective heat transfer mechanisms: (a) conduction, where heat is

transmitted through lattice vibrations in crystals and (b) advection, where heat is transported by

matter in a fluid-like manner. Within the framework of mixing-length theory, these two mecha-

nisms can be separated by comparing the local to adiabatic temperature gradient. Convective re-

gions are then defined as layers for which the former gradient exceeds the latter. In the following,

we describe in detail how heat transfer is modeled with respect to the mixing-length formalism.

We begin with the advection-diffusion equation of a convecting fluid (Poirier 2000; Gerya

2010):

ρCP
∂T

∂t
= ρCPv · (∇TS −∇T ) +∇ · (kc∇T ) + ρH, (1)

where ρ is the density, CP is the specific heat capacity, T is the temperature, t denotes the time, v

refers to the velocity field, kc is the thermal conductivity, and H is a specific heat production rate.

The subscript S indicates an adiabatic process, thus explicitly distinguishes between adiabatic and

local temperature. Equation [1] describes the balance of thermal energy in a continuum and relates

temperature changes due to the advective and conductive heat transport, as well as the generation

of internal heat.

Reformulating Eq. [1] in terms of the heat flux q yields

ρCP
∂T

∂t
= −∇ · q + ρH, (2)

where q is the sum of advective and conductive heat fluxes. The conductive heat flux qcond can be
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obtained from Fourier’s law

qcond = −kc∇T. (3)

To evaluate the advective heat flux, we use the mixing-length approach. According to MLT, the

advective heat flux qadv can be expressed as

qadv = ρCPvδT = −kv (∇T −∇TS) , (4)

where δT is the local temperature perturbation and kv is an effective conductivity due to thermal

convection.

The heat conservation/temperature equation (Eq. [2]) is a well-studied partial differential equa-

tion (PDE). In this work, we use Eq. [2] to calculate the thermal structure of convective sys-

tems within the framework of mixing-length theory. In order to solve such equations numerically,

boundary conditions have to be specified. With respect to the type of the numerical problem pre-

sented in this study, we enforce constant temperature conditions at the upper and lower thermal

boundaries. The question of finding a solution for Eq. [2] is known as the Dirichlet problem.

As mentioned in the introduction, the basic idea of the mixing-length theory (Taylor 1915;

Prandtl 1925) is that a thermal parcel migrates for a characteristic length scale before dispersing

into the surrounding fluid. Thus, the mixing length is conceptually analogous to the mean free path

in thermodynamics. Therefore, the effective thermal diffusivity κv can be defined as

κv = vl, (5)

where v is the velocity of the thermal parcel and l is the mixing length, which is assumed to be

identical to the size of the thermal parcel (Yamagishi & Yanagisawa 2001-2002). The effective

thermal conductivity kv is then given as

kv = ρCPκv = ρCPvl. (6)

According to the extended mixing-length theory (Sasaki & Nakazawa 1986), the vertical mo-

tion of a thermal parcel is constrained by the Stokes’ flow. Therefore, the velocity v of such a

parcel can be written as

v =
αρgl2

18η
δT, (7)
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where α is the thermal expansivity, g is the acceleration due to gravity, η is the dynamic viscosity,

δT is the difference between the temperature of the thermal parcel and the temperature of the

surrounding fluid. The temperature perturbation δT can be estimated as

δT = (∇TS −∇T ) l, (8)

where ∇TS represents the adiabatic temperature gradient and ∇T denotes the local temperature

gradient.

Inserting Eq. [8] into Eq. [7] yields for the velocity v the following expression:

v =
αρgl3

18η
(∇TS −∇T ) . (9)

With Eq. [9], the effective thermal conductivity kv can then be expressed as

kv = ρCPvl =
αρ2CPgl

4

18η
(∇TS −∇T ) . (10)

Since both thermal gradients are defined negative, but kv must be zero or larger, Eq. [10] equals

zero for |∇TS| ≥ |∇T |. Otherwise, for |∇TS| < |∇T |, the advective heat flux is then calculated

with Eq. [4].

In the original formulation of the mixing-length theory according to Sasaki & Nakazawa

(1986), the characteristic mixing length is given by the pressure scale height. Based on experimen-

tal evidence, Abe (1995) subsequently introduced the distance to the nearest thermal boundary as

a simple but sufficient approximation to assess the magnitude of the mixing length. In order to

calibrate the mixing length l, we instead adopt a similar form to what was suggested by Kamata

(2018):

l =


αMLT

(
h

βMLT

)
for h ≤ D

2
βMLT

αMLT

(
D−h

2−βMLT

)
for h > D

2
βMLT,

(11)

where h is the height above the core-mantle boundary, D is the thickness of the entire mantle

(including non-convecting parts), and αMLT and βMLT are tunable parameters.

Figure 1 illustrates how the two parameters αMLT and βMLT modify the mixing length. The first

calibration parameter controls the magnitude of the local mixing length. A higher value of αMLT

leads to steeper gradients in the mixing-length distribution, which will affect in particular the

thermal convection close to the domain boundaries. The second calibration parameter determines
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the peak depth of the mixing-length distribution. A higher value of βMLT shifts the peak depth from

left to right, i.e., towards the planetary surface. We demand that αMLT is either zero or greater than

zero and βMLT takes a value between zero and two. The conventional mixing-length formulation

according to Abe (1995) is reproduced, if both calibration parameters equal unity.

