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s0010 133.1 Introduction

p0010 Volcanism on Earth and the generation of the oceanic and

continental crust predominantly occur along divergent or con-

vergent margins. At mid-oceanic ridges, decompression of the

upwelling mantle induces magmatism. At subduction zones,

the influx of fluids released from the metamorphic dehydra-

tion reactions in the downgoing slab leads to partial melting of

the overlying hot mantle wedge. In contrast, several forms of

volcanism are less readily explained by plate tectonic processes.

These include, for example, the formation of intraplate hotspot

islands (such as Hawaii) and excessive flood basalt volcanism

at plate boundaries (such as at Iceland).

p0015 The most prominent melting anomalies typically occur on

top of a broad swelling of topography and are trailed by a

volcano chain that parallels plate motion. In some cases,

these chains project back to massive volcanic plateaus (large

igneous provinces, LIPs), suggesting that hotspot activity began

with magmatic outbursts as large as any in the geologic record

(Duncan and Richards, 1991; Morgan, 1972; Richards et al.,

1989; White and McKenzie, 1989). These observations have

led to the establishment of classical ‘hotspot’ theory proposed

by Wilson (1963, 1973), Morgan (1971, 1972), and Crough

(1978), who describe hotspots as positive thermal anomalies

in the mantle that are fixed relative to the motion of the

tectonic plates. These plumes cause excess seafloor elevation

and feeding age-progressive volcanism.

p0020 Modern dating techniques, however, recover complex age

patterns for many volcano chains and reveal that intraplate

volcanism cannot universally be ascribed to activity at local-

ized hotspots (Koppers et al., 2003; McNutt et al., 1997). In

addition, some hotspots are not confidently linked to anoma-

lously high mantle temperatures (Klein and Langmuir, 1987;

Langmuir et al., 1992). In turn, most hotspots are fed by

melting of a source that is geochemically distinct and typically

more fertile than ‘normal’ mantle that feeds mid-ocean ridge

(MOR) melting (Hart et al., 1973; Hofmann, 1997; Jackson

and Dasgupta, 2008; Schilling, 1971, 1973). Thus, the term

‘melting anomaly’ may be more general and appropriate to

describe the topic of this chapter.

p0025 The differences between the hotspot source and the ‘nor-

mal’ mantle in bothmajor elements and isotopes ( Jackson and

Dasgupta, 2008) suggest that volcanism at melting anomalies

has origins that are at least partly decoupled from plate tectonic

processes. A straightforward explanation is that magmatism is

sustained by convective upwellings or plumes of unusually

hot, buoyant mantle, which rise from the lower mantle

(Morgan, 1971, 1972; Whitehead and Luther, 1975; Wilson,

1963, 1973), possibly through a chemically heterogeneous

mantle (e.g., Richter and McKenzie, 1981). The morphology

of a mantle plume, simulated in laboratory and numerical

experiments, is predicted to have a large ‘mushroom’-shaped

head and a trailing, narrower plume stem. This geometry is

similar to that expected for the formation of an LIP followed by

a hotspot track (e.g., Campbell and Griffiths, 1990; Richards

et al., 1989). Recent regional (e.g., Wolfe et al., 2009) and

global seismic studies (e.g., Boschi et al., 2007; Montelli

et al., 2006; Zhao, 2007) are providing increasingly convincing

evidence for mantle plumes originating in the lower mantle.

Another observational link to the deep mantle is the spatial

relation of hot spot and LIP locations to the edges of large low-

shear-wave-velocity provinces (LLSVPs) imaged at the base of

the mantle (Boschi et al., 2007; Burke and Torsvik, 2004;

Torsvik et al., 2006).

p0030Studies of hotspots have flourished over the past few

decades. Recent articles and textbooks discuss some of the

classic ties of hot spots to mantle plumes (e.g., Campbell,

2007; Campbell and Kerr, 2007; Condie, 2001; Davies, 1999;

Foulger and Jurdy, 2007; Foulger et al., 2006; Jackson, 1998;

Schubert et al., 2001; Sleep, 2006), the role of mantle plumes

in deep mantle convection and chemical transport (e.g.,

Deschamps et al., 2011; Jellinek and Manga, 2004; Kumagai

et al., 2008), and oceanic hot spots (e.g., Ballmer et al., 2011;

Hekinian et al., 2004; Ito et al., 2003). It has become apparent

that only a few hot spots confidently show all of the previously

mentioned characteristics of the classic plume description

(Clouard and Bonneville, 2001; Courtillot et al., 2003). The

term ‘hotspot’ itself implies a localized region of anomalously

high mantle temperature, but some features that were origi-

nally called hotspots may involve little or no excess heat or

large distances of coeval volcanism. To understand these dis-

crepancies, there has been significant exploration of the inter-

action of mantle plumes with plate tectonic processes (e.g.,

Kincaid et al., 2013; Mittelstaedt et al., 2012), the dynamic

effect of compositional heterogeneity (Ballmer et al., 2013b;

Davaille, 1999; Kumagai et al., 2008; Lin and van Keken,

2005), and mechanisms that can feed non-hot spot volcanism

(Ballmer et al., 2007; Clouard and Gerbault, 2008; Conrad

et al., 2011). The progress made in the last decade motivates

a comprehensive review on studies of hotspots, LIPs, and

melting anomalies. We here summarize the main observations,

outline the mechanisms that have been proposed to cause

hotspots and other melting anomalies, and pose questions

that need quantitative answers.

s0015133.2 Characteristics

p0035Guided by the classical description of hot spots, we examine

four main characteristics: (1) geographic age progression along

volcano chains, (2) initiation by massive flood basalt

volcanism, (3) a swell of anomalously shallow topography

surrounding volcanoes, and (4) basaltic volcanism with geo-

chemical distinction from most MOR basalts (MORBs). Given

the marked progress in seismic methods over the past decade,

we also summarize the findings of mantle seismic structure

beneath hot spots and surface melt anomalies. Table 1 pro-

vides a compilation of the previously mentioned characteristics

for the 67 hot spots and melting anomalies. Figure 1 shows a

global map of their locations with abbreviations and the main

LIPs that we will discuss.

s0020133.2.1 Volcano Chains and Age Progression

s0025133.2.1.1 Long-lived age-progressive volcanism
p0040At least 13 hotspot chains record volcanism enduring for more

than 50 My. The Hawaiian–Emperor and the Louisville chains,

for example, span thousands of kilometers across the Pacific
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Table 1t0010 Summary of characteristics

Name
(abbreviation)

Hot spot E.
long., N. lat.

Age
progression? Age range

Swell? and width
(km) Connection to LIP?

Geochemically distinct from
MORB

Pacific
Baja (BAJ) �113, 27 – – No No –
Bowie–
Kodiak
(BOW)

�130, 49.5 Ok 0.1–23.8 Ma Yes/250 km No Maybe 206Pb/204Pb

Caroline
(CAR)

�163, 5.3 Weak 1.4 Ma (east) to
4.7–13.9 Ma
(west)

– No No

Cobb (COB) �128.7,
43.6

Good 1.5–29.2 Ma Yes/370 No No

Cook (CK) �149.5,
�23.5

No 0.2–19.4 Ma Yes/500 No 206Pb/204Pb

Austral (AU) �140.0,
�29.37

No 0–58.1 Ma Yes/600 No 206Pb/204Pb

Easter (EAS) �109, �27 Good 0–25.6 Ma yes/580 Maybe Tuamotu
and Mid-Pac

206Pb/204Pb

Foundation
(FOU)

�111, �39 Good 2.1–21 Ma Yes/250 No 206Pb/204Pb

Galápagos
(GAL)

�91.6, �0.4 Yes 0–14.5 Ma
offshore;
69–139 Ma,
Caribbean LIP

Yes/300 Caribbean LIP 206Pb/204Pb

Geologist
(GEO)

�157, 19 No 82.7–84.6 Ma – No –

Guadalupe
(GUA)

�118, 29 – <3.4 to�20.3 Ma Maybe/? No –

Hawaii–
Emperor
(HAW)

�155.3,
18.9

Good 0–75.8 Ma Yes/920 No 3He/4He and 87Sr/86Sr for
Hawaiian Islands but not
Emperor Seamounts

Japanese–
Wake
(JWK)

– No 78.6–119.7 Ma No No 206Pb/204Pb

Juan
Fernandez
(JFE)

�79, �34 Weak 1–4 Ma
(2 volcanoes
dated)

Yes/? No 3He/4He and 87Sr/86Sr

Line Islands
(LIN)

– No 35.5–91.2 Ma. Partially/? Maybe Mid-Pac –

Louisville
(LOU)

�141.2,
�53.6

Good 1.1–77.3 Ma Yes/540 Doubtfully OJP 206Pb/204Pb, maybe 87Sr/86Sr

Magellan
Seamounts
(MAG)

– No 87–118.6 Ma No No 87Sr/86Sr and 206Pb/204Pb

Marquesas
(MQS)

�138.5, �
11

Ok 0.8–5.5 Ma Yes/850 Maybe Shatsky or
Hess

87Sr/86Sr, maybe 206Pb/204Pb

Marshall
Islands
(MI)

– No 68–138 Ma Maybe/? No 206Pb/204Pb

Mid-Pacific
Mountains
(MPM)

– No 73.5–128 Ma No It could be an LIP –

Musician
(MUS)

– Ok 65.5–95.8 Ma No No –

Pitcairn (PIT) �129.4,
�25.2

Good 0–11.1 Ma Yes/570 No 87Sr/86Sr

Pukapuka
(PUK)

�165.5,
�10.5

Ok 5.6–27.5 Ma Yes/? No 206Pb/204Pb

Samoa (SAM) �169,
�14.3

Weak 0–23 Ma 400 No 87Sr/86Sr, 3He/4He, and
206Pb/204Pb

San Felix (SF) �80, �26 – – Yes/? No –
Shatsky
(SHA)

– Yes 128–145 Ma No It is an LIP No

(Continued)
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Table 1 (Continued)

Name
(abbreviation)

Hot spot E.
long., N. lat.

Age
progression? Age range

Swell? and width
(km) Connection to LIP?

Geochemically distinct from
MORB

Society (SOC) �148, �18 Good 0.01–4.6 Ma Yes/? No 87Sr/86Sr and 206Pb/204Pb
Socorro
(SCR)

�111, 19 – – Yes/? No –

Tarava (TAR) 173, 3 Weak 35.9 Ma and
43.5 Ma

Yes/? No –

Tuamotu
(TUA)

– Good 58–74 Ma Yes/? No –

North
America

Yellowstone
(YEL)

�111, 44.8 Yes 16–17 Ma Yes/600 Maybe Columbia
River basalts

–

Australia
Balleny (BAL) 164.7,

�67.4
Weak – – Maybe Lord Howe

Rise

206Pb/204Pb (2 analyses)

East Australia
(AUS)

143, �38 – – – – –

Lord Howe
(LHO)

159, �31 – – – It could be LIP –

Tasmantid
(TAS)

153, �41 Yes – Yes/300 Maybe Lord Howe
Rise

–

Africa
Afar (AF) 42, 12 No – – – –
East Africa/
Lake
Victoria
(EAF)

34, 6 No – – – –

Darfur (DAR) 24,13 No – – – –
Ahaggar
(HOG)

6, 23 No – – – –

Tibesti (TIB) 17, 21 No – – – –
Ascension/
Circe (ASC)

�14, �8 – <1 Ma
(Ascension) and
6 Ma (Circe)

Yes/800 No 206Pb/204Pb

Azores (AZO) �28, 38 Seafloor
spreading

0–20 Ma, possibly
�85 Ma

Yes/2300 No 87Sr/86Sr and 206Pb/204Pb

Bermuda
(BER)

�65, 32 – – Yes/500�700
(parallel�perp
to plate motion)

No –

Bouvet (BOU) 3.4, �54.4 – ? Yes/900 Agulhas Plateau? 206Pb/204Pb, maybe 87Sr/86Sr
and 3He/4He

Cameroon
(CAM)

6, �1 No 1–32 Ma Yes/500–600 No 206Pb/204Pb

Canaries
(CAN)

�17, 28 Ok 0–68 Ma No No 206Pb/204Pb

Cape Verde
(CAP)

�24, 15 No Neogene Yes/800 No 87Sr/86Sr and 206Pb/204Pb

Discovery
(DIS)

�6.45,
�44.45

– 35–41 Ma Yes/600 No –

Fernando Do
Noronha
(FER)

�32, �4 – – Yes/200–300 – 87Sr/86Sr and 206Pb/204Pb

Great Meteor
(GM)

– – – Yes/800 – –

Iceland (ICE) �17.6, 64.6 Yes 0–62 Ma Yes/2700 N. Atlantic LIP 3He/4He
Madeira
(MAD)

�17.5, 32.7 Yes 0–67 Ma No No 206Pb/204Pb

New England
(NEW)

�57.5, 35 Yes 81–103,
122–124 Ma

No No 206Pb/204Pb, maybe 87Sr/86Sr

Shona–
Agulhas
(SHO)

�4, �52 – 2.5–81 Ma �900 – –

Sierra Leone
(SL)

�29, 1 – Not dated – It could be an LIP –

(Continued)
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Basin (�6000 and >4000 km, respectively), record volcanism

starting before 75 Ma (Duncan and Clague, 1985; Duncan and

Keller, 2004; Koppers et al., 2004; Watts et al., 1988), and were

among the first chains that led to the establishment of the

hotspot hypothesis. As both chains terminate at subduction

zones, the existing volcanoes likely record only part of the

activities of these hot spots (cf. Portnyagin et al., 2009).

p0045 In addition to Hawaii and Louisville, the Galápagos is the

third Pacific hotspot with a similar duration. Its interaction

with the Galápagos Spreading Center has produced two chains:

the Galápagos archipelago–Carnegie Ridge on the Nazca Plate

(Sinton et al., 1996) and the Cocos Ridge on the Cocos Plate.

The Cocos Ridge records oceanic volcanism for �14.5 My

(Werner et al., 1999) and projects toward the Caribbean LIP

(Duncan and Hargraves, 1984) with 40Ar/39Ar dates of

69–139 Ma (e.g., Hoernle et al., 2004; Sinton et al., 1997).

The geochemical similarity of these lavas with the Galápagos

archipelago is a compelling evidence for a total life span for the

Galápagos melting anomaly of�139 My (Hoernle et al., 2002,

2004).

p0050In the Indian Ocean, at least four hot spots have been

related to long-term activity. Muller et al. (1993b) compilation

of ages associates the Réunion hotspot to volcanism on the

Mascarene Plateau at 45 Ma (Duncan et al., 1990), the Cocos–

Laccadive Plateau at �60 Ma (Duncan, 1978, 1991), and

finally the Deccan flood basalts in India with dates as old

as �70 Ma (see also Sheth, 2005). The Comoros hotspot can

be linked to volcanism around the Seychelles islands at 63 Ma

(Emerick and Duncan, 1982; Müller et al., 1993b). Volcanism

onMarion (<0.5 Ma; cf. McDougall et al., 2001) projects along

a volcanic ridge to Madagascar (Meert and Tamrat, 2006).

While geologic dating is sparse, Storey et al. (1997) inferred
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Table 1 (Continued)

Name
(abbreviation)

Hot spot E.
long., N. lat.

Age
progression? Age range

Swell? and width
(km) Connection to LIP?

Geochemically distinct from
MORB

St. Helena
(SHE)

�10, �17 Yes 3–81 Ma Yes/720 No 206Pb/204Pb

Trindade–
Martim Vaz
(TRN)

�12.2,
�37.5

Probably <1 Ma to �85 Ma Yes/1330 Small eruptions
north of Paraná
flood basalts and
onto Brazilian
margin

87Sr/86Sr and 206Pb/204Pb

Tristan–
Gough
(TRI)

�9.9, �40.4 Yes 0.5–80 Ma and
130 Ma

Yes/850 Rio Grande–Walvis
and Paraná–
Etendeka

87Sr/86Sr

Vema (VEM) 16, �32 – >11 Ma Yes/200–300 –
Amsterdam–
St. Paul
(AMS)

77, �37 No – yes/300–500 Maybe Kerguelen Maybe 87Sr/86Sr

Comores
(COM)

44, �12 Yes 0–5.4 Ma on
island chain
and�50 Ma
(Seychelles)

yes/700–800 – 87Sr/86Sr and 206Pb/204Pb

Conrad (CON) 48, �54 – Not dated Half width 400
south of
seamounts

It could be an LIP –

Crozet (CRO) 50, �46 – Not dated Yes/1120 Maybe
Madagascar

206Pb/204Pb, maybe 87Sr/86Sr
(but few samples)

Kerguelen
(KER)

63, �49 Yes 0.1–114 Ma
(Kerguelen) and
38–82 Ma
(Ninetyeast–
Broken Ridge)

Yes/1310 It is an LIP 87Sr/86Sr

Marion
(MAR)

37.8, �46.8 Weak <0.5 Ma (Marion)
and 88 Ma
(Madagascar)

Half width 500 or
along axis
>1700

Madagascar
Plateau and
Madagascar
island flood
basalts

Maybe 87Sr/86Sr

Réunion
(REU)

55.5, �21 Yes 0–70 Ma Yes/1380 Mascarene,
Chagos–
Laccadive, and
Deccan
30–70 Ma

3He/4He and 87Sr/86Sr

Eurasia
Eifel (EIF) 7, 50 No – – – –

Blanks indicate that there are no data, where we did not find any data, where available data are inconclusive.