2.2 Three-dimensional Simulations of Mantle Convection

For the calibration itself, we rely on the finite-volume code Gaia (Hüttig & Stemmer 2008; Hüttig

et al. 2013), which has been used to carry out convection experiments in a three-dimensional (3-D)

spherical geometry. Gaia solves the conservation equations with respect to the extended Boussi-

nesq approximation (EBA). EBA distinguishes itself from the well-known Boussinesq approxima-

tion simply in that adiabatic heating and viscous dissipation are taken into account in the energy

conservation equation. The density ρ is assumed to be constant so that the fluid is still incompress-

ible. The non-dimensional conservation equations of mass, linear momentum and thermal energy

read (Christensen & Yuen 1985; Ismail-Zadeh & Tackley 2010):

∇ · v = 0, (12)

∇ ·
[
η∇v + η(∇v)T

]
−∇p+ RaTer = 0, (13)

DT

Dt
−∇ · (∇T )−Di(T + T0)vr −

Di

Ra
Φ−H = 0, (14)

where v is the velocity vector and vr its radial component, p the dynamic pressure, T the tem-

perature, T0 the surface temperature, t the time, η the viscosity, er the radial unit vector, and

Φ ≡ τ : ε̇/2 the viscous dissipation, with τ and ε̇ denoting the deviatoric stress and strain-rate

tensors, respectively. Ra is the thermal Rayleigh number, H the internal heating rate, which is

given by the ratio of RaQ and Ra, where RaQ is the Rayleigh number for internal heat sources. The

boundary conditions are free-slip along all boundaries.

Depending on the heating mode, we use the following formulations of the Rayleigh and Nusselt

number. In case of bottom heating, internal heating rate equals zero and the Rayleigh number Ra

is given by:

Ra =
αρg∆TD3

κcηb
, (15)
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where ∆T is the temperature difference between the temperature at the bottom Tb and top Tt of the

mantle. For mixed-mode heating, i.e. heating from below and from within, the Rayleigh number

RaQ associated with internal heat sources is defined as:

RaQ =
αρ2gHD5

κckcηb
. (16)

The conductive temperature profile used to compute the Nusselt numbers is given by (Schubert

et al. 2001):

T (r) = −ρHr
2

6kc
+
c1
r

+ c2 (17)

where c1 and c2 are constants determined by boundary conditions. The Nusselt number for the top

and bottom boundary is then calculated by dividing the total heat flux across the boundaries by the

conductive heat flux at the top and bottom boundary, respectively:

Nu =
q̄

qc
(18)

And hence, the Nusselt number at the outer boundary of the spherical shell reads

Nut = − qtrtD

rbkc∆T
(19)

for bottom heating and

Nut = − 6qtrtD

2r2tρHD − r2bρHD − rbrtρHD + 6rbkc∆T
(20)

for mixed-mode heating.

For the dynamic viscosity η, we adopt the following law with a strong temperature dependence

(Miyagoshi et al. 2015):

η(T ) = ηt

(
ηb
ηt

) Tt−T
Tt−Tb

, (21)

where ηt and ηb denote the viscosity at top and bottom of the model, respectively. During all model

simulations, the thermal expansivity α, the thermal conductivity kc, the thermal diffusivity κc, the

gravitational acceleration g, and the density ρ have been held constant. The modeling parameters

are summarized in Tab. 1.
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3 RESULTS AND DISCUSSION

3.1 Conventional Mixing-length Theory

The conventional formulation of mixing-length theory defines the local mixing length as the dis-

tance to the nearest thermal boundary layer (Abe 1995). Figure 2 shows a comparison of the con-

ventional MLT with results of fully dynamic convection simulations. The numerical simulation

experiments compiled in Tab. 2 are subdivided into three characteristic modes of convection de-

termined by using the Péclet number. Different heating modes and convective regimes are shown

by different symbols.

The Péclet number (Pe) is a dimensionless number that gives the ratio of the advective to the

diffusive transport rate and can be written as follows:

Pe =
λvms

κc
, (22)

where λ is the characteristic length scale, κc is the thermal diffusivity, and vms is the maximum

velocity of the surface. If Pe is small, heat transfer by thermal conduction is important. The char-

acteristic modes of convection are then classified as follows (see, Noack & Breuer (2013)): (a)

whole-layer convection (Pe ≥ 100), (b) transitional convection (1 < Pe < 100), and (c) convec-

tion beneath a conductive lid (Pe ≤ 1). The surface corresponding to the former two regimes is

mobile, whereas that of the latter is immobile. Therefore, we refer to as mobile-lid convection for

all cases with Péclet numbers about or greater than 100 and to as stagnant-lid convection when Pe

is about or smaller than 1. The remaining cases with Péclet numbers between 1 and 100 correspond

to a sluggish-lid regime.

Comparing Nusselt numbers obtained from employing the convectional MLT to those provided

by the numerical simulation experiments (Fig. 2(a)), we find that the conventional formulation of

mixing length does not yield satisfactory results. The mismatch between predictions of MLT and

reference values from fully dynamic simulations is as large as 60%, which would be of the order

of 60 mW/m2 for the heat flux through the oceanic crust on Earth. For bottom heating, MLT

underestimates the heat flux in the mobile-lid regime and always overestimates the heat flux in

the stagnant-lid regime for both heating modes. Therefore, calculated Nusselt numbers according

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggy543/5270732 by ETH

 Zürich user on 29 January 2019



10 F. W. Wagner, A.-C. Plesa, and A. B. Rozel

to the conventional mixing-length theory may be inaccurate. Without appropriate calibration this

approach provides at best a crude approximation for the surface heat flux and thermal evolution of

planetary bodies.

A similar picture is obtained when looking at the average temperature of the convective sys-

tem, although the discrepancy between conventional MLT and numerical simulation experiments

is considerably smaller. Figure 2(b) illustrates this by showing average temperatures according to

the conventional MLT in comparison to those provided by the numerical simulation experiments.

The mismatch between predictions of MLT and reference values from fully dynamic simulations

is as large as 20%, which corresponds to a difference of ∼700 K in the average mantle tempera-

ture of an Earth-like planet. For mixed-mode heating, MLT systematically underestimates average

temperature in sluggish-lid and stagnant-lid regimes. Other than that, MLT yields temperatures

scattering around our reference values.