TGP2: 00133
Hotspots, Large Igneous Provinces, and Melting Anomalies 5

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and
typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



an age progression along this track back to �88 Ma. The Ker-

guelen hot spot is linked to Broken Ridge and Ninetyeast Ridge

on the Australian Plate andmultiple stages of volcanism on the

Kerguelen Plateau dating to 114 Ma (Frey et al., 2000; Krishna

et al., 2012; Nicolaysen et al., 2000; Figure 2).

p0055 In the Atlantic Ocean, at least seven long-lived melting

anomalies have been documented. The Tristan–Gough and

St. Helena chains record volcanism on the African Plate for

�80 My (O’Connor and Duncan, 1990; O’Connor and Roex,

1992; O’Connor et al., 1999). For Tristan–Gough, a connec-

tion to the Paraná flood basalts in South America and the

Etendeka basalts in Namibia may even extend the duration of

the melting anomaly to �130 My (O’Connor et al., 2012;

Peate, 1997). O’Connor et al. (2012) further proposed a con-

nection of the Shona seamounts with the Agulhas Ridge to

form another (zigzag-shaped) long-lived hotspot trail in the

South Atlantic (�80 My). The Trindade–Martim Vaz chain on

the South American Plate (Fodor and Hanan, 2000) extends to

the Alto Paranaiba and Poxoreu volcanic provinces of

ages �85 Ma (Gibson et al., 1997). In the North Atlantic, the

Madeira and Canary chains have recorded age-progressive vol-

canism for nearly 70 My (Geldmacher et al., 2005; Guillou
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et al., 2004). The Canaries are unusual in that single volcanoes

often remain active for tens of My (Geldmacher et al., 2005),

much longer than, for example, the typical duration of the

Hawaiian volcanoes’ shield stage of �1 My (e.g., Clague and

Dalrymple, 1987; Ozawa et al., 2005). The long life span of

some of the Canary volcanoes has contributed to uncertainty

in defining a geographic age progression but is consistent with

the slow motion of the African Plate over the hot spot.

p0060 Finally, Iceland is often cited as a classic Atlantic hotspot

with volcanic tracks on two plates due to its location on a MOR

(Figure 3). The thickest crust of the hotspot tracks occur along

the Greenland–Iceland and Faeroe–Iceland Ridges extending

NW and SE from Iceland. Anomalously thick oceanic crust

immediately adjacent to these ridges shows datable magnetic

lineations ( Jones et al., 2002b; Macnab et al., 1995; White,

1997). Extrapolating the ages of these lineations onto the

Greenland–Iceland and Faeroe–Iceland Ridges suggests the

occurrence of age-progressive volcanism with seafloor spread-

ing, which is most easily explained by the Iceland hot spot

causing excess magmatism very near to or at the Mid-Atlantic

Ridge since the time of continental breakup (White, 1988,

1997; Wilson, 1973). Earlier volcanism occurring as flood
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basalts along the continental margins of Greenland, the British

Isles, Norway, and Baffin Island at about 56–62 Ma marks a

conservative estimate for the age of the Icelandic melting

anomaly (e.g., Lawver and Mueller, 1994; Saunders et al.,

1997; White and McKenzie, 1989).

p0065 At a few volcano chains, the continuous record of volca-

nism is relatively short (a few tens of My) and the full duration

of volcanism is poorly constrained. For example, the New

England Seamount chain records �20 My of oceanic volca-

nism (Duncan, 1984), but an extrapolation to the volcanic

provinces in New England could extend the duration

by another 20 My (cf. O’Neill et al., 2005). The duration of

the Azores hotspot is also unclear. Gente et al. (2003)

hypothesized the Azores hotspot and the Great Meteor and

Corner Rise Seamounts (�85 Ma) to be conjugate features.

Yet, age constraints of these features are poor and any geo-

chemical association with the Azores group remains unknown.

p0070 In the Pacific Ocean (see Clouard and Bonneville (2005)

and references therein), the total durations of the Cobb

(1.5–29.2 Ma; Desonie and Duncan, 1990; Turner et al.,

1980) and Bowie–Kodiak chains (0.2–23.8 Ma; Turner et al.,

1980) remain unknown, as they terminate at the subduction

zone south of Alaska. The Easter chain extends to at least

�30 Ma on the Nazca Plate (Clouard and Bonneville, 2005;

Ray et al., 2012). On the Pacific Plate, the record extends

perhaps even further into the past, but the tentative link with

the Tuamotu Plateau (Clouard and Bonneville, 2001; Ito et al.,

1995) clearly requires further dating.

s0030133.2.1.2 Short-lived age-progressive volcanism
p0075At least ten volcanic provinces show age-progressive volcanism

lasting less than 25 My (e.g., Clouard and Bonneville, 2005).

The Samoan hot spot has been active for 20 My (Hart et al.,

2004) and possibly longer (Duncan and Clague, 1985). The

hotspot-like age progression along the Samoan track is

obscured by voluminous secondary volcanism covering the

main islands of the archipelago (e.g., Natland, 1980) but has

been revealed by recent sampling of the submarine flanks of

the volcanoes (Koppers et al., 2008, 2011b). The Society and

Marquesas Islands represent voluminous volcanism but for
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geologically brief durations of �4.6 My and �4.7 My, respec-

tively (Chauvel et al., 2012; Guillou et al., 2005; Legendre

et al., 2006). Clouard and Bonneville (2001) argued that the

Marquesas hotspot could have formed the Line Islands and

Hess Rise based on geometric arguments. If this interpretation

is correct, the large gap in volcanism between the three prov-

inces implies strongly episodic volcanism. However, the age

trend of the Marquesas volcanoes departs from Pacific Plate

motion in both speed and direction and thus contradicts a hot

spot origin altogether (cf. Legendre et al., 2006). Similar to the

Marquesas, the Foundation chain (duration from 2.1 to

21 Ma) displays an age progression that is somewhat faster

than Pacific Plate motion (O’Connor et al., 2004), which

could suggest an absolute drift of the underlying melting

anomaly (cf. O’Neill et al., 2005). Short hotspot durations of

11–24 My further occur along the Pitcairn (0–11 Ma), Caro-

line (1.4–13.9 Ma), Tarava (35.9–43.5 Ma; Clouard et al.,

2003), Tokelau (58–74 Ma; Koppers et al., 2007), and

Japanese seamount (94–118 Ma; Koppers et al., 2003) chains

on the Pacific Plate, as well as the Tasmantid seamounts near

Australia (7–24.3 Ma; McDougall and Duncan, 1988; Müller

et al., 1993b). Such short hotspot durations do not fit in with

the classical explanation that hotspots are underlain by long-

lived mantle plumes.

p0080 An intriguing yet enigmatic form of age-progressive volca-

nism is represented by the Pukapuka, Sojourn, and Hotu

Matua ridges, which trend WNW–ESE and away from the

East Pacific Rise. With respect to its geographic trend and

duration, the Pukapuka ridge resembles some of the other

volcano chains in the region, such as the Foundation chain

(Maia et al., 2001; O’Connor et al., 2002, 2004), but it stands

out because of its age pattern as well as its smaller volcanic

volume and morphology: the Pukapuka is not built of discrete

conical seamounts, but rather of en echelon elongate ridges

(Lynch, 1999). Moreover, Pukapuka’s rapid and variable rate

of age progression ( Janney et al., 2000; Sandwell et al., 1995)

suggests that the magma source has migrated eastward by rates

of �20 cm year�1 (Figure 4), which is difficult to reconcile

with the concept of a near-stationary hot spot source. While

the Sojourn and Hotu Matua ridges lack the lateral extent to

robustly define an age progression, they appear very similar to

the parallel Pukapuka ridge, not only in terms of the available

ages and the morphology of the volcanic edifices (Forsyth

et al., 2006) but also in terms of their association with gravity,

bathymetry, and seismic wave speed anomalies (Figure 4;

Harmon et al., 2011).

s0035133.2.1.3 Non-age-progressive volcanism
p0085An important form of oceanic volcanism does not involve

simple geographic age progressions. Amsterdam–St. Paul and

Cape Verde are two examples that each represent opposite

extremes in terms of size and duration. The Amsterdam–

St. Paul hot spot represents a relatively small and short-lived

(�5 My) melting anomaly on the Southeast Indian Ridge that
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Figure 3f0020 From Nielsen et al. (2002). Distribution of Paleogene flood basalts in the North Atlantic Volcanic Province. Selected seafloor magnetic
lineations, major transform faults, active and extinct spreading ridges, and seismic lines are marked as labeled.
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is geochemically separate from the Kerguelen hot spot (cf.

Doucet et al., 2004; Graham et al., 1999) Its small size and

duration, as well as its location on a MOR, likely contribute to

the lack of an identifiable age progression. The Cape Verde

volcanoes, on the other hand, are larger and have likely existed

since Early Neogene (e.g., McNutt, 1988). The islands also lack

a clear linear age progression, but this can be expected for a hot

spot located very close to the Euler pole of the African Plate

(McNutt, 1988).

p0090 Examples of volcano chains with complex age–space rela-

tions on the rapidly moving Pacific Plate are more difficult to

explain within the hot spot framework. While the lack of

modern dates on samples of the Mid-Pacific Mountains and

the Geologist seamounts precludes robust interpretations, the

Marcus–Wake seamounts and Gilbert Ridge, as well as the

Marshall, Magellan, and Line Islands, clearly display synchro-

nous or near-synchronous volcanism over large distances of

1500–2000 km (e.g., Davis et al., 2002; Koppers et al., 2003;

Clouard and Bonneville, 2005 and references therein). These

volcano groups also show long-lived, recurrent activity at indi-

vidual islands (Figure 5). They can thus more reasonably be

explained by ‘hot lines’ or melting anomalies that are elon-

gated in the direction of plate motion (Bonatti and Harrison,

1976; Bonatti et al., 1977) or even by much broader magmatic

anomalies with melt extraction limited by the lithosphere (see

Section 133.3.7.3). The Cameroon volcanic line, which

extends from Cameroon to the SW straddling the passive con-

tinental margin of Africa (Figure 6), may represent an ana-

logue to the Pacific cases of volcanism with coeval activity over

distances greater than 1000 km (Marzoli et al., 2000; Montigny

et al., 2004).

p0095Recent volcanism along the prominent Cook–Austral

Islands in the South Pacific also displays overall complex geo-

graphic age patterns (McNutt et al., 1997) and complex uplift

history at individual volcanoes (Adam and Bonneville, 2008;

Jordahl et al., 2004). The geographic age pattern of a younger

episode of volcanism (0–20 Ma) alone requires either the

activity of two parallel hot lines (Ballmer et al., 2009) or that

of four closely spaced, short-lived hot spots (representing the

Macdonald, Arago/Rurutu, Raivavae and Rarotonga tracks;

Bonneville et al., 2002; 2006) (cf. dashed lines in Figure 5

(c)). In the framework of a hot spot interpretation, geochem-

ical affinities with seamounts near the Samoan Islands have

been suggested to indicate long life spans (of up to �25

and �50 My) for some of the tracks (Arago/Rurutu and

Macdonald, respectively) ( Jackson et al., 2010).

p0100The remaining oceanic hot spots in Table 1 do not have

sufficient data to define time–space relations. This list

includes volcano chains that simply have not yet been ade-

quately dated (Socorro, Tuamotu, and Great Meteor), hot

spots that have small footprints (e.g., Discovery, Ascension/

Circe, Sierra Leone, Conrad, Bermuda), or spatial patterns
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controlled by interaction with spreading centers (e.g., Bouvet

and Balleny).

s0040 133.2.1.4 Continental hot spots and melting anomalies
p0105 There are a number of continental melting anomalies that are

not directly associated with present-day subduction, orogeny, or

continental rifting. Such activity occurs, for example, in Mongo-

lia (Hunt et al., 2012), Antarctica (e.g., Giordano et al., 2012),

western North America (Lipman and Glazner, 1991; Nelson and

Tingey, 1997), eastern Australia (e.g., Griffin and McDougall,

1975), eastern China, Europe, and Africa (Lustrino and Wilson,

2007; green dots in Figure 7). A number of these areas are also

shown in Figure 1 and listed in Table 1, such as the North

American Yellowstone (YEL)–Snake River Plain volcanic pro-

gression (YSRP), the European Eifel hot spot (EIF) (cf. Lustrino

and Wilson, 2007 and references therein), and the African hot

spots such as expressed by the volcanic mountains of Jebel Mara

(DAR), Tibesti (TIB), and Ahaggar (HOG) (Burke, 1996).

p0110 The Yellowstone hot spot stands out among these, because it

is the only one that displays a clear age progression. It is

recorded by silicic caldera forming events starting at 16–17 Ma

at the Oregon–Nevada border at a distance of �700 km. Initial

rhyolitic volcanism is followed by long-lived basaltic volcanism

along the present-day Snake River Plain (SRP) (Figure 8). The

effective speed of the hot spot track is 4.5 cm year�1, which

includes a component of the present-day plate motion

(2.5 cm year�1) and a component caused by the basin and

ange extension. The YSRP track appears to be mirrored by the

westward-progressing High Lava Plains (HLP) track in southern

Oregon (Kincaid et al., 2013; Long et al., 2012; Figure 8). The

lack of age progression of the other hot spots is usually attrib-

uted to the nearly motionless African Plate and the slowmotion

of the European Plate.

s0045133.2.1.5 The hot spot reference frame
p0115The existence of many long-lived volcano chains with clear age

progressions led Morgan (1971, 1972) to suggest that hot spots

remain relatively stationary to one another and therefore define

a global kinematic reference frame separate from plate motions

(Duncan and Clague, 1985; Morgan, 1983). Such an absolute

reference frame was used to anchor the well-constrained relative

motions of the tectonic plates with respect to the lower mantle

and to quantify absolute displacements of the Earth’s spin axis

(i.e., true polar wander) through geologic time (Biggin et al.,

2012; Torsvik et al., 2002, 2010b, 2012). The concept of a fixed

hot spot reference frame, however, has been challenged by

observations that indicate relative motions between hot spots,

particularly between the Indo-Atlantic and Pacific hot spot

groups (Acton and Gordon, 1994; DiVenere and Kent, 1999;

Molnar and Stock, 1987; Raymond et al., 2000; Tarduno and

Gee, 1995; Torsvik et al., 2002). Relative motion between these

two groups is slow but robust and independent of the plate
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circuit chosen to connect the Indo-Atlantic and Pacific hemi-

spheres. Accordingly, uncertainties in the hot spot reference

frame inevitably increase looking back into the geologic past.

p0120 In addition to slow motion between the Pacific and the

Indo-Atlantic hot spot groups, somewhat slower relative

motion occurs among hot spots within each of the two groups.

In the Pacific, relative motion has been inferred for many

hot spot pairs but is best documented from interchain

distances of coeval volcanoes within the well-sampled Hawaii

and Louisville chains (Koppers and Staudigel, 2005; Koppers

et al., 1998, 2011a, 2012; Wessel and Kroenke, 2008, 2009).

Most importantly, the rapid southward motion of the Hawai-

ian hot spot while forming the Emperor seamounts before

�50 Ma has been identified to modulate these distances

(Pares and Moore, 2005; Tarduno et al., 2003, 2009). In the

Indian Ocean, the inferred absolute southward motion of the
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Kerguelen hot spot since 100 Ma hinges on the weakly con-

strained location of its present location (Steinberger and

Antretter, 2006; Weis et al., 2002). At or near present day

(i.e., <4–7 Ma), motion between hot spots globally is unresol-

vable or at least much slower than it has been in the geologic

past (Gripp and Gordon, 2002; Wang and Wang, 2001). For a

more complete description of these issues, we refer the reader

to Chapter 111.

p0125Whereas fixity of the source of volcanism relative to the

drifting plates has been widely used as diagnostic test for a

Comp. by: Rvijayaraj Stage: Revises1 Chapter No.: 133 Title Name: TGP2
Date:22/11/14 Time:08:52:55 Page Number: 13

I

H

a

b

E

L

T

R

A

Hotspot

Basaltic volcanism

Intraplate basaltic volcanism

0 0.5 1.0 2.0

Shear across the asthenosphere (cm year-1)

3.0 4.5 6.0 7.5

Figure 7f0040 From Conrad et al. (2011). Shear across the asthenosphere beneath (colors), and basaltic intraplate volcanism on (green circles) continents.
Asthenospheric shear is shown as the amplitude of the vector difference between the motions of the plates and the underlying mantle (i.e., at the
base of the asthenosphere as predicted by Conrad and Behn, 2010). Primary (putatively plume-fed) hot spots (Courtillot et al., 2003) are shown as
purple squares. Excluding volcanism that is close to plate boundaries or primary hot spots (small black dots), continental intraplate basaltic
volcanism (green circles) occurs more frequent where shear across the asthenosphere is large. Reproduced from Conrad CP, Bianco TA, Smith EI, and
Wessel P (2011) Patterns of intraplate volcanism controlled by asthenospheric shear. Nature Geosciences 4: 317–321.

Figure 8f0045 Topographic map with age progressions along the Yellowstone–Snake River Plain (YSRP) and High Lava Plains (HLP) tracks. Ages of
volcanism are annotated (triangles denote centers of active volcanism). Columbia River basalts (CRBs; age: 16.6–15 Ma) are shown as brown shading.
Modified from Long MD, Till CB, Druken KA, et al. (2012) Mantle dynamics beneath the Pacific Northwest and the generation of voluminous
back-arc volcanism. Geochemistry, Geophysics, Geosystems 13.
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hot spot origin, slow relative motion of hot spots is naturally

expected in the framework of mantle plume theory. Rising

plumes are disturbed by large-scale mantle convection that

should slowly yet steadily displace their surface expressions.

Within this concept, the drift between hot spots is limited due

to the relatively sluggish convection in the lower mantle com-

bined with the potential for chemical anchoring of plumes

at the base of the mantle (cf. Davaille et al., 2002; Jellinek

and Manga, 2002; McNamara and Zhong, 2004; see also

Chapter 136). Global geodynamic models that simulate

plumes rising in a convecting mantle predict directions and

amplitudes of motion between hot spots that are consistent

with observations for a large range of model parameters

(Steinberger, 2000; Steinberger and Antretter, 2006). For exam-

ple, these models can reproduce the westward motion of the

Iceland hot spot relative to both the Indo-Atlantic and Pacific

hot spots (Norton, 2000; Raymond et al., 2000) for a relatively

shallow plume source near the transition zone (Mihalffy et al.,

2008). Also, they routinely predict independent drift for a

given hot spot pair (Figure 9), as is evident for the Hawaii

and Louisville hot spots (Koppers et al., 2012). Such model

predictions have been used to define ‘moving hot spot’ refer-

ence frames (Doubrovine et al., 2012). However, these refer-

ence frames may have similar results as the single fixed hot spot

reference frame in explaining volcano age–distance relations

when considering the associated uncertainties (O’Neill et al.,

2005). Future work is needed to be able to use hot spot

motions as a constraint, for example, to infer mantle properties

from the best-fitting geodynamic models.

p0130Sudden changes in the direction of hot spot drift are rou-

tinely predicted by many of these models (Steinberger and

Antretter, 2006; Steinberger et al., 2004; Figure 9), and these

can further contribute to bends in hot spot chains, with the

Hawaiian–Emperor bend near 50 Ma being a prominent exam-

ple. The classical explanation for such bends invoked sudden

changes in plate motion over fixed hot spots (Andrews et al.,

2006; Sharp and Clague, 2006; Whittaker et al., 2007). As a

general explanation, however, it is challenged by evidence for

prominent bends in seamount chains on the same plate that

did not occur at the same time (Koppers et al., 2007). In

addition, paleomagnetic evidence along the Hawaiian–

Emperor chain indicates a sudden change in hot spot motion

from being dominantly southward to being nearly stationary

(in the N–S sense) right near the 50 My bend (Kono, 1980;

Sager et al., 2005; Tarduno et al., 2009). A combination of

changes in both hot spot and plate motion may therefore have

occurred during the formation of the Hawaiian–Emperor bend

(O’Connor et al., 2013).

s0050133.2.2 Topographic Swells

p0135Figure 1 illustrates that most oceanic hot spots and melting

anomalies are associated with anomalously shallow topogra-

phy that extends several hundred km beyond the area of excess

volcanism. For individual hot spots, we identify the presence of

such a seafloor swell if residual topography exceeds an arbi-

trarily chosen value of 300 m and extends appreciably

(>100 km) away from the center of volcanism. Such hot spot
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swells are indeed very common. Near major hot spots, they rise

to �2 km above the surrounding seafloor and extend many

hundreds of km away from the center of volcanic activity

(Crough, 1983). They are also apparent on chains with very

small volcanoes such as the Socorro and Tasmantid tracks, as

well as the Pukapuka and Sojourn ridges (Harmon et al., 2006,

2011). In contrast, the Madeira and Canary hot spots are two

cases that break this pattern. The lack of obvious swells around

these large and long-lived hot spots indeed motivates more

detailed investigation.

p0140 Hot spot swells are typically restricted to the younger por-

tions of the volcano chain (Table 1). The Hawaiian swell, for

example, is prominent beneath the youngest (southeast) part

of the Hawaiian ridge but begins to fade near �178�W and

disappears near the Hawaiian–Emperor bend (�50 Ma).

Swells also decay along the Louisville (near a volcano age of

�34 Ma) and the Tristan chains (on the Walvis Ridge near

62–79 Ma). Similar behavior is seen for the Kerguelen track

with shallow seafloor that extends away from the Kerguelen

Plateau on the Antarctic Plate juxtaposed to normal topogra-

phy around the southernmost portion of Broken Ridge

(�43 Ma) on the Indian Plate. Swells associated with hot

spot tracks in the South Atlantic also systematically decay

with age, perhaps except for that associated with the St. Helena

track, which however is juxtaposed to the active Cameroon

volcanic line. Old chains that lack swells in our analysis

include the Japanese–Wake seamounts (>70 Ma), the

Magellans (>70 Ma), the Mid-Pacific Mountains (>80 Ma),

and the Musicians (>65 Ma). This suggests that if a swell

forms at a hot spot, it decreases in height with time until it

can no longer be detected at an age of �50 Ma or less.

p0145 Whereas swells are more difficult to measure on the thick

and compositionally heterogeneous continental plates, the

Yellowstone hot spot is associated with well-documented

excess topography. The measured topographic bulge is 600 m

high and �600 km wide centered around the Yellowstone

caldera (cf. Figure 8) and is associated with high heat flow,

extensive hydrothermal activity, and a 10–12 m positive geoid

anomaly (Smith and Braile, 1994). Systematic topographic

decay along the track in the SRP is consistent with thermal

contraction in response to the progression of the American

Plate over a hot spot (Smith and Braile, 1994).

p0150 The South Pacific Superswell is a much larger swell that

spans �3000 km and supports the hot spots in French Polyne-

sia (Adam and Bonneville, 2005; Hillier and Watts, 2004;

McNutt and Fischer, 1987). Other swells of comparable size

include the ancient Darwin Rise in the northwestern Pacific

(McNutt et al., 1990) and the African Superswell (e.g., Nyblade

and Robinson, 1994), which encompasses the southern por-

tion of Africa and the South Atlantic down to the Bouvet Triple

junction. Both the South Pacific and African Superswells are

associated with active volcanism, geoid anomalies (Adam

et al., 2010; Cadio et al., 2011), and broad seismically slow

structures in the lower mantle (e.g., Dziewonski et al., 2010;

Lekic et al., 2012; see also Section 133.2.5.1 in the succeeding

text). While the oceanic hot spots near Africa to first order

display the key characteristics predicted by hot spot theory

(e.g., O’Connor et al., 2012), the hot spots in the South Pacific

are mostly short-lived, including some with extreme geochem-

ical signatures (Konter et al., 2008; Koppers et al., 2003;

Staudigel et al., 1991) and complex age progressions (see

Section 133.2.1; Ballmer et al., 2009; McNutt, 1998; McNutt

et al., 1997). The Darwin Rise is often interpreted as the Cre-

taceous counterpart of the South Pacific Superswell (Cadio

et al., 2011; Koppers et al., 2003; McNutt and Judge, 1990).

We will discuss the geodynamic mechanisms for swell and

superswell support in Sections 133.3.4 and 133.3.7.1,

respectively.

s0055133.2.3 Flood Basalt Volcanism

p0155Large igneous provinces provide further constraints on the

nature of hot spots and mantle dynamics. LIPs are character-

ized by massive outpourings and intrusions of basaltic lava,

often occurring within a couple of million years. Fundamental

reviews of the nature and possible origin of LIPs are provided

by Richards et al. (1989), Coffin and Eldholm (1994),

Mahoney and Coffin (1997), Courtillot and Renne (2003),

and Bryan et al. (2010). As characterized by Coffin and

Eldholm (1994), intraplate continental LIPs (such as the

Siberian Traps or the Columbia River basalts) often form by

fissure eruptions and horizontal flows of massive tholeiitic

basalts. Another form of LIP volcanism occurs at passive mar-

gins (such as the North Atlantic Volcanic Province or

Etendeka–Paraná) that are associated with continental rifting

(White and McKenzie, 1989). The initial prerift pulse of volca-

nism tends to be rapid and often followed by a more pro-

longed production of thicker-than-normal oceanic crust and

sometimes by long-lived hot spot activity. Oceanic LIPs form

broad, flat-topped features of anomalously thick crust with

some eruptions being subaerial (Kerguelen oceanic plateau).

Other eruptions appear to be confined to below sea level (e.g.,

Ontong Java Plateau and Shatsky Rise). Regional uplift with

often rapid onsets commonly accompanies the formation of

continental and oceanic LIPs (Saunders et al., 2007). This

section reviews some basic geophysical and geologic observa-

tions of LIPs that formed since the Permian. For information

on older LIPs, we refer the reader to White and McKenzie

(1995), Ernst and Buchan (2001; 2003), and Ernst (2007).

Figure 1 shows locations with indicated abbreviations; Fig-

ure 10 summarizes the areas and volumes of the provinces

described in the succeeding text.

s0060133.2.3.1 Intraplate continental LIPs
p0160Columbia River Basalts (CRBs). The Columbia River basalts

erupted a volume of �0.17 Mkm between 16.6 and 15.3 Ma

(Courtillot and Renne, 2003). Excellent exposures provide

insights into flow structures and relationships to feeder dikes.

Individual eruptions have volumes in excess of 2000 km3 and

flow over distances up to 600 km (Hooper, 1997). The lack of

collapse structures suggests that large amounts of magma were

rapidly derived from the base of the crust (Hooper, 1997). The

volumetrically most important pulse of volcanism is the Grande

Ronde basalt that was emplaced in less than 0.5 My (Barry et al.,

2010). Detailed geochemical work suggests that the CRBs rose

from a centralized magmatic system following crustal assimila-

tion of plume-derived magmas (Wolff et al., 2008).

p0165Emeishan (EM). The Emeishan province in western China is

estimated to have spanned an area of at least 2 Mkm2 and

volume of 1 Mkm3 when it first formed (Zhou et al., 2002).
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Eruption ages have been measured at�258 Ma (Courtillot and

Renne, 2003), which is confirmed by a zircon U–Pb date

of �259 Ma (Ali et al., 2005) and by more precise recent

U–Pb ages (Shellnutt et al., 2012). Granitic intrusions indicate

significant crustal assimilation in magmas that were sourced

from the mantle (Shellnutt and Jahn, 2011; Xu et al., 2007;

Zhong et al., 2007) A rapid, kilometer-scale uplift preceded the

basaltic eruptions by 3 My (He et al., 2003; Sun et al., 2010; Xu

et al., 2004). Basalts erupted rapidly (Zheng et al., 2010) and

were accompanied by high-MgO basalts (He et al., 2003) and

contemporaneous felsic and mafic intrusions (Zhong et al.,

2011). Since their eruption, the Emeishan Traps have been

fragmented and eroded, currently encompassing an area

of �0.3 Mkm2 (Xu et al., 2001).

p0170 Siberia (SIB). The Siberian Traps occupy at present only

0.4 Mkm and have an average thickness of 1 km (Sharma,

1997). There are strong indications, however, that they extend

below the sedimentary cover and into West Siberian basin

(Reichow et al., 2005). Additional dikes and kimberlites sug-

gest a maximum extent of 3–4 Mkm2 with possible extrusive

volume of>3 Mkm3. Individual flows can be as thick as 150 m

and be traced over hundreds of kilometers. This large eruption

took place within only 1 My and coincides with the Permo-

Triassic boundary at 250 Ma (Courtillot and Renne, 2003;

Reichow et al., 2009). The lack of significant sedimentary

rocks or paleosols between flows confirms rapid extrusion

(Sharma, 1997). The use of industry seismic and borehole data

in the West Siberian basin shows that the basin elevation

remained high during rifting, indicating dynamicmantle support

(Saunders et al., 2005). Magnetic data elucidate that the eruption

took place during oblique rifting (Allen et al., 2006), which may

have increased themagmatic output. Petrologic and geodynamic

models also agree that lithospheric thinning is required to recon-

cile the large magmatic output and lava geochemistry (Sobolev

et al., 2011; White and McKenzie, 1995). Paleomagnetic recon-

structions suggest that the Siberian Traps had erupted over the

same part of the mantle where at �60 Ma the North Atlantic

Igneous Province formed (Smirnov and Tarduno, 2010), provid-

ing an interesting suggestion for a connection of both LIPs to a

long-lived, deep, and nearly stationary source.

p0175 Yemen/Ethiopian/East African Rift System (EAF). An early

volcanic episode in southernmost Ethiopia starting �45 Ma

was followed by widespread flood basalt volcanism in north-

western Ethiopia, Eritrea, and Yemen at �30 Ma. The 30 Ma

event consisted of tholeiites and ignimbrites (Pik et al., 1998)

that erupted within 1–2 My (Ayalew et al., 2002; Hofmann

et al., 1997). In Yemen, 0.35–1.2 Mkm3 of mafic magmas

were produced within 2 My, followed by less voluminous

silicic volcanism starting �29 Ma (Menzies et al., 1997).

Flood volcanism appears to have occurred several My prior to

the onset of extension along the East African Rift (EAR)

at �23 Ma (Hendrie et al., 1994; Morley et al., 1992) and in

the Gulf of Aden at �26 Ma (Menzies et al., 1997). Volcanism

is bimodal with shield volcanoes forming on top of tholeiitic

basalts (Courtillot and Renne, 2003; Kieffer et al., 2004).

Currently, the Ethiopian and Kenyan rift systems are on an

area of elevated topography of �1000 km in diameter.

A negative gravity anomaly suggests this topography is dynam-

ically supported in the mantle (Stewart and Rogers, 1996). The

analysis of primitive magmas indicates that the EAF magmas

arise from mantle that is 140–170 K hotter than normal

(Rooney et al., 2012).

p0180Older continental flood basalts are often more difficult to

detect in the geologic record due to the effects of surface uplift

and erosion. For a review, see Ernst (2007). A general charac-

teristic that is attributed to continental LIPs is radiating dike

swarms (Mayborn and Lesher, 2004; Mege and Korme, 2004).