Although MLT with its conventional formulation for the mixing length does provide only

a rough estimate for surface heat flux and average temperature of a convecting mantle, Fig. 3

illustrates that the method is capable of producing plausible distributions of temperature. The

influence of the Rayleigh number on the temperature profile is shown in Fig. 3(a). High Rayleigh

numbers yield steep temperature gradients in the upper and lower thermal boundary layer, where

heat is transferred solely by conduction. Furthermore, an adiabatic temperature rise is present in

the mid-region of convective system. Low Rayleigh numbers produce more gradually increasing

temperature profiles that are characteristic of thermal conduction throughout the whole system. As

predicted by theoretical considerations, the thickness of thermal boundaries decreases for higher

Rayleigh numbers, which correspond to higher Nusselt numbers. Vice versa, increasingly thicker

thermal boundaries are correlated with lower Rayleigh and Nusselt numbers.

Since the ratio of core to surface area is smaller in a spherical shell geometry compared to a

Cartesian box domain, the interior temperature of the former is characteristically smaller. There-

fore, we observe a substantially larger temperature increase within the thermal boundary layer at

the bottom, compared to that of the top thermal boundary layer. For isoviscous models with rect-

angular geometry, the temperature profile would be symmetric with respect to the center of the
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convective system. Figure 3(b) illustrates how the distribution of temperature changes due to a

higher viscosity contrast. A higher viscosity contrast results in higher temperatures in the interior,

thicker thermal boundary layers, and a steeper adiabatic temperature increase in the mid-region.

The latter can be explained by an increased tendency towards sluggish-lid convection within the

system because of larger effective viscosity.

3.2 Calibration Parameters

In order to precisely compute the thermal structure of rocky planets within the framework of

mixing-length theory, we introduce the tunable parameters αMLT and βMLT to calibrate the local

mixing length through comparison with fully dynamic convection simulations. These two cali-

bration parameters affect the calculation of key parameters such as Nusselt number and average

temperature, which eventually determine the thermal evolution of planets. Figure 4 shows the

effects of αMLT and βMLT for two scenarios using a Rayleigh number Rab of 107 and a viscosity

contrast ∆ηT of 103, and assuming a bottom-heated (panel a) and a mixed-heated (panel b) system,

respectively. For reference, the black star in each panel indicates the Nusselt number and average

temperature calculated based to the conventional formulation of mixing-length theory, where the

local mixing length is equivalent to the distance to the nearest thermal boundary layer.

As it can be seen in Fig. 4, αMLT has a strong impact on the Nusselt number, whereas βMLT

influences mainly the average temperature of the convective system. Independent of the heating

mode, higher values of αMLT yield higher Nusselt numbers. The effect of αMLT on average temper-

ature is less pronounced. For bottom heating (Fig. 4(a)), higher values of αMLT increase the average

temperature, while for mixed-mode heating (Fig. 4(b)), higher values of αMLT lead to a lower aver-

age temperature of the convective system. Small values of βMLT lead to high average temperatures,

independent of the heating mode. However, the increase in average temperature with decreasing

βMLT is much less pronounced in cases employing mixed-mode heating (Fig. 4(b)) because they

possess in general high average temperatures when compared to bottom-heated systems. Nusselt

number is also influenced by βMLT, but for a lesser extent.
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3.3 Calibrated Mixing-length Theory

We calibrate the mixing length through comparison with the statistical equilibrium states of con-

vection simulations in such a way that Nusselt numbers and average temperatures of Tab. 2 are

reproduced by mixing-length theory as accurately as possible. The calibration parameters αMLT

and βMLT are simultaneously determined by a least-squares minimization technique employing

the simplex search method of Lagarias et al. (1998). Results of the calibration are presented in

Tab. 3 for bottom and mixed-mode heating, respectively. The two tables list the optimal values of

the calibration parameters αMLT and βMLT.

How good the calibrated mixing-length theory performs against our fully dynamic convection

simulations is shown in Fig. 5. With the derived calibration, MLT reproduces both Nusselt number

and average temperature with discrepancies well below 1% for all bottom-heated cases. All non-

filled symbols align perfectly with the straight black lines in both panels of Fig. 5. For mixed-mode

heating, Nusselt numbers are reproduced with similar accuracy (Fig. 5(a)). However, a few cases

corresponding to sluggish-lid convection still show discrepancies as large as 10% for the average

temperature of the convective system (Fig. 5(b)). This shows that the piecewise linear approxima-

tion of the mixing length cannot capture all dynamical effects forming in the sluggish-lid regime

in the simulations with mixed-mode heating. Nonetheless, using the presented calibration within

the framework of MLT provides a significant improvement over the conventional formulation of

mixing length.

3.3.1 Maps of αMLT and βMLT

A three-dimensional surface has been fitted to each dataset of calibration values using a bicubic in-

terpolation. The threshold for the onset of thermal convection in spherical shells heated from below

is yet adopted from Kameyama et al. (2013). Furthermore, our numerical simulations reveal that

this threshold represents also an acceptable approximation for spherical shells with mixed-mode

heating. The resulting calibration maps of αMLT and βMLT shown in Fig. 6 make the mixing-length

theory applicable to any combination of Rayleigh number and viscosity contrast. In general, we

find that mixing length is sensitive to both viscosity contrast and Rayleigh number. The efficiency
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of heat transport is correlated to convective modes representing different types of thermal convec-

tion. These discrete regimes are reflected within the pattern of calibration values and clearly visible

in Fig. 6. We can distinguish between them and identify where transitions from one regime into

another occur, because the slope of the surface fits substantially change at the boundaries between

convective modes, especially between the stagnant-lid to mobile-lid regime.

Panels (a) and (c) in Fig. 6 show the derived values for calibration parameter αMLT that gov-

erns the absolute magnitude of mixing length. By inspecting both panels we find that the pattern

of how these values are distributed shows the same features for both heating modes. For any given

Rayleigh number, αMLT always decreases with increasing viscosity contrast. This observation rep-

resents the well-known fact that for a higher viscosity contrast the convective velocity decrease,

the thermal boundary layer thickens, the thermal gradient within that boundary flattens, and as a

consequence the heat transport by convection becomes less efficient. For a given viscosity contrast

up to 104, αMLT first increases rapidly from the boundary of no convection until a certain peak

value was reached and afterwards αMLT gradually decreases towards higher Rayleigh numbers.

Peak values of αMLT fall largely within the transitional regime corresponding to sluggish-lid con-

vection. For a given viscosity contrast above 104, αMLT gradually increases toward higher Rayleigh

numbers. Care must be taken with extrapolation beyond the range where data are provided.

Panels (b) and (d) in Fig. 6 show the derived values for calibration parameter βMLT that de-

termines the peak depth of mixing length. The pattern of how these values are distributed is sub-

stantially different for the two heating modes. For bottom-heated cases (Fig. 6(b)), besides the

apparent valley at medium Rayleigh numbers and high viscosity contrasts, the landscape of the

pattern is for the most part flat. Slightly elevated values of βMLT are primarily observed in the tran-

sitional regime close to the boundary of convection breakdown and at medium Rayleigh numbers

and viscosity contrasts. However, most values cluster around 1, which implies that peak depth of

the mixing length is found in the mid-region of a convective system. Cases located in the valley

possess low values of βMLT and are clearly correlated to the stagnant-lid regime, in which the

transport of heat through a convective system becomes much less effective in comparison to the

other regimes.
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For cases employing mixed-mode heating (Fig. 6(d)), the values of βMLT show a canyon-like

pattern. Cases located in the center of the canyon possess low values of βMLT and correspond

with sluggish-lid convection of the transitional regime. This is opposite to bottom-heated cases

(Fig. 6(b)), for which the transitional regime has the highest values of βMLT. Higher temperatures

in the mid-region of the convective system are the result of internal heat sources. The cases charac-

terized by mobile-lid convection are found at the right flank of the canyon at a Rayleigh number of

at least 105. In the direction of higher Rayleigh numbers, peak depth of the mixing length moves

rapidly towards the center of the convective system, where βMLT equals 1. Cases characterized

by stagnant-lid convection cluster on the left flank of the canyon at medium Rayleigh number

and high viscosity contrast. They show slightly higher values for βMLT when compared to the

corresponding bottom-heated cases.

For bottom heating, calibration values associated with transitional regime are closer to the

values obtained for whole-layer convection than to the results for the stagnant-lid regime. This

suggests that the transition from the sluggish-lid regime into the stagnant-lid regime is more pro-

nounced than the transition from sluggish to fully mobile. The finding is consistent with the fact

that systems with an immobile conductive lid on top of the convecting region cool significantly

slower when compare to those that allow for some kind of surface mobilization, e.g., Schubert et

al. (2001).

3.3.2 Scaling laws for αMLT and βMLT

Table 4 provides scaling laws for the calibrated αMLT and βMLT as a function of Rayleigh number

and viscosity contrast. In addition, the resulting maps of the two calibration parameters are shown

in Fig. 7. The analytical expressions provided in Tab. 4 are fully empirical as we are not attempting

here to derive a physical model of αMLT and βMLT. Nusselt number and average temperature of

the convective system are reproduced by the simple parameterization for αMLT and βMLT with

discrepancies within 10% when compared to the numerical simulation experiments. Our scaling

laws offer a significant improvement in accuracy, as opposed to 60% and 20% respectively using

the conventional mixing length.
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Our analytical formulations of αMLT and βMLT can yet be used outside the range of our numeri-

cal simulations as we chose smooth functions which do not diverge away from the fitted parameter

range. Because of fundamental differences between the convection regimes, it is challenging to

consolidate all three regimes into a simple scaling parameterization. Therefore, we subdivide each

dataset of αMLT and βMLT into two corresponding to (a) whole-layer/transitional convection and

(b) convection beneath an immobile conductive lid. The discontinuity between these two regimes

has been established in accordance with the Péclet numbers of the numerical simulations (Tab. 2)

and is illustrated with the thick black boundary line in Fig. 7.

Our empirical expressions for αMLT given in Tab. 4 are identical in shape for both heating

modes. The parameter αMLT can be described as a steep cliff close to the critical Rayleigh num-

ber which transitions into a slightly sloping plateau at larger Rayleigh numbers. For mobile and

sluggish cases, we find that βMLT can be reasonably fitted by using a hyperbolic tangent in the

Rayleigh number space. We observe that the parameter βMLT slightly decreases with the Rayleigh

number for the bottom-heated simulations, whereas it increases with the Rayleigh number for the

mixed-mode heating. In the stagnant-lid regime, we fit βMLT with a plane in logarithmic spaces of

both Rayleigh number and viscosity contrast. More numerical investigations would be required to

confirm the trends provided by Kamata (2018) who reported an exponential decrease of αMLT and

βMLT with increasing viscosity contrast in the stagnant-lid regime.

Although mixing-length theory would provide a reasonably-looking solution using an extrap-

olated mixing length, we cannot estimate the misfit between such solution and the output of a

numerical simulation using the according Rayleigh number and viscosity contrast. However, we

can compare our extrapolations with existing Nusselt-Rayleigh scaling laws; at least for the exten-

sively studied case of isoviscous fluids. In doing so, we fit isoviscous simulations of the calibrated

MLT with Rayleigh number Rab up to 1010 to the following relationship:

Nu = a

(
Ra

Rac

)b
, (23)

where a and b represent fitting coefficients and Rac is the critical Rayleigh number. A critical

Rayleigh number of about 103 is derived from linear stability analysis, e.g., Schubert et al. (2001).