These dike swarms provide the main pathways for basaltic

magmas vertically from the mantle, as well as lateral over

distances up to 2500 km (as suggested for the 1270 Ma

Mackenzie dike swarm in N. America (Lecheminant and

Heaman, 1989; Ernst and Baragar, 1992)).

s0065133.2.3.2 LIPs near or on continental margins
p0185Central Atlantic Magmatic Province (CAMP). The CAMP is pri-

marily delineated by giant dike swarms and is associated with

the early breakup of Gondwana between North Africa, eastern

United States, and central South America. Ar/Ar dates suggest

rapid production from 200 to 202 Ma over an area of 7 Mkm2

and volume of >2 Mkm3 (Courtillot and Renne, 2003; Hames

et al., 2000; Marzoli et al., 1999), although more recent work

puts the CAMP at slightly younger ages of �199 Ma (Verati

et al., 2007; Schaltegger et al., 2008; Jourdan et al., 2009;

Marzoli et al., 2011).
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p0190 Chon Aike (CHON). In contrast to the other LIPs discussed

in the chapter, the Chon Aike province in Patagonia is primar-

ily silicic with rhyolites dominating over mafic and intermedi-

ate lavas. The rhyolites may have formed due to intrusion of

basalts into crust that was susceptible to melting. The province

is relatively small with an area of 0.1 Mkm2 and total volume

of 0.235 Mkm3 (Pankhurst et al., 1998). Chon Aike had an

extended and punctuated eruptive history from Early Jurassic

to Early Cretaceous (184–140 Ma). Pankhurst et al. (2000)

recognized episodic eruptions with the first eruptions coincid-

ing with the Karoo and Ferrar LIPs. The province potentially

extends into West Antarctica.

p0195 Deccan (DEC). The Deccan Traps provide one of the most

impressive examples of continental flood basalts. It formed by

eruptions of primarily tholeiitic basalts over Archean crust over

an area of >1.5 Mkm2 and volume of 8.2 Mkm3 (Coffin and

Eldholm, 1993). The main eruptions straddle magnetic chrons

C30n, C29r, and C29nwithin 1 My around the K–T boundary, as

confirmed by Ar/Ar and Re–Os dating (Allegre et al., 1999;

Courtillot et al., 2000; Hofmann et al., 2000). The main pulse

may have been preceded by a smaller pulse of volcanism at

68–67 Ma (Chenet et al., 2007). An Ir anomaly embedded in

the flows suggests that the Chicxulub impact happened while the

Deccan Traps were active (Courtillot and Renne, 2003), which is

confirmed by stratigraphic work (Keller et al., 2008). Seafloor

spreading between India and Seychelles is generally thought to

have started in the final stages of flood basalt volcanism (Hooper

et al., 2010) at�63 Ma (Vandamme et al., 1991), although some

evidence for an earlier event exists (Collier et al., 2008; Minshull

et al., 2008). Unlike older continental flood basalts associated

with the breakup of Gondwana, the basalts that are least con-

taminated by continental lithosphere closely resemble hot

spot basalts in oceanic areas with major-element concentrations

in agreement with predictions for high-temperature melting

(Hawkesworth et al., 1999).

p0200 Karoo–Ferrar (KAR–FER). The Karoo province in Africa and

Ferrar basalts in Antarctica record a volume of 2.5 Mkm3 com-

bined, which erupted at �184 Ma (Encarnacion et al., 1996;

Minor and Mukasa, 1997), possibly followed by a minor event

at 180 Ma (Courtillot and Renne, 2003). The short (<1 My)

duration is questioned by Jourdan et al. (2004; 2005), who

obtained ages of �179 Ma for the northern Okavango dike

swarm in Botswana and thus inferred long-lived initial activity

that propagated northward. More recent zircon U–Pb work on

samples collected over an 1100 km range across the Karoo

again suggests rapid emplacement (Svensen et al., 2012). In

Africa, tholeiitic basalts dominate but some picrites and rhyo-

lites are also exposed (Cox, 1988). The triple-junction pattern

of the radiating dike swarm that supplied the Karoo basalt was

likely controlled by preexisting lithospheric discontinuities

that include the Kaapvaal and Zimbabwe Craton boundaries

and the Limpopomobile belt ( Jourdan et al., 2006). The Ferrar

province spans an area of �0.35 Mkm2 (Elliot and Fleming,

2004) along the Transantarctic Mountains. The two provinces

were split by continental rifting and then by seafloor spreading

at �156 Ma.

p0205 Madagascar (MDR). Widespread voluminous basaltic flows

and dikes occurred near the northwestern and southeastern

coasts of Madagascar during rifting from India around 88 Ma

(Storey et al., 1997). Flood volcanism was probably prolonged

as it continued to form the Madagascar Plateau to the south,

perhaps 10–20 My later as inferred from the reconstructed

positions of Marion hot spot.

p0210North Atlantic Volcanic Province (NAVP). The NAVP covers

an area of �1.3 Mkm2 (Saunders et al., 1997) with an esti-

mated volume of 6.6 Mkm3 (Coffin and Eldholm, 1993) and is

closely linked to continental rifting and oceanic spreading

(e.g., Nielsen et al., 2002; White and McKenzie, 1989). Prior

to the main pulse of flood volcanism, seafloor spreading was

active south of the Charlie–Gibbs Fracture Zone at 94 Ma and

propagated northward into the Rockall Trough until the Late

Cretaceous near or prior to the earliest eruptions of the NAVP.

The early NAVP eruptions occurred as large picritic lavas in

western Greenland and Baffin Island (Gill et al., 1992, 1995;

Holm et al., 1993; Kent et al., 2004), soon followed by massive

tholeiitic eruptions in west and southeast Greenland, the

British Isles, and Baffin Island at 61 Ma (2 Mkm3) as well as

in east Greenland and the Faeroes at 56 Ma (>2 Mkm3)

(Courtillot and Renne, 2003; Storey et al., 2007). These initial

episodes were succeeded by rifting between Greenland and

Europe (recorded by chron 24, 56–52 Ma), continental margin

volcanism, and oceanic crust formation, which included the

formation of thick seaward-dipping reflector sequences.

Spreading slowed in the Labrador Sea at �50 Ma, stopped

altogether at 36 Ma, but continued further to the east on the

Aegir Ridge and eventually along the Kolbeinsey Ridge at

�25 Ma, where it has persisted since (Breivik et al., 2006;

Mosar et al., 2002). This provides an intriguing suggestion

that the presence of hot spots can guide the location of passive

ridges during continental breakup.

p0215Many of the volcanic margin sequences erupted subaerially

or at shallow depths, suggesting widespread regional uplift

during emplacement (Clift and Turner, 1995; Hopper et al.,

2003). Uplift in the early Tertiary is documented by extensive

erosion and changes in the depositional environments as far as

the North Sea basin (e.g., Mackay et al., 2005; Nadin et al.,

1997 and references therein). Reconstructions from drill cores

elucidate that uplift was rapid and synchronous and preceded

the earliest volcanism by >1 My (Clift et al., 1998).

p0220Paraná–Etendeka (PAR–ET ). Paraná and Etendeka are con-

jugate volcanic fields split by the breakup of South America

and Africa. The Paraná field in South America covers 1.2 Mkm2

with estimated average thickness of 0.7 km (Peate, 1997).

Extensive dike swarms surrounding the provinces suggest the

original extent could have been even larger (Trumbull et al.,

2004). Tholeiitic lavas and rhyolites cause a bimodal distribu-

tion of eruptives and intrusives. Ar/Ar dates indicate that vol-

canic activity peaked at �133–130 Ma (Courtillot and Renne,

2003; Renne et al., 1996; Turner et al., 1994), preceded by

minor eruptions in the northwest of the Paraná Basin at

135–138 Ma (Stewart et al., 1996). Younger magmatism per-

sisted along the coast (128–120 Ma) and into the Atlantic

Ocean, forming the Rio Grande (RIO) and Walvis (WAL)

oceanic plateaus.

p0225The Etendeka province covers 0.08 Mkm2 and is very sim-

ilar to the Paraná flood basalts in terms of eruptive history,

petrology, and geochemistry (Ewart et al., 2004; Renne et al.,

1996). Seafloor spreading in the South Atlantic progressed

northward, with the oldest magnetic anomalies on the seafloor

near Cape Town (137 or 130 Ma). The oldest seafloor near
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Paraná is >127 Ma. The formation of onshore and offshore

basins suggests a protracted period of rifting well in advance of

the formation of oceanic crust and the emplacement of the

Paraná basalts (Chang et al., 1992).

s0070 133.2.3.3 Oceanic LIPs
p0230 Caribbean (CBN). The Caribbean LIP is a Late Cretaceous pla-

teau, which is now partly accreted onto the continental margin

in Colombia and Ecuador. Its present area is 0.6 Mkm2 with

oceanic crust thicknesses ranging from 8 to 20 km. A volume of

4 Mkm3 of extrusives erupted in discrete events during

91–88 Ma (Courtillot and Renne, 2003). The full range of
40Ar/39Ar dates of 69–139 Ma (e.g., Hoernle et al., 2004;

Sinton et al., 1997) suggests a protracted volcanic history that

is poorly understood. The origin of the volcanism is likely in

the eastern Pacific with a subsequent highly mobile evolution.

Clogging of eastward subduction in the Caribbean likely led to

reversal with westward subduction in the Antilles trench. The

accretion of terranes in Ecuador and Colombia, which started

in the Late Cretaceous and early Tertiary, led to westward

stepping of the subduction zone (Kerr et al., 1997). A 5 km

lava succession in Curaçao contains picrites with up to

31 wt% MgO.

p0235 Kerguelen (KER). The Kerguelen hot spot has a complex

history of continental and oceanic flood eruptions, rifting,

and prolonged volcanism (Figure 2). The breakup of India,

Australia, and Antarctica coincided closely with the eruption of

the Bunbury basalts in southwest Australia, dated at 123 and

132 Ma (Coffin et al., 2002). The first massive volcanic episode

formed the southern Kerguelen Plateau at 119 Ma, the Rajma-

hal Traps in India at 117–118 Ma, and the lamprophyres in

India and Antarctica at 114–115 Ma (Coffin et al., 2002; Kent

et al., 2002). The central Kerguelen Plateau and Broken Ridge

formed at �110 Ma and 95 Ma, respectively (Coffin et al.,

2002; Duncan, 2002; Frey et al., 2000). These edifices represent

the most active period of volcanism with a volcanic area and

volume of 2.3 Mkm2 and 15–24 Mkm3 (Coffin and Eldholm,

1993), but unlike many other flood basalt provinces, volcanic

activity spanned tens of millions of years. Another unusual

aspect is the presence of continental blocks within the plateau

as suggested from wide-angle seismics (Operto and Charvis,

1996) and geochemical data of xenoliths and basalts from

southern Kerguelen Plateau and Broken Ridge (Benard et al.,

2010; Frey et al., 2002; Mahoney et al., 1995; Neal et al., 2002).

During 82–43 Ma, northward motion of the Indian Plate

formed the Ninetyeast Ridge on young oceanic lithosphere,

suggesting that the Kerguelen hot spot remained close to the

Indian–Antarctic spreading center (Kent et al., 1997; Krishna

et al., 2012; Silva et al., 2013; Singh et al., 2011). The influence

of the Kerguelen hot spot can be even traced as far as north-

eastern India (Ghatak and Basu, 2011). At �40 Ma, the South-

east Indian Ridge formed and separated Kerguelen Plateau and

Broken Ridge. Volcanism has since persisted on the northern

Kerguelen Plateau until 0.1 Ma (Nicolaysen et al., 2000).

Dynamic uplift of the plateau in the Cretaceous is indicated

by evidence for a subaerial environment, but subsidence since

then appears to be similar than for normal oceanic crust

(Coffin, 1992).

p0240 Ontong Java Plateau (OJP). Overviews of the origin and

evolution of the Ontong Java Plateau are provided by Fitton

et al. (2004) and Neal et al. (1997). This plateau extends across

1.5–2 Mkm2, has crust as thick as 36 km, and has volume

estimated at �50 Mkm3 (Gladczenko et al., 1997; Korenaga,

2011). The majority of the basalts were erupted in relatively

short time (�1–2 My) near 122 Ma as revealed by Ar/Ar

(Tejada et al., 1996) and Re–Os isotope (Parkinson et al.,

2002), paleomagnetic (Tarduno et al., 1991), and biostrati-

graphic data (Sikora and Bergen, 2004). Basalts recovered

from the Ocean Drilling Program (ODP) Site 803 and the

Santa Isabel and Ramos Islands indicate a smaller episode of

volcanism at 90 Ma (Neal et al., 1997). Age contrasts between

the surrounding seafloor and OJP suggest it erupted near an

MOR. Furthermore, rifting is evident on some of its bound-

aries. Accordingly, Taylor (2006) and Chandler et al. (2012)

suggested that the OJP is only a fragment of what was originally

an even larger LIP that included Manihiki (MAN) and Hikur-

angi (HIK) Plateaus. This idea is supported by geochemical

similarities between OJP and Manihiki lavas (Hoernle et al.,

2010). Given recent evidence for partial subduction of HIK

beneath New Zealand, current estimates for the extent of the

combined LIP should be regarded as lower bounds (Reyners

et al., 2011). The estimated original size of the combined LIP

makes it, by far, the largest of all flood basalt provinces in the

geologic record, approaching an order of magnitude larger in

volume than any continental flood basalt.

p0245The plateau has been sampled on the tectonically uplifted

portions in the Solomon Islands (e.g., Petterson, 2004; Tejada

et al., 1996, 2002) and by ocean drilling (Mahoney et al.,

2001). The volcanics are dominated by massive flows of tho-

leiitic basalts with low potassium contents. Petrologic model-

ing is consistent with primary magmas formed by 30%melting

of a peridotitic source (Chazey and Neal, 2004; Fitton and

Godard, 2004; Herzberg, 2004b), which would require a hot

(1500 �C) mantle source beneath thin lithosphere. The low

volatile content of volcanic glasses (Roberge et al., 2004,

2005) and Pb, Sr, Hf, and Nd isotope characteristics (Tejada

et al., 2004) resemble MORB.

p0250Besides its gigantic volume, another enigmatic aspect is that

the OJP appears to have erupted below sea level with little

evidence for uplift (Coffin, 1992; Ingle and Coffin, 2004; Ito

and Clift, 1998; Korenaga, 2005; Roberge et al., 2005). This

observation has to be explained by any successful model for

the origin of Ontong Java.

p0255Shatsky Rise–Hess Rise (SHA–HES). Shatsky Rise is one of the

large Pacific oceanic plateaus with an area of 0.48 Mkm2, a

thickness of 9–30 km, and a volume of 4.3 Mkm3 (Korenaga

and Sager, 2012; Sager et al., 1999). The most voluminous

portion of the plateau extends from its center to the SW

(Figure 1). This whole portion has recently been proposed to

be made up of a single volcanic edifice with very low slopes,

something that would probably make it the largest volcano on

Earth (Sager et al., 2013). Initial eruption at Shatsky is associated

with a jump of the triple junction between the Pacific, Izanagi,

and Farallon Plates toward the plateau (Nakanishi et al., 1999;

Sager, 2005) near 145 Ma (Mahoney et al., 2005). Subse-

quently, volcanism progressed northeast together with the triple

junction (which migrated with repeated jumps as indicated by

seafloor magnetic lineation) until �128 Ma. Thus, Shatsky

appears to show short-lived age-progressive volcanism on time-

scales much like many smaller volcano groups (e.g., Society).
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Volcanism, however, may have continued with a renewed pulse

starting some 10–20 My later with the formation of the Hess

Rise, which is comparable in area to Shatsky. Age constraints on

Hess Rise are poor due to the lack of sampling and its location

on Cretaceous quiet zone seafloor. The possible coincidence of

both plateaus at an MOR suggests a dynamic linkage between

their formation and seafloor spreading. Another notable aspect

is that Pb and Nd isotope compositions for Shatsky are indis-

tinguishable from those of the present-day East Pacific Rise

(Mahoney et al., 2005; Sager, 2005).

s0075 133.2.3.4 Connections to hot spots
p0260 The possible links between hot spots and LIPs are important

for testing the mechanism of origin for both phenomena, with

particular regard to the concept of a starting mantle plume

head and trailing, narrower plume stem. While linkages are

clear for some cases, a number of proposed connections are

obscured by ridge migrations or breakup of the original LIP. In

the succeeding text, we list the connections of hot spots to LIPs,

in approximate order of decreasing clarity.

p0265 At least six examples have strong geographic, geochronolog-

ical, and geochemical connections between hot spot volcanism

and flood basalt provinces. These are (1) Iceland and the North

Atlantic Volcanic Province, including Greenland, Baffin Island,

Great Britain volcanics, and Greenland–United Kingdom

(Faeroe) Ridge (Saunders et al., 1997; Smallwood and White,

2002); (2) Kerguelen, Bunbury, Naturaliste, and Rajmahal

(E India) and Broken Ridge and Ninetyeast Ridge (Kent et al.,

1997); (3) Réunion and Deccan (Roy, 2003), W. Indian,

Chagos–Laccadive, Mascarene, and Mauritius; (4) Marion and

Madagascar (Meert and Tamrat, 2006; Storey et al., 1997); (5)

Tristan da Cunha and Paraná, Etendeka, Rio Grande, andWalvis

Ridge (Peate, 1997); and (6) the Galápagos and Caribbean

(Feigenson et al., 2004; Hoernle et al., 2004).

p0270 In addition to these six examples, a tentative link exists

between Yellowstone and the early eruptive sequence of the

Columbia River basalts (CRBs) based on geochemistry

(Dodson et al., 1997). The paleogeographic connection is

somewhat indirect since main CRB eruptions occurred up to

500 km north of hot spot track. This offset may suggest a

mechanism for the formation of the flood basalts that is inde-

pendent of the Yellowstone hot spot (Camp and Hanan, 2008;