However, the results are relatively insensitive to the choice of Rac (Weller et al. 2016).
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For bottom heating, we find for a and b the values 1.4 and 0.29, respectively. The exponent b

of the Nusselt-Rayleigh scaling law is in good agreement with the range of 0.26 to 0.29 suggested

by similar numerical simulations (Wolstencroft et al. 2009; Deschamps et al. 2010). However, b is

lower when compared to the analytically found relationship of Nu ∝ Ra1/3 for fluids heated from

below (Solomatov 1995).

For mixed-mode heating, we obtain for a and b in Eq. [23] the values 0.85 and 0.19, respec-

tively. This exponent b for thermal convection in spherical geometry is significantly lower when

compared to the one reported by Deschamps et al. (2010). However, the heating rate that we are us-

ing is lower than the lowest value of Deschamps et al. (2010) (3.6975 vs. 5.0 - 40), so our cases are

closer to the bottom-heated cases of Deschamps et al. (2010) and Deschamps & Sotin (2001). In

the latter study, the authors report an exponent as small as 0.21. An additional difference between

the cases presented here and the ones of Deschamps et al. (2010) is that we are using adiabatic

heating and cooling (EBA).

3.3.3 Comparison of numerical and calibrated temperature profiles

A detailed comparison between distributions of temperature according to mixing-length theory

and numerical simulation experiments is given in Fig. 8. The mixing-length formalism is capable

of generating temperature profiles in reasonable agreement with 3-D numerical simulations, if a

proper calibration for the mixing length is used (blue solid curves).

For mobile-lid convection (Fig. 8(a) and (d)), the largest discrepancy between calibrated MLT

and numerical experiments is found at the top of the bottom boundary layer. In this region, we

observe a difference in temperature as large as a few hundred Kelvin. The offset can be explained

by considering lateral motion of the fluid in a three-dimensional geometry, which strongly affects

the temperature distribution close to thermal boundary layers and can even cause locally a negative

temperature gradient (e.g., Fig. 8(d)). Such effects cannot be reproduced by the one-dimensional

MLT, however our calibration still allows to fit the Nusselt numbers and internal temperature,

which control the thermal evolution of planets. For thermal convection corresponding to the tran-

sitional regime (Fig. 8(b) and (e)), temperature distributions show discrepancies either at the top
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of the lower thermal boundary layer (for bottom heating, Fig. 8(b)), or in the mid-region of the

convective system, if none or only a shallow bottom thermal boundary exists (for mixed-mode

heating, Fig. 8(e)). Finally, for stagnant-lid convection (Fig. 8(c) and (f)), discrepancies between

calibrated MLT and numerical experiments are almost non-existent.

Upon comparison with numerical experiments, our calibrated MLT models (blue solid curves)

show a considerable improvement against the models relying on the conventional mixing-length

formulation (red dashed curves), in particular for whole-layer convection characterized by a small

viscosity contrast (Fig. 8(a) and (d)) and convection beneath an immobile conductive lid emerging

at a large viscosity contrast (Fig. 8(c) and (f)). Thermal gradients within the boundary layers

are more accurately reproduced by a calibrated mixing length and lead to a better agreement of

the general temperature distributions (e.g., Fig. 8(a) and (c)). Furthermore, average temperatures

characterizing the thermal structure in the mid-region of the convective system are also in better

agreement with results from convection simulations (e.g., Fig. 8(b) and (e)).

3.3.4 Depth-dependent viscosity

Five additional simulations employing a depth-dependent viscosity were performed as a test. Our

approach was able to obtain very good regressions of the Nusselt number and the temperature

profile without need for additional complexity (and with accuracy identical to the previous cases).

The four first cases employ a gradual increase of viscosity with depth:

η(T, d) = ηt

(
ηb
ηt

) Tt−T
Tt−Tb

∆η
d
D
d , (24)

where d is depth and ∆ηd is the viscosity contrast. The last case employs a viscosity jump at mid-

mantle depth. No internal heating was used in these tests. Table 5 shows the calibration coefficients

α and β obtained together with the Nusselt number and average temperature from the direct 3-

D numerical simulations. To compare the simulations with depth-dependent viscosity with the

purely temperature-dependent ones, we use the bottom Rayleigh number and the viscosity contrast

between top and bottom of the domain (which is equivalent to what is shown in Fig. 6).

We observe that all simulations employing a viscosity contrast inferior to 104 are well repro-

duced by a coefficient α close to 1.9. Figure 6 showed that α decreases for increasing thermal
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viscosity contrast. Interestingly, this result does not seem to apply to the depth dependence of the

viscosity. This indicates that α depends more on ∆ηT than ∆ηd. Furthermore, we observe that α

decreases to 0.949 when the top to bottom viscosity contrast is 104. This corresponds to the case

19 in Fig. 6 which has the identical viscosity contrast and bottom Rayleigh number and was found

to be best fitted with a coefficient α of 1.09.

For a viscosity which does not depend solely on temperature, we find that for a viscosity

contrast inferior to 104 the calibration coefficient β slightly increases with increasing depth depen-

dence of the viscosity. Table 5 also shows that β weakly depends on the thermal viscosity contrast,

which is consistent with the results depicted in Fig. 6 for top to bottom viscosity contrast inferior

or equal to 104.

3.3.5 Time dependence of the solution

The mixing-length formalism provides the evolution of temperature at each point of the profile

(Eq. [2]). Computing the time dependence of the solution is therefore straightforward. Figure 9

depicts a comparison between the average temperature obtained with the direct 3-D numerical

simulations and with the mixing-length approach. We see that our calibrated mixing length is

able to reproduce the appropriate kinetics of evolution of the temperature profile according to two

selected examples.

The blue curves in Fig. 9 show that mixing-length theory can capture the natural time scale

of the system as the temperature decrease is similar. However, MLT cannot reproduce strong time

non-linearities like overshoots or periodic behaviors. This limitation also unfortunately applies to

boundary-layer theory. Since a linear temperature profile was used as initial condition in our 3-D

simulations, Fig. 9 shows that mixing-length theory gets to a very accurate equilibrium using a

different process than overturns naturally occurring in the 3-D simulations. Instead, the mixing-

length model builds boundary layers to equilibrium using only 1-D processes: gradual growth of

boundary layers and homogenization of the internal temperature. Very non-dynamically consis-

tent initial temperature fields are therefore difficult to reproduce accurately using MLT, but the

evolution kinetics is still satisfyingly captured.
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4 CONCLUSION AND CRITICAL COMMENTS

Reliable estimates of heat flux and temperature for the viscous mantle are essential when com-

puting the thermal state of planetary bodies. In particular if geophysical processes on terrestrial

planets such as the generation of self-sustained magnetic fields are of interest, mixing-length the-

ory could be a solid method to gather important information from large ensembles of planet models

covering a wide parameter space. Therefore, we focused in this study on the extension of MLT for

highly viscous fluids (Sasaki & Nakazawa 1986; Abe 1995) to calculate the heat flux of convective

systems and to obtain a corresponding radial temperature distribution.

Building on the work of Kamata (2018), we thoroughly calibrate the mixing-length parameter

of the local mixing-length theory by comparison to fully dynamic simulations, which have been

carried out with the mantle convection code Gaia. We thereby lay our focus on a 3-D spherical

geometry with an inner to outer core radius that mimics the ratio of the Earth. The ultimate goal of

this exercise is to derive simple but accurate parameterizations for the mixing length, describing

the heat transport of different convective regimes of planetary mantles. The calibration derived in

this study is only fully valid for Earth-like planets heated either from below or from below and

within. Differences in geometry and/or heating mode should result in different parameterizations

for the local mixing-length. We also expect that the time-varying distribution of heat producing

elements in a convecting system may further complicate possible parameterizations of thermal

convection. Furthermore, we have limited ourselves to a temperature-dependent viscosity only.

However, viscosity depends not only on temperature but also on pressure, although the pressure

effect is heavily debated in current literature, e.g., Karato (2011). More numerical investigation is

therefore needed to provide generalized scaling laws for αMLT and βMLT parameters.

In the mobile-lid regime, the present study showed that a carefully calibrated MLT is now

capable of reproducing the thermal structure suggested by our numerical simulation experiments

with good accuracy, thereby significantly improving a single-parameter calibration of Tachinami

et al. (2011) obtained from Nusselt-Rayleigh scaling laws. For the special case of an isoviscous

fluid (∆ηT = 100), mixing length has to be significantly larger when compared to its conventional

formulation of Abe (1995). With respect to this calibration, mixing-length theory produces results
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in good agreement to those predicted by phenomenological Nusselt-Rayleigh scaling laws for

thermal convection.

In the stagnant-lid regime, we demonstrated that the conventional mixing-length formulation

cannot simultaneously reproduce heat flux and average temperature of our numerical simulations

with sufficient accuracy. This finding challenges the study of Kimura et al. (2009), in which it is

claimed that the transition from mobile-lid to stagnant-lid convection naturally arises from mixing-

length theory (cf. figure 9 of their original work). Nonetheless, the present study provides an

appropriate calibration for the local mixing-length parameter that makes mixing-length theory

also perfectly applicable to stagnant-lid convection. For stagnant-lid convection, mixing length is

substantially lower and its peak depth is found at greater depths, when compared to the original

formulation of Abe (1995). These results are in good agreement with the findings of Kamata

(2018).

In the sluggish-lid regime, we find that a calibrated mixing-length theory cannot always accu-

rately reproduce the temperature profile of our numerical simulations even though our calibration

increases the quality in comparison to the conventional formulation by at least a factor of 2. This

is however expected as large temperature and viscosity lateral variations develop in this regime

(only). It cannot be expected that such 3-D effects can be perfectly accounted for in the framework

of a 1-D model.

Adding internal heat sources into a convective model introduces additional asymmetry in both

the stream function and temperature fields (Jarvis & Peltier 1989). According to our numerical

convection simulations, Nusselt numbers decrease on average, whereas average temperatures in-

crease on average, when uniformly distributed heat sources are added into the convective system.

Consequently, the presence of internal heat sources strongly affects the calibration, in particular

the calibration parameter controlling the peak depth of the mixing length.

In summary, the mixing-length theory is a simple and fast approach to calculate surface heat

fluxes and radial temperature distributions for rocky planets considered at quasi-static equilib-

rium. Such methods are essential when huge ensembles of newly discovered exoplanets have to be

processed to constrain their internal structure and chemical composition using Bayesian analysis,
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e.g., Dorn et al. (2015). With the new calibration, a mixing-length parameterization of convective

heat transport is established as an alternative approach to the widely used boundary-layer theory.

The present parameterization covers a large range of Rayleigh numbers and viscosity contrasts

widely used in the literature to model the interior dynamics of terrestrial planets (Schubert et al.

2001; Tosi et al. 2014). Since the method relies on local values of physical quantities, the mixing-

length theory yields a better spatial resolution when compared to other parameterized convection

models (Tachinami et al. 2011). Internal heating, e.g., due to the decay of radiogenic elements or

the dissipation of tidal energy, can be taken into account easily by adding a heat generation term

to the advection-diffusion equation. Thus, the mixing-length theory is well suited for calculating

the thermal structure of terrestrial planets including rocky exoplanets, which may exhibit radial

compositional changes and pressure-induced phase transitions acting as convective boundaries.
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Table 1. Modeling parameters.