Hales et al., 2005; Long et al., 2012). Yet, the earliest manifes-

tation of the CRB (at Steens Mountain) is indeed close to the

proposed paleolocation of the Yellowstone hot spot (Hooper,

1997; Hooper et al., 2002), implying a south-to-northward

propagation of CRB volcanism (Coble and Mahood, 2012)

and supporting the suggestion that melts may have been forced

sideways from their mantle source by lithospheric structure

(Thompson and Gibson, 1991). In turn, it has been suggested

that the lithospheric structure forced the Yellowstone plume

away from the flood basalt province after �12 Ma (Shervais

and Hanan, 2008).

p0275 For other flood basalt provinces, the links are less clear – in

part due to the lack of data. The Bouvet hot spot has been linked

to the Karoo–Ferrar; the Balleny hot spot may be connected to

the Tasmanian province or the Lord Howe Rise (Lanyon et al.,

1993); and the Fernando hot spot has been linked to the Central

Atlantic Magmatic Province. Only three Pacific hot spots possi-

bly link back to LIPs: Louisville–OJP, Easter–Mid-Pac, and

Marquesas–Hess–Shatsky (Clouard and Bonneville, 2001). The

Louisville–OJP connection is highly tenuous: Kinematic

arguments against such a link have been made (Antretter et al.,

2004), and geochemical differences between the oldest

Louisville seamounts and OJP would require distinct chemistry

between plume head and tail or a difference in melting condi-

tions (Mahoney et al., 1993; Neal et al., 1997). Nevertheless,

some hot spots such as Hawaii, Bowie–Kodiak, and Cobb ter-

minate at subduction zones, so any record of a possible connec-

tion to an LIP has been destroyed.

p0280It is interesting to note that the strongest connections

involve flood basalt provinces near continental margins. The

possible exceptions are Kerguelen and Marion–Madagascar,

which also involve continental lithosphere, as well as the

tentative links in the Pacific. The presence of continents may

indeed play a large role in the origin of flood basalt volcanism

(Anderson, 1994b).

s0080133.2.3.5 Connections to climate crises and mass extinction
p0285The eruption of LIPs has been a leading explanation for a

number of climate crises and mass extinctions. This volcanic

cause of mass extinctions poses an alternative to extraterrestrial

causes such as impacts by asteroids or comets, which are prob-

ably best documented to be associated with the K–T mass

extinction (Schulte et al., 2010). The connection between

mass extinctions and LIPs is generally justified by the coinci-

dence of LIP formation and extinctions as well as the ability of

rapid and massive extrusions to dramatically change climate

and the chemistry of the atmosphere and oceans. The episodi-

city of mass extinction events and their correlation with LIPs

lead to the speculation that the slow convection and heat

release from the solid Earth control evolutionary patterns at

the Earth’s surface (e.g., Courtillot and Olson, 2007). Increas-

ingly, a connection is seen between flood basalts and other

transient episodes in the global climate system. Aside from

direct effects on ocean and atmospheric chemistry due to vol-

canic outgassing, the igneous intrusions associated with LIPs

can lead to significant release of CO2 and methane (i.e., major

greenhouse gases) from metamorphic interactions with coal,

evaporates, and other sedimentary rocks (e.g., Ganino and

Arndt, 2009; Retallack, 2013). Such links are also suggested

for flood basalts that occur during continental breakup, as

illustrated by the correlation between North Atlantic flood

basalts with the Paleocene–Eocene thermal maximum

at �55 Ma (Storey et al., 2007) and the Caribbean and

Madagascar flood basalts with the Late Cretaceous anoxic

event (Kuroda et al., 2007). Interestingly, while the short-

term effect of CO2 release from flood basalt volcanism is likely

to lead to global warming, the longer-term effect may be global

cooling due to more efficient silicate weathering that acts as a

carbon sink (Schaller et al., 2011, 2012).

p0290Significant recent work has refined early indications that

mass extinctions coincide with LIP formation. Indications have

indeed been strengthened for the four major extinctions that

pair up with LIP formation since the Permian: the end of Creta-

ceous extinction with the Deccan Traps at �65 Ma, the end of

Triassic extinction with the CAMP at �200 Ma, the end of

Permian extinction with the Siberian Traps at �250 Ma, and

the end of Guadalupian (an epoch in the Permian) extinction

with the Emeishan at �258 Ma (for reviews, see Courtillot and
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Renne, 2003; Bryan et al., 2010). In some cases, the suggested

temporal coincidence has been questioned because of inherent

uncertainties in magnetostratigraphy and geochronological

techniques (Whiteside et al., 2007). Yet, future geochronological

work using high-precision dating tools is expected to resolve

these discrepancies. For example, Blackburn et al. (2013) dem-

onstrated using a new zirconU–Pbmethodology that the end of

Triassic extinction coincides with four episodes of magma

release in the CAMP and atmospheric changes that have

occurred over a short period of only 0.6 My. A combination of

multiple geochronological techniques further confirms the con-

nection between CAMP and the end of Triassic extinction

(Deenen et al., 2010).

p0295 The LIP–extinction connection is further strengthened by a

better quantification and qualification of the duration and

chemical output of eruptions, as well as a better understanding

of the impact of flood volcanism on the global climate system

(e.g., Black et al., 2012; Kidder and Worsley, 2010; Payne and

Clapham, 2012; Self et al., 2006) and ocean geochemistry

(Brand et al., 2012). This understanding is enhanced by a

better physical description of the interaction between magmas

and sediments (Aarnes et al., 2010; Ogden and Sleep, 2012).

Some of this work indicates intriguing differences in magmatic

composition between LIPs, such as the anomalously high con-

centration in sulfur and halogens observed in the Siberian

Traps flood basalts (Black et al., 2012), which may have signif-

icantly contributed to the dramatic deterioration of the envi-

ronment at the end of the Permian. The anomalous impact of

the Siberian Traps is generally attributed to the intrusion of the

basalts into a deep sedimentary basin with significantly higher

gas release (Ganino and Arndt, 2009; Svensen et al., 2009)

although differences in the source have also been noted

(Carlson et al., 2006; Sobolev et al., 2009, 2011).

s0085 133.2.4 Geochemistry and Petrology of OIB

s0090 133.2.4.1 Isotope geochemistry
p0300 Studying the geochemistry of MORB and basalts from oceanic

hot spots and melting anomalies (often referred to as ocean

island basalts, OIBs) has played a central role in understanding

mantle dynamics and heterogeneity. Isotope ratios of key trace

elements reflect long-term (102–103 My) concentration

between parent and daughter elements. As they remain unaf-

fected by mantle metasomatism and melting, they have been

used to ‘fingerprint’ source materials. We will focus on three

commonly used ratios: 87Sr/86Sr, 206Pb/204Pb, and 3He/4He.

High (or low) 87Sr/86Sr is associated with long-term enrich-

ment (or depletion) in highly incompatible elements relative

to moderately incompatible elements (e.g., Rb/Sr). High (or

low) 206Pb/204Pb ratios are associated with mantle with a long-

term high (or low) U/Pb. The 3He/4He ratio is a measure of the

amount of primordial 3He, which has been lost to space during

the Earth’s evolution via degassing but not generated in the

mantle, in contrast to radiogenic 4He.

p0305 MORB is characterized by low values of, and small variabil-

ity in, the ratios mentioned earlier. Figure 11 shows frequency

distributions of MORB and OIB from the three major oceans.

The data are from http://www.petdb.org/; all data are included

so there is no filtering due to affiliation with hot spots or any

tectonic features. One standard deviation about the median for

all three datasets combined defines the MORB range for

87Sr/86Sr of 0.7025–0.7033, for 206Pb/204Pb of 17.98–18.89,

and for 3He/4He of 7.08–10.21. Excluding hot spot-influenced

MORB would further reduce these ranges (e.g., to a narrow

range in 3He/4He of 7.68–9.82 (Graham, 2002)). In contrast,

OIBs have a larger variability, extending from MORB values to

much higher values (http://georoc.mpch-mainz.gwdg.de/

georoc/; Figure 11). By comparing the median hot spot com-

positions (solid bar) with the MORB ranges, it becomes clear

that, with few exceptions, the hot spots and melting anomalies

have compositions that are distinguishable from MORB by at

least one of the three isotope ratios (see also Table 1). This

result appears to be independent of the duration of age pro-

gression (e.g., Tristan vs. Marquesas), the presence or absence

of a swell (Hawaii vs. the Canaries), or even volcanic flux

(Kerguelen vs. Pukapuka and Foundation).

p0310There are at least four possible exceptions: Shatsky Rise (not

shown in Figure 11), Cobb, Bowie–Kodiak, and the Carolines.

Helium isotopes are not yet available at these locations, but
87Sr/86Sr and 206Pb/204Pb compositions for each case fall

within or very near to the MORB range. These examples span

a wide range of forms, from a small, short-lived seamount

chain (the Carolines), to longer-lived, age-progressive volca-

nism (Bowie–Kodiak and Cobb), to an oceanic LIP (Shatsky).

The possibility that these cases are geochemically indistin-

guishable from MORB may have far-reaching implications for

mantle processes and composition and thus clearly motivates

further sampling and analysis.

s0095133.2.4.2 Major-element geochemistry
p0315In contrast to isotopic ratios, major-element signatures of

OIB lavas do not directly reflect that of the mantle source.

Major-element concentrations in primary magmas (i.e.,

magmas that segregated from the mantle melting zone with-

out further modification by shallow processes) are sensitive

to the depths and extents of melting. Moreover, they are

affected by magma mixing, interaction with the wall rock,

and fractional crystallization during ascent. The effects of

fractional crystallization are not only large but also relatively

well understood and thus can be corrected for when esti-

mating the composition of primary magmas. Alternatively,

primary magma compositions can be inferred from melt

inclusions or olivine phenocrysts that are estimated to have

been in equilibrium with the primary magma when they

were formed. However, such analyses are laborious and

costly compared to whole rock analysis and hence form

just a small portion of the global dataset.

p0320Despite the difficulties mentioned earlier, major-element

signatures of OIB and MORB can be clearly distinguished in

properly selected and corrected datasets of whole rock ana-

lyses. For example, these datasets are usually restricted to sam-

ples with MgO contents between >5 wt% (or even >10 wt%)

and<�15 wt% in order to exclude lavas that have experienced

significant fractional crystallization of clinopyroxene

(Dasgupta et al., 2010; Jackson and Dasgupta, 2008; Pilet

et al., 2008). Fractional crystallization of olivine instead is

routinely corrected for by retroactive incremental addition or

subtraction of olivines that have been in equilibrium with the

corresponding liquid. Similar to isotope datasets, such cor-

rected major-element datasets show that OIB global trends

overlap with MORB, but display a much greater variability in

all oxides and oxide ratios (Figure 12). In contrast to MORB,
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OIB commonly follows an alkalic differentiation trend (except

for shield lavas from Hawaii, the Galápagos, and Iceland) due

to systematically higher K2O+Na2O at a given SiO2 in the

primary magmas. This subset of alkalic OIB is hence

nepheline-normative, that is, highly undersaturated in SiO2.

They also display higher concentrations of K2O, MgO, FeOX,

and TiO2, as well as lower concentrations of Al2O3 at a given

SiO2 (e.g., Pilet et al., 2008), than tholeiitic OIB or even

MORB. These characteristics are important constraints for the

makeup of the OIB mantle source (see Section 133.3.6).
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Figure 11f0060 Frequency distributions (green, normalized by maximum frequency for each case) of isotope measurements taken for each of the oceanic
hot spots shown and for MORs (lower left). Bold black lines mark median values, and yellow lines encompass 68% (i.e., one standard deviation of
a normal distribution) of the samples. Light gray bars denote the range of values encompassing 68% of all of the MORB measurements (sum of
the three ridges shown). Most of these data are from the GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/) with key references for
3He/4He data given in Ito and Mahoney (2006). Data for Pukapuka are from Janney et al. (2000) and for the Foundation chain from Maia et al. (2000).
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s0100 133.2.5 Mantle Seismic Anomalies

s0105 133.2.5.1 Global seismic studies
p0325 Seismic wave propagation in the mantle is generally slowed by

elevated temperature, volatile content, and the presence of

melt (e.g., Anderson, 1989). In addition, it is affected by the

content of mafic materials, such as eclogite (Xu et al., 2008;

Zhang and Green, 2007). Seismology is therefore the primary

geophysical tool for probing the physical signature of hot spots

and melting anomalies and for identifying their depths of

origin.

p0330Seismic tomography uses seismic delay times and wave-

form deviations to map velocity anomalies relative to a partic-

ular background model. Applications of these techniques have

seen wide popularity as velocity variations can be directly

related to chemical and thermal variations in the Earth. Yet, it

should be considered that any tomographic image is in fact a
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Figure 12f0065 From Pilet et al. (2008) with minor modifications. Select major-element concentrations (a–g) and oxide ratios (h) of basalt samples and
experimental melts. Solid gray circles, OIB; solid black circles, continental intraplate basalts; open circles, MORB. Solid diamonds are experimental
hornblenditic liquids from three different starting compositions (open diamonds) at various experimental conditions (Pilet et al., 2008); triangles
are experimental liquids derived from silica-deficient pyroxenites with (dark blue; Dasgupta and Hirschmann, 2006) or without (light blue; Hirschmann
et al., 2003; Kogiso et al., 2003) the addition of CO2.
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model of the Earth that is strongly dependent on themethod of

inversion, choice of damping parameters, and background

model and can be quite sensitive to the lack of global coverage

of earthquakes and seismometers, as well as standard conse-

quences of wave propagation such as wave-front healing or

those associated with finite-frequency effects.

p0335 Global seismic tomography has been able to confidently

image the remnants of slabs as high-velocity and presumably

cold anomalies (e.g., Bijwaard et al., 1998; Grand et al., 1997).

The hot mantle upwellings hypothesized to be associated with

hot spots are instead expected to be narrow, localized, and

much less voluminous than slabs. Any associated low-velocity

anomalies may further be obscured by the effects of wave-front

healing. Combined, these effects should make plumes very

difficult to be imaged with seismic tomography, especially in

the lower mantle (Hwang et al., 2011; Nolet et al., 2007;

Ritsema and Allen, 2003; Styles et al., 2011). Structures in the

lower mantle that are most robustly imaged and likely associ-

ated with upwelling are the (1000s of km across) LLSVPs below

the South Pacific and African Superswell regions (e.g., Breger

et al., 2001; Ni et al., 2005; Trampert et al., 2004; van der Hilst

and Karason, 1999). The sharp edges of these anomalies (Ni

et al., 2002; To et al., 2005) and their reproduction in dynamic

models (McNamara and Zhong, 2005; Tan and Gurnis, 2007)

suggest that these features are anomalous in terms of both

composition and temperature (see also Chapter 136).

p0340 The use of global tomography to probe the existence and

nature of smaller-scale (100 s of km across) upwellings associ-

ated with individual hot spots continues to be a challenge, but

substantial progress has been made with improved resolution

in global seismic models (e.g., Boschi et al., 2007; Montelli

et al., 2006; Nataf, 2000; Nolet et al., 2007; Ritsema and Allen,

2003; Zhao, 2007 and references therein). Numerous hot spots

have been shown to overlie low-velocity anomalies in the

upper mantle, and a subset of these anomalies have been

argued to extend into the deep lower mantle based on visual

inspection (Montelli et al., 2006; Zhao, 2007; Figure 13) or on

various statistical tests (Boschi et al., 2007, 2008). Two research

groups (Boschi et al., 2007; Zhao, 2007) emphasize that many

lower mantle, plume-like anomalies are best explained by

plumes, which tilt and whose sources migrate due to flow of

the ambient mantle. In addition, evidence shows that lower

mantle plumes tend to originate from around the edges of the

LLSVPs beneath the South Pacific and Africa (Boschi et al.,

2007; Thorne et al., 2004; Figure 13(e)).

p0345 The passage ofmantle plumes from the lowermantle into the

uppermantle can alsobedetectedbymeasuring the depthsof the

seismic discontinuities bounding the mantle transition zone.