Parameter Bottom heated Mixed heated

rt, km 6370 6370

rb, km 3475 3475

D, km 2895 2895

Tt, K 300 300

Tb, K 2850 2850

∆T , K 2550 2550

H , W kg−1 − 1× 10−12

ρ, kg m−3 4500 4500

g, m s−2 10 10

CP, J kg−1 K−1 1190 1190

kc, W m−1 K−1 4 4

κc, m2 s−1 9× 10−7 9× 10−7

α, K−1 3× 10−5 3× 10−5
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Table 2. Numerical simulation experiments.

Bottom heated Mixed heated

Case Rab ∆ηT Tavg [K] Nu σNu [%] Pe Stationarity Case Rab ∆ηT Tavg [K] Nut Nub Pe Stationarity

mobile-lid regime mobile-lid regime

1 105 100 1034 4.764 1.50 235.9 time-dependent 1 105 100 1430 1.861 -11.337 211.5 time-dependent

2 106 100 1052 10.008 1.40 737.8 time-dependent 2 106 100 1310 3.008 -27.870 543.2 time-dependent

3 106 101 1149 6.304 1.59 319.3 time-dependent 3 106 101 1535 2.118 -16.072 226.0 time-dependent

4 106 102 1170 3.956 0.78 110.3 steady-state 4 106 102 1708 1.428 -5.648 145.9 time-dependent

5 107 102 1287 7.552 1.89 351.1 time-dependent 5 107 101 1342 3.306 -37.095 756.0 time-dependent

6 107 103 1361 4.583 0.88 237.1 time-dependent 6 107 102 1554 2.291 -19.711 361.4 time-dependent

7 108 103 1389 8.445 2.61 952.2 time-dependent 7 107 103 1700 1.546 -6.986 216.4 time-dependent

8 108 104 1463 5.539 2.09 410.0 time-dependent 8 108 102 1317 3.662 -43.918 1184.5 time-dependent

9 109 104 1473 10.401 2.40 1008.9 time-dependent 9 108 103 1554 2.598 -24.975 572.9 time-dependent

10 109 105 1463 6.241 0.30 418.8 time-dependent 10 108 104 1685 1.501 -7.082 184.4 time-dependent

sluggish-lid regime 11 109 103 1264 3.820 -48.978 1770.6 time-dependent

11 104 100 996 2.660 1.58 50.6 steady-state 12 109 104 1529 2.589 -24.644 1159.5 time-dependent

12 104 101 1052 1.629 0.83 12.7 steady-state 13 109 105 1671 1.678 -10.010 163.4 time-dependent

13 104.5 102 1082 1.311 1.03 6.8 steady-state 14 1010 104 1300 3.414 -43.418 3281.0 time-dependent

14 105 101 1070 3.288 0.06 84.1 time-dependent 15 1010 105 1491 2.407 -27.511 1066.8 time-dependent

15 105 102 1091 2.108 0.19 22.2 steady-state 16 1010 106 1706 1.739 -11.118 181.4 time-dependent

16 105 102.5 1087 1.600 1.06 11.5 steady-state sluggish-lid regime

17 105.5 103 1115 1.948 1.07 15.7 steady-state 17 104 100 1700 1.304 -3.252 52.9 steady-state

18 106 103 1152 2.465 2.46 32.6 steady-state 18 104 101 1811 1.133 -0.720 14.4 steady-state

19 106 104 1121 1.417 1.15 9.7 steady-state 19 105 101 1715 1.318 -3.956 83.4 steady-state

20 107 104 1318 3.437 1.85 77.2 time-dependent 20 105 102 1853 1.165 -1.203 33.4 steady-state

21 108 105 1448 3.777 3.27 83.1 time-dependent 21 106 103 1825 1.218 -2.412 48.7 time-dependent

22 109 106 1493 3.831 5.71 79.0 time-dependent 22 107 104 1791 1.243 -2.119 58.0 time-dependent

stagnant-lid regime 23 108 105 1748 1.164 -1.364 34.2 time-dependent

23 106.5 105 1245 1.344 1.10 0.2 steady-state 24 109 106 1736 1.167 -1.284 9.8 time-dependent

24 106.5 105.5 1161 1.146 1.06 0.1 steady-state stagnant-lid regime

25 107 105 1353 1.690 0.77 1.1 steady-state 25 106 104 1854 1.020 0.942 0.7 time-dependent

26 107 106 1251 1.307 0.81 0.0 steady-state 26 107 105 1838 1.041 0.538 0.4 time-dependent

27 107.5 105.5 1387 1.773 1.32 1.0 time-dependent 27 107 106 1854 1.015 0.855 0.0 time-dependent

28 108 106 1412 1.862 2.31 1.2 time-dependent 28 108 106 1812 1.055 0.198 0.3 time-dependent
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Table 3. Mixing-length calibration parameters.

Bottom heated Mixed heated

Case Rab ∆ηT αMLT βMLT Case Rab ∆ηT αMLT βMLT

mobile-lid regime mobile-lid regime

1 105 100 1.9423 1.0607 1 105 100 2.0214 0.6898

2 106 100 2.0188 1.0311 2 106 100 1.9106 0.7930

3 106 101 1.9080 1.0041 3 106 101 1.8828 0.5642

4 106 102 1.7426 1.0771 4 106 102 1.8213 0.0647

5 107 102 1.6675 0.9375 5 107 101 1.6287 0.8809

6 107 103 1.4224 0.8728 6 107 102 1.5663 0.6590

7 108 103 1.3599 0.9317 7 107 103 1.5251 0.1573

8 108 104 1.2305 0.8537 8 108 102 1.3580 1.0698

9 109 104 1.1877 0.9675 9 108 103 1.3317 0.8102

10 109 105 0.9899 1.0474 10 108 104 1.0360 0.3914

sluggish-lid regime 11 109 103 1.0389 1.2979

11 104 100 2.0331 1.1619 12 109 104 0.9456 1.0369

12 104 101 1.6457 1.1739 13 104.5 102 1.2301 1.1768

13 104.5 102 1.2301 1.1768 14 1010 104 0.6698 1.4036

14 105 101 1.9522 1.1217 15 1010 105 0.5988 1.2826

15 105 102 1.7323 1.1845 16 1010 106 0.6870 0.6016

16 105 102.5 1.4822 1.2389 sluggish-lid regime

17 105.5 103 1.6194 1.2450 17 104 100 2.6740 0.0206

18 106 103 1.5188 1.1894 18 104 101 2.4299 0.2537

19 106 104 1.0948 1.2751 19 105 101 2.1162 0.0303

20 107 104 1.4435 1.0349 20 105 102 2.2231 0.1156

21 108 105 1.0994 0.8927 21 106 103 2.0070 0.0214

22 109 106 0.7908 0.9135 22 107 104 1.5768 0.0428

stagnant-lid regime 23 108 105 0.9756 0.1238

23 106.5 105 0.5101 0.3585 24 109 106 0.7511 0.1108

24 106.5 105.5 0.3817 0.4202 stagnant-lid regime

25 107 105 0.6027 0.3410 25 106 104 0.4310 0.6734

26 107 106 0.3627 0.2101 26 107 105 0.4607 0.6050

27 107.5 105.5 0.5321 0.2937 27 107 106 0.2895 0.6794

28 108 106 0.4839 0.3021 28 108 106 0.4109 0.5537
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Table 4. Best regression of αMLT and βMLT.

Fitting parameters Scaling equations

Bottom heated Mixed heated Mobile (incl. sluggish) and Stagnant

Stagnant Mobile Stagnant Mobile α = [a0 − a1 lg (∆η) − a2 lg (Ra)] tanh
[
a3 lg

(
Ra
Rac

)]

α β α β α β α β Mobile (incl. sluggish)

a0 0.927 0.930 2.550 1.059 0.794 1.167 3.642 0.699 β = a0 − a1 tanh
[
lg (Ra) − a2 − a3 lg (∆η)a4

]
a1 0.165 0.0857 0.153 0.158 0.132 -0.0686 0.0487 -0.654 Stagnant

a2 -0.0684 0.0220 0.0886 5.014 -0.0515 0.129 0.281 5.478 β = a0 − a1 lg (∆η) − a2 lg (Ra)

a3 3.823 2.326 0.628 1.897 3.019 0.862 Critical Rayleigh number approximation

a4 0.774 0.915 lg (Rac) = 4.323 + 2.922 tanh [0.243 lg (∆η) − 0.544]
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Table 5. Cases employing a depth-dependent viscosity. For cases 29 to 32, the viscosity increase with depth

is gradual (see, Eq. [24]). For case 33, we impose a viscosity jump at mid-mantle depth.

Case Rab ∆ηT ∆ηd ∆ηtop−bot Tavg [K] Nu αMLT βMLT

29 106 1 101 10−1 851.35 11.915 1.8937 1.1089

30 106 103 101 102 1028.9 4.0239 2.0341 1.2627

31 106 105 101 104 1130.4 1.3043 0.94942 1.1155

32 105 1 102 10−2 683.96 6.3854 1.8081 1.3059

33 106 1 25 0.04 752.90 9.2986 1.9363 1.1893
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Figure 1. Distributions of mixing length for different combinations of the calibration parameters αMLT and

βMLT.
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Figure 2. Comparison of (a) non-dimensional heat fluxes and (b) average temperatures. Calculations ac-

cording to the conventional mixing-length theory are compared to the results of the numerical simulation

experiments compiled in Tab. 2. The numbers inside each symbol refer to the simulation case. Bottom-

heated cases are shown by white symbols, while mixed-heated cases by black symbols.
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Figure 3. Distributions of temperature for fluids heated from below: (a) isoviscous case (∆η = 100) and

different Rayleigh numbers; (b) fixed Rayleigh number Ra of 107 and different viscosity contrasts. Note

that the distance to the nearest thermal boundary layer (conventional MLT) has been taken as local mixing

length during all calculations.
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Figure 4. Effect of the calibration parameters αMLT and βMLT on Nusselt number and average temperature

for (a) bottom heating and (b) mixed-mode heating. By default, fixed means that the calibration parameter

is set to 1. Note that a Rayleigh number Ra of 107 and a viscosity contrast ∆η of 103 have been chosen for

the calculations.
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Figure 5. Comparison of (a) non-dimensional heat fluxes and (b) average temperatures. Calculations ac-

cording to the calibrated mixing-length theory are compared to the results of the numerical simulation ex-

periments complied in Tab. 2. The numbers inside each symbol refer to the simulation case. Bottom-heated

cases are shown by white symbols, while mixed-heated cases by black symbols.
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(a) (b)

(c) (d)

Figure 6. Mixing-length calibration parameters αMLT and βMLT for (a) and (b) bottom heating and (c)

and (d) mixed-mode heating. The numbers inside each symbol refer to the simulation case. The different

symbols correspond with a certain range of Péclet numbers and group each dataset into major convective

regimes.
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(a) (b)

(c) (d)

Figure 7. Same as Fig. 6, however the maps have been obtained from the regression model by assuming

a major discontinuity between transitional and conductive-lid convection (thick black boundary line). The

shape of the sharp boundary itself has been chosen arbitrarily to fit between points.
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Figure 8. Temperature distribution according to our fully dynamic simulations compared to results from

the conventional and the calibrated mixing-length theory, respectively. While panels in the first row show

bottom-heated cases, panels in the second row correspond to cases employing mixed-mode heating. The

first, second, and third columns show mobile-lid, sluggish-lid, and stagnant-lid cases, respectively.
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Figure 9. Comparison between the time dependence of the average mantle temperature obtained in the

direct 3-D simulations and using the calibrated mixing length.
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