Excess temperature is expected to cause the phase change near

410 kmwith a positive Clapeyron slope to occur deeper and the

phase change near 660 km with a negative Clapeyron slope to

occur shallower. In both the cases, the olivine system is assumed

to dominate the phase changes (Helffrich, 2000; Ito and

Takahashi, 1989). Hot mantle plumes that pass through both

phase changes should therefore be associated with unusually

thin transition zones. Some global-scale studies suggest this is

indeed the case (e.g., Lawrence and Shearer, 2008; Li et al., 2003;

Schmerr et al., 2010; Tauzin et al., 2008). In some cases, most of

the variations in transition zone thickness to topography are

suggested at 660 km (Lawrence and Shearer, 2008; Schmerr

et al., 2010), whereas many others attributed most of the varia-

tions to topography at 410 km (Li et al., 2003; Tauzin et al.,

2008). The evidence for the transition near 660 km tending to

remain flat or deepen – not shoal – in some regions where the

mantle is expected to be unusually hot could indicate that the

phase change effects are locally dominated by the garnet system

(postgarnet to perovskite, with a positive Clapeyron slope) (Cao

et al., 2011; Houser and Williams, 2010; Tauzin et al., 2008).

p0350Results about the depth of origin of plumes beneath many of

the Earth’s major hot spots are beginning to show some consis-

tencies. Between the studies of Montelli et al. (2006) and Zhao

(2007), 19 hot spots are associated with plumes originating in

the deep lower mantle, but only four (Tahiti, Kerguelen, Hawaii,

and Cape Verde) are recognized as such in both of the studies

(Figure 14). These four hot spots also show continuity of low-

velocity material extending through most of the mantle accord-

ing to Boschi et al.’s (2007) objective analysis (i.e., normalized

vertical extent>0.5 in Figure 14). An additional seven other hot

spots (East Africa/Afar, Réunion, Macdonald/Cook, Samoa, the

Canaries, the Azores, Iceland, and Easter) identified as deep

plumes by either Montelli et al. (2006) or Zhao (2007), but

not by both, are also likely to extend throughmost of themantle

according to Boschi et al. (2007). Of the 19 identified by

Montelli et al. (2006) and Zhao (2007), 6 hot spots (Tahiti,

Samoa, theCanaries, theAzores, Iceland, andHawaii) are further

associated with anomalously thin mantle transition zones, but

1(Easter) is associated with a transition zone that is as thick or

thicker (246�3 km) than the global average (242�2 km)

(Courtier et al., 2007). Six of these nineteen hot spots (Easter,

Hawaii, Iceland, Réunion, East Africa, and Louisville) were iden-

tified by Courtillot et al. (2003) as being ‘primary plumes’ from

the deepmantle on the basis of their associationwith a buoyancy

flux>103 kg s�1, a flood basalt province, andmagmaswith high
3He/4He (see also purple squares in Figure 7).

p0355Along these lines, at least three research groups agree that

�11 or so hot spots originate as hot mantle upwellings rising

from the deep lower mantle (Figure 14): Tahiti, East Africa,

Réunion, Samoa, Kerguelen, the Canaries, the Azores, Iceland,

Hawaii, Cape Verde, and Easter Island. A critical shortcoming is

that the resolution of seismic tomography in the lower mantle

is probably insufficient to seismically resolve slow mantle

upwellings with lateral dimensions of hundreds of kilometers

(Styles et al., 2011). The regions of the lower mantle most

reliably imaged as being seismically slow have widths of

1000 km or more (Boschi et al., 2007). This leads to the

unresolved question whether any lower mantle plumes

(100 s of km wide) originate individually from the core–

mantle boundary (CMB) or whether all lower mantle plumes

rise out of much broader (1000s of kilometer wide) dome-like

LLSVPs (Courtillot et al., 2003; Schubert et al., 2004; Torsvik

et al., 2006). Of course, the lack of visibility of a narrow plume

in the lower mantle may also just indicate its absence and an

origin within or near the transition zone (Courtillot et al.,

2003; Cserepes and Yuen, 2000).

s0110133.2.5.2 Seismic studies of major hot spots
p0360Regional studies of the seismic structure of the mantle beneath

hot spots are often at higher resolution than global studies. We

will discuss the main results of these in geographic order.
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p0365 Iceland : Regional seismic studies have confidently imaged a

body of anomalously slow seismic wave speeds in the upper

mantle beneath Iceland. Conventional ray theory was used to

first image the anomaly (Allen et al., 1999, 2002; Foulger et al.,

2001; Wolfe et al., 1997). A subsequent study using an

improved finite-frequency technique (Allen and Tromp,

2005) resolves the feature to be roughly columnar with lateral

dimensions of 250–300 km with peak P- and S-wave anoma-

lies of �2.1% and �4.2%, respectively (Hung et al., 2004;

Figure 15). Recent studies using full-waveform tomography

(Rickers et al., 2013) or Rayleigh waves and local earthquakes

(Li and Detrick, 2006; Yang and Shen, 2005) confirm these

high amplitudes, which most likely require a combination of

excess temperature and melt.
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p0370 In addition, studies of surface and S-waves reveal seismic

anisotropy in the Icelandic upper mantle. Shear-wave splitting

of the SKS phase measures the integrated effects of seismic

anisotropy along nearly vertical ray paths across the mantle

and is detected at a number of locations on Iceland with the

fastest S-waves generally being polarized NW–SE (Bjarnason

et al., 2002; Li and Detrick, 2003; Xue and Allen, 2005).

Azimuthal anisotropy of Rayleigh waves has also been mea-

sured. Along the zones of active rifting and volcanism on

Iceland, this anisotropy is strong at shallow depths <50 km

with fast directions NNE–SSW and weak when somewhat dee-

per (Li and Detrick, 2006). West of the rift zones, fast
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Figure 15f0080 Tomographic inversions of the mantle below the Iceland hot spot (Hung et al., 2004) for (a) P-waves and (b) S-waves. Top row shows
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directions are instead oriented NW–SE at shallow depths and

more variably at depth. Taken together, the S-wave splitting

and surface-wave results are not straightforward to interpret

and lead to different conclusions about the cause of seismic

anisotropy beneath Iceland. Li and Detrick (2006) interpreted

the NNE–SSW Rayleigh wave anisotropy as being caused by a

preferential alignment of melt channels or by lattice-preferred

orientation (LPO) of olivine induced by mantle flow that

roughly parallels the NNE–SSW-trending Northern Volcanic

Rift Zone and South Iceland Seismic Zone. In contrast, Xue

and Allen (2005) interpreted the S-wave splitting to indicate

LPO due to flow from the center of the hot spot in eastern

Iceland to the Kolbeinsey Ridge north of Iceland.

p0375 The vertical extent of the Iceland mantle plume has been

examined in a variety of studies. Receiver function studies show

that the Iceland plume extends well below 410 km as shown by

the thinning of the transition zone beneath Iceland (Du et al.,

2006; Shen et al., 1998, 2002). While Shen et al. (1998, 2002)

showed evidence for both a deepening of the 410 and a shoal-

ing of the 660 km discontinuity SE of Iceland, Du et al. (2006)

argued that the 660 km is instead flat. The precise nature of both

discontinuities is important in determiningwhether the Iceland

seismic anomaly initiates in the lowermantle. A recent regional

full-waveform tomography model (Rickers et al., 2013) is in

agreement with Shen et al. (1998; 2002) and suggests that the

anomaly is tilted to the SE and extends into the lowermantle. At

least three global tomography models are consistent with such

a deep-rooted anomaly (Bijwaard and Spakman, 1999; Boschi

et al., 2007; Zhao, 2007; see also Figure 14). A separate study

identifies an ultralow-velocity zone near the CMB below Ice-

land (Helmberger et al., 1998). An updated global tomography

model S40RTS (Ritsema et al., 2011) shows that the lower

mantle is seismically slow in a broad zone beneath Iceland

but with weak and variable amplitude, suggesting difficulty in

resolving the continuity of the Iceland plume from the CMB

(Figure 13(f )). A more robust determination of the depth of

origin of the Iceland plume probably requires a regional seismic

experiment spanning a wider geographic area than just the

island of Iceland.

p0380 The Azores : Evidence for anomalously hot mantle beneath

the Azores hot spot comes from a locally broad area of anom-

alously slow surface-wave speeds identified in the upper

200 km of the mantle, which appears as a perturbation of the

generally low-velocity structure extending along the Mid-

Atlantic Ridge (Pilidou et al., 2004). Finite-frequency body-

wave tomography reveals an irregularly shaped anomaly of

low P-wave speeds beneath the Azores archipelago in the

shallowest 200 km, which slants northeast and downward

to �400 km depth (Yang et al., 2006).

p0385 Cape Verde : Two groups find conflicting results for the

mantle structure beneath the Cape Verde hot spot, while both

use receiver function methods. The first group finds that the

uppermost mantle beneath Cape Verde has anomalously high

seismic velocity and low density (Lodge and Helffrich, 2006)

and that the transition zone has a normal thickness (Helffrich

et al., 2010). The former result was interpreted as revealing a

layer of depleted residue from hot spot melting and the latter as

indicating that the mantle upwelling sustaining the hot spot

originates in the upper mantle. In contrast, Vinnik et al. (2012)

found low seismic velocities and normal densities in the

shallow upper mantle, as well as a �30 km thinning of the

transition zone, due to a deepening of the 410 km discontinu-

ity and a shoaling of the 660 km discontinuity. These results

are consistent with the seismic structure being controlled by

temperature in the presence of a hot mantle plume rising from

the lower mantle. Vinnik et al.’s (2012) study was based on a

larger dataset than used in the two studies of the first group (see

preceding text). Vinnik et al. (2012) also argued that

frequency-dependent effects may contribute to the discrepan-

cies between the two groups.

p0390Bowie : The presence of a narrow, low-velocity zone near the

base of the transition zone below the Bowie hot spot is based

on delays in seismic records of Alaskan earthquakes measured

in the NW United States (Nataf and VanDecar, 1993). The

delays are consistent with a zone of 150 km diameter and an

excess temperature of 200 K.

p0395Hawaii : Early tomography studies of the Hawaiian hot spot

revealed the presence of anomalously slow seismic velocities in

the upper mantle beneath the Hawaiian hot spot swell (Laske

et al., 2007) and beneath the Hawaiian Islands (Priestley and

Tilmann, 1999; Tilmann et al., 2001; Wolfe et al., 2002).

Additional evidence for an upper mantle melt anomaly was

provided by a seafloor magnetotelluric study (Constable and

Heinson, 2004), which suggests a columnar zone of 5–10%

partial melting with a radius <100 km and a depth extent of

150 km. Ritsema et al.’s (2011) global tomography model

shows a broad volume of low velocities in the upper mantle

beneath Hawaii that appears to connect to a low-velocity body

extending through and to the base of the lower mantle

(Figure 13(g)).

p0400More recently, the Hawaiian Plume-Lithosphere Undersea

Melt Experiment (PLUME) (Wolfe et al., 2009) involved one of

the largest deployments of ocean bottom and land seismome-

ters to image the seismic structure of the upper mantle and

shallow lower mantle beneath the Hawaiian hot spot. Rayleigh

wave tomography from the PLUME project reveals low veloc-

ities within the lithosphere at depths of 10–60 km beneath the

island chain and the surrounding hot spot swell (Laske et al.,

2011). Separate tomographic inversions of Rayleigh waves

(Laske et al., 2011), S-waves (Wolfe et al., 2009), and

P-waves (Wolfe et al., 2011) all image a volume of relatively

low seismic velocities in the upper mantle underlying the

Hawaiian swell (Figure 16). The volume is asymmetrical and

irregular in shape. Lower seismic velocities SW of the island of

Hawaii than NE correlate with an asymmetrical bathymetric

swell, which is shallower to the SW than the NE (Crosby and

McKenzie, 2009; Wessel, 1993), and with variations in the

depth of seismic converters constrained by receiver functions

(Rychert et al., 2013). These observations indicate that the

Hawaiian swell is supported by hot and buoyant mantle inter-

preted to be plume material ponding beneath the lithosphere

(Olson, 1990; Sleep, 1990) like a ‘pancake’ (Section 133.3.4).

This pancake-shaped feature is asymmetrical about the axis of

the volcano chain and appears to be hotter in – or to extend

further to – the SW than the NE. In addition, all three tomog-

raphy studies show that the low-velocity body is surrounded by

seismically fast material, which is interpreted to be relatively

cool, sublithospheric material that is sinking like a curtain

around the plume pancake. The asymmetry as well as short-

wavelength variability of the Hawaiian plume pancake is not
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predicted by models of steady-state plume–plate interaction

(Ribe and Christensen, 1994, 1999).

p0405Another surprising finding of the body-wave studies (Wolfe

et al., 2009, 2011) is that the low velocities underlying the

Hawaiian swell are present from the base of the lithosphere all

the way down to the transition zone (Figure 16). If these low

velocities indeed identify ponding plume material, the inferred

plume pancake is several times thicker than predicted by the

classical models of thermally buoyant mantle plumes (e.g.,

Ribe and Christensen, 1999; van Hunen and Zhong, 2003).

A possible explanation is that the Hawaiian plume contains

compositionally dense mafic materials that reduce the net

buoyancy of plume material to the degree that the rise of

the plume temporarily stalls at the depths of 300–410 km,

forming a ‘deep eclogite pool’ (Ballmer et al., 2013b; see Sec-

tion 133.3.3.3). This explanation is supported by joint surface-

wave and body-wave tomography (Cheng et al., in press) as

well as independent constraints from receiver functions

(Huckfeldt et al., 2013).

p0410Below the upper mantle, the tomography studies image a

vertically elongated body of low velocities near the southeast

end of island chain that extends into the lower mantle

(Figure 16; Wolfe et al., 2009; 2011). This feature is interpreted

to be the stem of the Hawaiian mantle plume with an esti-

mated thermal anomaly of 250–300 �C, confirming prior dis-

coveries of transition zone thinning by 40–50 km beneath

Hawaii (Li et al., 2000, 2004; Collins et al., 2002). A still

deeper origin is suggested by a tomographic study that incor-

porates core phases (Lei and Zhao, 2006). Compelling evi-

dence for an origin at CMB is the imaging of an ultralow-

velocity zone (ULVZ) at the base of the mantle having one of

the largest known velocity reductions (�20%) yet documented

(Cottaar and Romanowicz, 2012).

p0415The Galápagos : The Galápagos hot spot is part of a broad

region in the Nazca–Cocos basin with significantly reduced

long-period Love and Rayleigh wave speeds (Heintz et al.,

2005; Vdovin et al., 1999). The mantle transition zone in the

region has a similar thickness as that of the rest of the Pacific

Basin except for a narrow region of �100 km in radius slightly

to the west of the Galápagos archipelago, where it is thinned

by �18 km (Hooft et al., 2003). This amount of thinning

suggests an excess temperature of �130 K. A regional body-

wave tomography study detected a low-velocity feature of

comparable dimension, extending from above the transition

zone into the shallow upper mantle (Toomey et al., 2001).

Rayleigh wave tomography (Villagomez et al., 2007) shows

laterally averaged S-wave velocities at depths 75–150 km that

are 0.05–0.2 km s�1 lower than that beneath normal Pacific

mantle with comparable seafloor ages. This velocity anomaly is

consistent with excess temperatures of 30–150 �C, plus �0.5%

melt. The low-velocity material appears to trend diagonally

from its greatest depth beneath the Galápagos archipelago

upward and to the NE, interpreted to reflect the flow of

plume material from the plume stem toward the Galápagos

Spreading Center. Ritsema et al.’s (2011) global tomography
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model suggests that the upper mantle anomaly connects to a

broader plume-like feature extending all the way down to the

CMB (Figure 13(h)).

p0420 To examine seismic anisotropy in the mantle, shear-wave

splitting was also studied (Fontaine et al., 2005). At the western

edge of the archipelago, splitting of up to 1 s with fast polari-

zations directed E–W is consistent with LPO and mantle defor-

mation being dominated by the eastward motion of the Cocos

Plate. Directly beneath the archipelago and within the upper

mantle seismic anomaly, however, there is no clear splitting,

which suggests that melt or complex flow beneath the hot spot

superimposes plate motion-derived anisotropy.

p0425 Yellowstone : Our understanding of the mantle seismic

structure in the area of the Yellowstone hot spot track has

evolved dramatically as the data coverage has increased. Early

tomographic studies revealed a complex velocity structure

in the upper mantle beneath the SRP (which marks the hot

spot track), interpreted to represent compositional heteroge-

neity associated with melting, without a deep-seated mantle

plume (Saltzer and Humphreys, 1997). A subsequent study

using data from local seismic networks identified low veloc-

ities in the upper mantle beneath the SRP, suggesting the

presence of a plume-like feature extending as deep as

400 km to the west of Yellowstone (Waite et al., 2006; Yuan

and Dueker, 2005).

p0430 The strongest constraints on mantle seismic structure near

Yellowstone have been derived from data collected with

Earthscope’s USArray (http://www.earthscope.org) with dense

seismic coverage over the whole area of the western United

States. Such a dense coverage provides the opportunity to

image the structure beneath Yellowstone at much higher reso-

lution and to greater depths than beneath any other hot spot

on Earth. The aperture of the seismic array provides good

resolution down to depths of �1000 km or more. Several

groups produced P- and S-wave tomography models of the

mantle beneath the western United States (Darold and

Humphreys, 2013; Fouch, 2012; James et al., 2011; Obrebski

et al., 2010; Schmandt et al., 2012; Sigloch, 2011; Tian and

Zhao, 2012). The images differ in detail but common elements

related to the Yellowstone hot spot include low velocities in the

shallowest 300 km of the upper mantle below the SRP and a

relatively narrow (<200 kmwide) low-velocity feature beneath

Yellowstone that extends continuously through the upper

mantle and connects to a broader (�300–500 km across)

low-velocity zone in the shallow lower mantle (Figure 17).

These studies suggest that the deep low-velocity anomaly is

irregular in shape, with variable amplitude, and surrounded

by seismically fast material without a clear extension to depths

greater than 900 km depth.

p0435 Earlier receiver function studies of the mantle transition zone

found a depression of the 410 km discontinuity near Yellow-

stone but did not image an upward deflection of the 660 km

discontinuity, as expected for the effect of high temperatures on

phase changes in the olivine system(Fee andDueker, 2004; Yuan

and Dueker, 2005). The most recent receiver function study

using data from the USArray, however, shows that the 660 km

discontinuity shoals by 12–18 km over an area �200 km wide

and centered on the low-velocity feature (Schmandt et al., 2012).

In contrast, the 410 km discontinuity appears to be only mar-

ginally perturbed (<5 km) (Figure 17(b)).

p0440Interpretation of the seismic structures beneath Yellow-

stone remains controversial. On the one hand, there is agree-

ment concerning the shallower structure. The seismically slow

material just beneath the SRP is interpreted to be a zone of

partial melting and to be bound to the NW and from below by

the seismically fast remnants of the subducted Farallon Plate

and to the SE by foundering lithospheric material. On the

other hand, there is disagreement concerning the deeper struc-

ture, with one group ( James et al., 2011) dismissing a plume

origin for the seismic and volcanic anomaly altogether (see

Section 133.3.7.2).

p0445Despite these controversies, the good resolution of the

seismic structure well into the lower mantle beneath both

Yellowstone and Hawaii motivates a brief comparison between

the two. Common features involve a horizontal low-velocity

anomaly beneath the hot spot tracks that extends in the direc-

tion of plate motion, as well as a narrow vertical anomaly near

the leading edge of the hot spots that protrudes into the lower

mantle. The simplest explanation for these two common fea-

tures is a plume rising from the lower mantle and ponding

beneath the lithosphere. A notable difference is that the deep

anomaly beneath Yellowstone is not clearly continuous with

depth compared to the inferred continuity for that beneath

Hawaii. Another difference concerns the depth extent of the

horizontal upper mantle anomaly, which is completely con-

tained in the shallowest 200–300 km beneath Yellowstone’s

hot spot track (SRP), whereas it extends through most of the

upper mantle (Wolfe et al., 2009) or even splits up into two

separate layers (Cheng et al., in press) beneath the Hawaiian

Islands.

p0450Eifel : The Eifel region in western Germany is characterized

by numerous but small volcanic eruptions with contempora-

neous uplift of 250 m in the last 1 My. Tomographic imaging

indicates a mantle low-velocity anomaly extending to depths

of at least 200 km (Passier and Snieder, 1996; Pilidou et al.,

2005). Inversions using a high-resolution local array study

indicate a fairly narrow (100 km) P-wave anomaly of 2% that

possibly extends to 400 km (Keyser et al., 2002; Ritter et al.,

2001). The connection with the deep mantle is unclear but has

been suggested to include the low-velocity structure that is

imaged in the lower mantle below central Europe (Goes

et al., 1999). Shear-wave splitting measurements show the

largest split times for S-waves polarized in the direction of

absolute plate motion, but the pattern is overprinted by com-

plex orientations, suggestive of parabolic mantle flow around a

plume stem with the overlying plate moving to the SW (Walker

et al., 2005).

p0455Cameroon Volcanic Line: Body-wave tomographic studies

using global data and those obtained from the recent

Cameroon Broadband Seismic Experiment show that the Cam-

eroon volcanic line (CVL) is underlain by a fingerlike low-

velocity anomaly that extends from the Gulf of Guinea in the

SW to the Chad–Cameroon border in the NE (e.g., Reusch

et al., 2010; Ritsema et al., 2011). The anomaly ranges from

�100 to �400 km depth with the depth of peak amplitudes

shoaling toward the SW, and is juxtaposed by a high-velocity

anomaly associated with the Congo Craton (and subcratonic

mantle) toward the SE (Reusch et al., 2010). The peak-to-peak

difference between the two anomalies is �5%, corresponding

to a temperature contrast of >280 �C (Reusch et al., 2010).
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This contrast may suggest anomalously hot mantle beneath the

CVL, anomalously cool mantle beneath the Congo Craton

(e.g., due to downwelling; King and Ritsema, 2000), or both.

A rather moderate thermal anomaly beneath the CVL itself is

consistent with receiver function constraints on the ratio of P-

to S-wave speed (VP/VS), which indicate the presence of only

very small fractions of melt in the asthenosphere (Gallacher

and Bastow, 2012).

p0460Shear-wave splitting measurements display fast directions

dominantly parallel or subparallel to the CVL (Koch et al.,

2012). These directions are consistent with a strong compo-

nent of local northeastward asthenospheric flow, as is
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predicted by numerical simulations to result from large-scale

mantle convection patterns (Conrad and Behn, 2010; Forte

et al., 2010). A weaker component of flow perpendicular to

the CVL, perhaps related to small-scale convection along the

edge of the Congo Craton (cf. King and Ritsema, 2000), may

contribute to subparallel (i.e., dominantly N–S) splitting direc-

tions measured by Koch et al. (2012) at a subset of stations.

Such edge-driven convection (see Section 133.3.3.5) may also

provide a good explanation for volcanism itself (King and

Ritsema, 2000). An alternative plume origin for volcanism is

ruled out by nonanomalous transition zone thicknesses

(Reusch et al., 2011) and the lack of hot spot-like age–distance

relations (Figure 6, inset).

p0465 East Africa : The hot spots in East Africa overlie the north-

eastern flank of the African LLSVP (Figure 13(e)). The African

LLSVP is rooted at the CMB beneath southern Africa

(Helmberger et al., 2000). It is a large low-velocity body

(�4000 km by �2000 km) that tilts up and to the northeast

beneath East Africa (Forte et al., 2010; Ritsema et al., 1999)

(Figure 13(i)). The relationship of the African LLSVP to volca-

nism and rifting in East Africa remains controversial. One

suggestion is that volcanism is not attributed to the LLSVP at

all, but instead to small-scale, sublithospheric convection

along the edges of the African Craton (King and Ritsema,

2000). Another idea attributes the numerous volcanic centers

to one or more mantle plumes of �100 km in width rising

from the top of the LLSVP to the base of the lithosphere (e.g.,

Chang and Van der Lee, 2011; Ebinger and Sleep, 1998;

Montelli et al., 2006). A third concept attributes volcanism

directly to the rise into the shallow upper mantle and decom-

pression melting of a ‘superplume’ (cf. Davaille, 1999) as a

whole, which would be imaged as an extension of the LLSVP

itself (Bastow et al., 2005; Benoit et al., 2006; Park and

Nyblade, 2006).

p0470With the arrival of data from permanent and temporary

seismic arrays of the AfricaArray (http://www.africaarray.psu.

edu/), a general consensus is forming among the most recent

studies (Hansen and Nyblade, 2013; Hansen et al., 2012).

S-wave tomography (Nyblade, 2011) and surface-wave

(Adams et al., 2012) tomography reveal that the shallow

upper mantle in East Africa from just south of the Tanzania

Craton to NE of the Ethiopian Rift is seismically slow

(Figure 18). Associated with this low-velocity anomaly, the

410 km seismic discontinuity is 30–40 km deeper than normal

suggesting excess temperatures of >250 �C (Cornwell et al.,

2011; Huerta et al., 2009). The seismically slow material in

the upper mantle is therefore too thick, geographically broad,

and pervasive to be explained by the shallow process of edge-

driven convection or by separate, smaller-scale mantle plumes.

The observed seismic structure appears to be most consistent

with the penetration of a large and broad (super)plume into

the upper mantle where it causes decompression melting.

Fast polarization directions of shear-wave splitting that are

dominantly oriented NE–SW have been interpreted to reflect
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LPO due to dominantly northeastward flow of the superplume

in the upper mantle (Bagley and Nyblade, 2013), an interpre-

tation that is supported by geodynamic models (Forte

et al., 2010).

p0475 Potential challenges for a superplume origin arise from a

recent S-wave tomography study that images vertically elongate

low-velocity bodies beneath Afar and Kenya that protrude

downward below the low-velocity upper mantle to at least

midmantle (�1400 km) depths (Chang and Van der Lee,

2011). Also, the 660 km seismic discontinuity beneath East

Africa is regionally abnormally deep (Cornwell et al., 2011;

Huerta et al., 2009). In the context of the superplume

hypothesis, this observation would require the presence of

eclogitic materials to activate the majorite–perovskite phase

change at �720 km depth (Cornwell et al., 2011; Huerta

et al., 2009). A SW–NE shoaling of the discontinuity from

northern Ethiopia to Afar would then reflect a decrease in the

garnet concentration (Cornwell et al., 2011).

p0480 South Pacific Superswell : Approximately antipodal to East

Africa is a cluster of hot spots in the area of the South Pacific

Superswell (McNutt and Fischer, 1987), which overlies the

Earth’s other LLSVP in the lower mantle (e.g., Breger et al.,

2001; Ni et al., 2005; Trampert et al., 2004; van der Hilst and

Karason, 1999). Ritsema et al.’s (2011) S40RTS model shows

that the whole area of the South Pacific Superswell is underlain

by low seismic velocities in both the lower and the upper

mantles (Figure 13(j)).

p0485 A recent deployment of temporary seismometers on the

seafloor and a number of islands enabled a regional tomo-

graphic study of the middle and upper mantle beneath the

South Pacific Superswell. The P-wave and S-wave tomography

results reveal that the area is underlain bymultiple low-velocity

regions in the depth range from 400 to 1600 km (Tanaka et al.,

2009). Two low-velocity regions at 1200 km depth are centered

beneath the Society and Pitcairn hot spots, while two at

800 km depth are located beneath the Tuamotu and Austral

Islands. There are also relatively short-wavelength (hundreds

of km across) variations at 400 km depth. A prior study of

underside reflections of S-waves at the 410 and 660 km dis-

continuities found the mantle transition zone to have normal

thicknesses, except in a�500 kmwide area beneath the Society

hot spot (Niu et al., 2002a).

p0490 The incorporation of Rayleigh wave tomography highlights

the presence of short-wavelength variability in the uppermantle,

showing that the Society, Pitcairn, Macdonald, Marquesas, and

Aragohot spots are underlain by lowvelocities in the depth range

of 60–180 km (Suetsugu et al., 2009). Only the low-velocity

bodies beneath Society and Macdonald appear to connect to

the low-velocity anomalies in the lower mantle. The shallow

anomalies beneath the other hot spots appear to be restricted

to the upper mantle. Suetsugu et al. (2009) interpreted this

structure as reflecting the presence of a number of small-scale

(hundreds of kmacross), plume-like upwellings emanating from

the south Pacific LLSVP, some of which having risen above and

become separated from the LLSVP. This conclusion is in contrast

to the conclusions for the African LLSVP rising as a whole super-

plume into the shallow upper mantle. These contrasting results

lead to questions about the dynamics of LLSVPs. For example,

are the contrasting dynamics related to internal forces (differ-

ences in composition and temperature) or instead driven by

external ones (ambient mantle flow shaping the LLSVPs;

McNamara and Zhong, 2005; Steinberger and Torsvik, 2012)?

s0115133.2.6 Summary of Observations

p0495Intraplate volcanic activity can be mainly grouped in three

categories: long-lived age-progressive volcanism, short-lived

age-progressive volcanism, and volcanism with complex age

patterns (Courtillot et al., 2003). Long-lived (>50 My) age-

progressive volcanism is documented for at least 13 hot

spots. At present day, these hot spots define a global kinematic

reference frame that is deforming slower than average, present-

day plate velocities. Over geologic time, however, the motion

between the Indo-Atlantic hot spots, the Pacific hot spots, and

Iceland has been significant. Short-lived (�24 My) age-

progressive volcanism is documented along at least ten vol-

cano chains. The directions and rates of age progression in the

short-lived chains suggest relative motion between these hot

spots, even on the same plate. Finally, the available dates of

rocks from a number of volcano groups (e.g., Line and Cook–

Austral Islands and Cameroon volcanic line) do not show

evidence for simple age–distance relations but instead suggest

these groups to have formed by episodic volcanism over tens of

millions of years with coeval volcanism over large distances.

p0500Hot spots are commonly associated with topographic

anomalies (i.e., swells). These swells are usually centered by

the most active volcanoes, span distances of hundreds of km

to>1000 km, and rise hundreds of meters above the surround-

ing seafloor. Hot spot swells usually diminish with time or

distance from the center of active volcanism and exclusively

support volcanoes no older than�50 My.

p0505LIPs display a huge range in magmatic volumes and

durations and have been related to climate change and mass

extinction events. They represent the largest outpourings of

magma from as large as 50 Mkm3 (OJP) to <2 Mkm3 (CRB)

(see Figure 10). This voluminous magmatism can occur in a

dramatic short bursts, lasting 1–2 My (CAMP, CRB, EM, OJP,

and SIB), or can be prolonged over tens of My (e.g., CHON,

CBN, KER, NAVP, and SHA). Main eruptive products are tho-

leiitic basalts that, on the continents, typically are transported

through radiating dike swarms. High-MgO basalts or picrites

are found in a number of provinces (NAVP, OJP, and CAR)

indicating high degrees of mantle melting. Smaller rhyolitic

eruptions in continental flood basalts (KAR, PAR, CHON, and

EARS) instead suggest secondary melting of the continental

crust. Dynamic topographic uplift (analogous to hot spot

swells) is evident around the main eruptive stages of some

LIPs (EME, NAVP, SIB, and KER) but may not have occurred

at others (OJP and SHA). While an appreciable amount of the

geologic record is lost to subduction, about six active hot spots

are confidently linked to LIPs. Most of these hot spots are

currently located at or very close to an oceanic spreading center

with the Kerguelen hot spot being a notable exception. Flood

basalt volcanism itself is also typically associated with rifting,

either between continents (PAR, KAR, CAMP, NAVP, DEC, and

MAD) or at MORs (OJP–MAN–HIK, KER, and SHA–HES).

These links between LIPs and plate tectonics compel substan-

tial revisions or alternatives to the hypothesis of an isolated

head of a starting mantle plume as the sole origin of LIPs.
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p0510 Basalts from hot spots and other sites of intraplate volcanism,

commonly referred to as OIB, are geochemically distinct from

MORB. Both isotope ratios and major elements display a much

greater variability among OIB than among MORB. Generally,

OIBs aremoremafic (i.e., lower SiO2 content) and alkalic (higher

Na2O+K2O) thanMORB. For the most part, they also differ in at

least one of three commonly analyzed isotope ratios: 87Sr/86Sr,
206Pb/204Pb, and 3He/4He. Exceptions are the Bowie–Kodiak,

Cobb, and Caroline chains, which show MORB-like 87Sr/ 86Sr

and 206Pb/204Pb compositions (but lack 3He/4He data). In terms

of major elements, the most productive hot spots (Hawaii, Ice-

land, and the Galápagos) overlap most heavily with MORB.

p0515 Hot spots are typically associated with anomalously low

seismic-wave speeds below the lithosphere and in the upper

mantle. Transition zone thicknesses are often anomalously

thin by tens of km. The previously mentioned findings are

consistent with elevated mantle temperature (by 150–200 K)

and with the abundance of partial melt in the shallow upper

mantle. Improved understanding of mineral physics at appro-

priately high pressure and temperature is needed to better con-

strain the magnitude of the putative temperature anomalies and

to quantify the potential contribution of compositional hetero-

geneity. Especially with recent regional studies and the availabil-

ity of EarthScope data, we have seen increasing evidence for a

lower mantle origin for a selected number of hot spots.

p0520 The key characteristics described earlier provide important

constraints to test dynamic mechanisms proposed for the

origin of melting anomalies. It seems unlikely that a single

overarching mechanism can account for the diversity seen in

the geologic record. In the next section, we discuss the impli-

cations and predictions of each of these mechanisms.

s0120 133.3 Dynamic Mechanisms and Their Implications

p0525 This section reviews the mechanisms proposed to generate

intraplate volcanism. We begin with a summary of methods

that are used to quantitatively explore dynamic mechanisms

(Section 133.3.1). We then discuss the geodynamic processes

for generating mantle upwelling (Section 133.3.3) and related

magmatism (Section 133.3.2). Candidate mechanisms to

compensate hot spot swells and to sustain flood basalt volca-

nism are explored in Sections 133.3.4 and 133.3.5, respec-

tively. In the context of the discussed geodynamic processes,

we continue revisiting the geochemical and petrologic signa-

tures of hot spot lavas and their distinctions from MORB

(Section 133.3.6). Finally, we discuss these processes in the

broader context of mantle convection and plate tectonics

(Section 133.3.7).

s0125 133.3.1 Methods

p0530 The origin and evolution of hot spots and melting anomalies

can be constrained by systematically comparing predictions of

geodynamic models with observations. Such models simulate

the transport of energy, mass, and momentum in the solid

mantle that may have local patches of partial melt. They indeed

provide a means to directly test conceptual ideas against the

basic laws of physics and to delineate the conditions under

which a proposed geodynamic mechanism can operate.

p0535Key aspects of material and energy transport in the mantle

can be described mathematically and solved by analytic or

numerical approaches or can be studied in laboratory experi-

ments using analogue materials. Analytic approaches provide

scaling laws that reveal relationships between phenomena and

key parameters for simple or simplified problems (see also

Chapter 129). Numerical simulations can address much

more complex problems. Their accuracy, however, may be

limited by the discretization of the differential equations and

the parameterizations made (see also Chapter 130). Labora-

tory experiments (see also Chapter 128) involving analogue

materials such as sucrose syrup and silicon putty instead pro-

vide natural experiments that do not suffer from numerical

discretization but require significant extrapolation over length

scales and timescales. For simplified cases, such as the ascent of

plumes through a nearly isoviscous or Newtonian fluid, bench-

marks have revealed good agreement of numerical and ana-

logue simulations (e.g., van Keken’s (1997) numerical

benchmark of the classic Griffiths and Campbell (1990) labo-

ratory experiments; see also Vatteville et al. (2009), van Keken

et al. (2013)). It is nevertheless essential to resort to computa-

tional modeling to simulate some of the complexities that arise

with the features of the Earth’s mantle such as compressibility,

phase transitions, melting, and realistic rheology dependent on

grain size, pressure, and stress (see also Chapter 127).

s0130133.3.2 Generating Magmas for Volcanism

p0540Understanding the causes for melt generation is essential for

studying the origin of hot spots and intraplate volcanism.

Partial melting of rocks can conceptually occur due to (1) a

change in temperature, (2) a closed-system decompression,

and (3) an open-system change in composition. While the

scenarios (1) and (3) are relevant for melting the crust (e.g.,

near intrusions) and the mantle wedge (i.e., at subduction

zones), respectively, isentropic decompression melting (2) is

the dominant process of melt generation at MORs, hot spots,

and other melting anomalies.

p0545For decompression melting, the total volumetric rate of

melt generation is approximately proportional to the rate of

decompression (or mantle upwelling) and the melt productiv-

ity at constant entropy (�@F/@P)S integrated over the volume V

of the melting zone:

QM ¼ rc
rc

ð

V

�@F

@P

� �
S

�DP

DT

� �
dV [1]

where rm is mantle density and rc is igneous crustal density.

(�@F/@P)S is generally positive above the solidus and zero

otherwise. The solidus temperature and (�@F/@P)S depend

on the equilibrium composition of the solid and liquid at a

given pressure (e.g., Hirschmann et al., 1999; McKenzie, 1984;

Phipps Morgan, 2001). Mantle magmatism thus requires some

combination of excess temperature, presence of fertile or fus-

ible material, and mantle upwelling. Higher temperatures

boost melting by increasing the pressure range over which the

solidus is exceeded, composition controls melting by changing

both this pressure range and (�@F/@P)S, and both factors may

influence the rate of decompression (�DP/DT) through their

effects on mantle buoyancy and upwelling rate.
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s0135 133.3.2.1 Temperature
p0550 Excess melting sustained by elevated temperatures has been a

major focus of previous studies. Mantle-source temperatures are

commonly estimated from the Fe–Mg content of primary

magmas and the olivine phenocrysts with which they equili-

brate. One group suggests that the mantle is no hotter beneath

Hawaii than beneath many MORs (Falloon et al., 2007; Green

et al., 2001). Other groups, however, suggest elevated tempera-

tures of, for example, 100–300 �C beneath Hawaii, 50–100 �C
beneath Iceland or the Azores, and�150 �C beneath Afar (Beier

et al., 2012; Herzberg, 2004a; Herzberg and Gazel, 2009;

Herzberg et al., 2007; Lee et al., 2009; Putirka, 2005; Putirka

et al., 2007, 2011; Rooney et al., 2012). Most, if not all, lavas

sampled at hot spots have evolved to varying degrees

after leaving the mantle source, and it is therefore difficult to

estimate the parental liquids’ MgO content. For example,

Putirka (2005) argued that the lower MgO contents derived by

Green et al. (2001) for Hawaii could lead to an underestimate of

temperature. Restricting the analyses to melt inclusions would

mitigate this uncertainty, but such an approach is intricate.

p0555 Complementary methods rely on peridotite melting

models that invert or forward model a whole suite of major-

element and/or minor-element concentrations, sometimes

including crustal thicknesses as an additional constraint.

Beneath Iceland, estimates for excess mantle temperatures

based on such methods range from �100 to �250 �C (e.g.,

Herzberg and O’Hara, 2002; Klein and Langmuir, 1987;

Langmuir et al., 1992; Maclennan et al., 2001; McKenzie and

Bickle, 1988; Presnall et al., 2002; Shen and Forsyth, 1995;

White and McKenzie, 1995). Excess temperatures are further

estimated at 200–300 �C beneath Hawaii, based on a combi-

nation of geodynamic and melting models (Ribe and

Christensen, 1999; Watson and McKenzie, 1991), and at

�100 �C beneath Afar, based on incompatible trace-element

forward modeling (Ferguson et al., 2013). Along these lines,

most of the studies appear to converge to high thermal anom-

alies beneath Hawaii and moderate thermal anomalies at other

hot spots, but discrepancies between methods remain large.

s0140 133.3.2.2 Composition
p0560 An additional source of uncertainty for the previously men-

tioned temperature estimates is the composition of the mantle

source. Volatile species such as H2O and CO2 can dramatically

reduce solidus temperatures even in small proportions, as are

present in the MORB source (Asimow and Langmuir, 2003;

Dasgupta and Hirschmann, 2006; Dasgupta et al., 2007;

Hirschmann, 2010). While such small concentrations of vola-

tiles are not likely to increase the total extent of melting signif-

icantly, they can enhance the amount of melt produced for a

given temperature by expanding the volume of the melting

zone. As the mantle beneath hot spots is thought to be more

volatile-rich than beneath MORs, temperature estimates based

on dry peridotite may be too high. For example, excess tem-

peratures beneath the hot spot-influenced Galápagos

Spreading Center may be reduced from �50 �C for anhydrous

melting models to <40 �C when water is considered (Asimow

and Langmuir, 2003; Cushman et al., 2004). Similarly, esti-

mates for the mantle excess temperature beneath the Azores

have been revised from �75 to �55 �C (Asimow and

Langmuir, 2003). Hydrous melting models have yet to be

explored in detail for the larger Iceland and Hawaii hot spots.

p0565The mantle beneath hot spots may also contain more fus-

ible, mafic lithologies, such as those generated by the recycling

of subducted oceanic crust. The presence of more fusible or

‘fertile’ mantle has been suggested for hot spots such as Hawaii

(Hauri, 1996; Herzberg, 2006; Sobolev et al., 2005; Takahashi,

2002), Iceland (Korenaga and Kelemen, 2000), the Columbia

River basalts (Takahashi et al., 1998), the Galápagos (Sallares

et al., 2005), the Canaries (Day et al., 2009; Gurenko

et al., 2009; Herzberg, 2011), and others (Hofmann, 1997).

Mafic lithologies tend to have a lower solidus andmuch greater

isentropic melt productivity (�@F/@P)S than peridotite

(Pertermann and Hirschmann, 2003; Spandler et al., 2008;

Yasuda and Fujii, 1994) and therefore require significantly

lower temperatures to produce the same volume of magma

compared to peridotite.

p0570Some have argued that such fertile mantle melting could

generate large melting anomalies with very small or even no

excess temperatures (Korenaga, 2005). An important difficulty

with this hypothesis is that mafic materials will tend to form

eclogite, which is significantly denser than lherzolite through-

out the upper mantle (Aoki and Takahashi, 2004; Hirose et al.,

1999; Irifune et al., 1986). To undergo decompression melting,

this material would therefore have to be supported by rapid

ambient mantle upwelling. Korenaga proposed that rapid

upwelling driven by shallow small-scale convection (cf.

Section 133.3.3.5) or fast seafloor spreading could entrain

eclogite upward from the uppermost lower mantle

(Korenaga, 2004, 2005), where eclogite becomes positively

buoyant (Hirose et al., 1999) and hence perhaps accumulates.

More recent experiments, however, suggest that the excess den-

sity of quartz-normative eclogites is actually near doubled in

the depth range of 300–410 km (Aoki and Takahashi, 2004),

which would make it difficult for plate-driven mantle flow to

entrain significant amounts of eclogite into the asthenosphere.

A more complete understanding of the properties and phase

relations of different lithologies at a range of mantle pressures

and temperatures is needed to test the ability of fertile materials

to give rise to mantle melting without thermal anomalies.

s0145133.3.2.3 Mantle upwelling
p0575The final major factor that can lead to melting anomalies is

enhanced mantle upwelling (which determines the decom-

pression rate, �DP/Dt). Not only thermal buoyancy but also

compositional buoyancy may fuel upwelling. However, com-

positionally lighter materials such as those with less iron and

garnet than the ambient mantle, perhaps due to prior melting

( Jordan, 1979; Oxburgh and Parmentier, 1977), are typically

less fertile than dense, undepleted materials.

p0580Behaving in complementary fashion to fertile mantle,

depleted mantle must be light enough such that the associated

increase in upwelling (�DP/Dt) overcomes the reduction in

fusibility (�@F/@P)S (cf. eqn [1]).

s0150133.3.3 Dynamics of Mantle Upwellings

p0585Geodynamic modeling studies have explored a wide range of

processes that can create and influence mantle upwellings.

Upwellings may occur in columnar plumes or diapirs. The
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style of ascent of such upwellings can be greatly affected by

variable rheology, thermal expansivity, and conductivity. Com-

positional heterogeneity can further complicate ascent styles if

entrained by plumes. Alternatively, upwelling may be passively

driven, for example, by downwellings that remove the cool and

negatively buoyant base of the lithosphere or by vertical

motion of the whole lithosphere itself. Another form of vertical

motion in the mantle, shear-driven upwelling, is independent

of density variations as an energy source, but is rather induced

by shearing of a rheologically variable mantle.

s0155 133.3.3.1 Thermal boundary layer instabilities
p0590 Density variations near thermal boundary layers can become

convectively unstable and lead to plume-like upwelling. In the

simplest case of a thermally stratified mantle, the energy source

comes from a density inversion with cool rocks overlying hot

rocks. Upwelling thermal instabilities develop from small

anomalies within such a hot thermal boundary layer as long

as they grow faster by advection than they dissipate by thermal

diffusion. In the Earth’s mantle, the core–mantle boundary

(CMB) is the main candidate for a plume-generating thermal

boundary layer (e.g., Boehler, 2000), but other boundary

layers may exist at locations where sharp transitions in material

properties or composition occur, such as the bottom of the

transition zone at 670 km depth or the top of a proposed

thermochemical layer in the deep mantle.

p0595 In its simplest form, the growth of an upwelling from a hot

boundary layer can be approximated as a Rayleigh–Bénard

instability with the onset time and growth rate controlled by

the local (or boundary) Rayleigh number:

Rad ¼ rgaDTd3

mk
[2]

p0600 The instability is enhanced by larger thermal expansivities

a, temperature jumps across the boundary layer DT, or layer
thicknesses d and hampered by higher viscosities m and effec-

tive thermal diffusivities k. Of all these parameters, mantle

viscosity m is the least well constrained and thus m is the largest

source of uncertainty in Rad. For more specifics on the govern-

ing equations for boundary layer instabilities and examples of

their modeling with laboratory and numerical techniques, see

Chapters 6 and 11 of Schubert et al. (2001). Analytic methods

provide important insights into the rate of formation of the

instability and the dependence on ambient conditions (see,

e.g., Whitehead and Luther, 1975; Ribe and de Valpine, 1994).

The growth of the instability to a full diapir or plume can be

understood with nonlinear theory. For example, Bercovici and

Kelly (1997) showed that growth may be retarded due to

draining of the source layer by an intermittently stalling diapir.

Experimental and numerical work confirms and expands on

these predictions (e.g., Olson et al., 1988; Ribe et al., 2007). In

general, most studies find that for reasonable lower mantle

conditions, boundary layer instability will grow on a timescale

of about 10–100 My (e.g., Christensen, 1984; Olson et al.,

1987; Ribe and de Valpine, 1994; see also Chapter 129).

s0160 133.3.3.2 Thermal plumes
p0605 Laboratory experiments in the absence of large-scale ambient

mantle flow show that an unstable boundary layer can lead to

numerous simultaneous plumes that interact with each other

as they rise through the fluid (e.g., Kelly and Bercovici, 1997;

Lithgow-Bertelloni et al., 2001; Manga, 1997; Olson et al.,

1987; Whitehead and Luther, 1975). To study the dynamics

of a single plume, it has become common to use a more

narrow, point-like source of heat, which in laboratory experi-

ments can be achieved by inserting a small patch heater at the

base of the tank (e.g., Davaille and Vatteville, 2005; Kaminski

and Jaupart, 2003) or alternatively by injecting hot fluid

through a small hole (Griffiths and Campbell, 1990). These

single-plume experiments predict the formation of a broad

rounded head that leads the rising thermal instability and is

trailed by a (usually) thinner columnar tail that connects to the

deep source of the plume.

p0610The morphology of the plume head and tail is controlled by

the viscosity contrast between the hot plume and the ambient

fluid (see Ribe et al. (2007) for a thorough review). A more

viscous plume will tend to form a head with approximately

the same width as the tail (a ‘spout’ or ‘finger’ morphology),

whereas a lower-viscosity plume will tend to form a voluminous

plume head much wider than the tail (a ‘mushroom’ or ‘bal-

loon’ morphology). Since mantle viscosity is a strong function

of temperature, the mushroom or balloon geometry should

dominate thermal plumes (Kellogg and King, 1997; Olson and

Singer, 1985; Richards and Griffiths, 1989; Whitehead and

Luther, 1975).

p0615The rise speed of plumes is proportional to its buoyancy

and the square of its radius and inversely proportional to

viscosity. Uranium-series geochemistry provides constraints

for ascent rates near the base of the lithosphere; these upwell-

ing speeds are often found to be comparable to plate velocities

(Bourdon et al., 1998, 2005, 2006; Kokfelt et al., 2003), except

for the much faster (i.e., by 1–2 orders of magnitude) rising

Hawaiian plume (Pietruszka et al., 2001; Sims et al., 1999).

p0620A range of instabilities, however, can induce oscillations in

rise speeds and mass fluxes of thermal plumes. For example,

perturbations within or above the deep thermal boundary

layer can induce solitary waves that travel up the plume con-

duit much faster than average plume ascent rates for strongly

temperature-dependent rheology (Olson and Christensen,

1986; Olson et al., 1993; Schubert and Olson, 1989; Scott

et al., 1986; Whitehead and Helfrich, 1988). Other experi-

ments have shown that a strongly tilted plume tends to break

up into multiple diapiric upwellings (Olson and Singer, 1985;

Richards and Griffiths, 1989; Skilbeck and Whitehead, 1978).

p0625Such instabilities can have important implications for ther-

mal entrainment of ambient mantle materials, through which

the plume rises. In contrast to the classic work by Griffiths

(1986), Richards and Griffiths (1989), and Griffiths and

Campbell (1990, 1991), numerical models have revealed that

thermal entrainment is generally limited to the periphery of

plume tails (and even of plume heads) and hence insufficient

to allow for partial melting of entrained materials beneath the

hot spot (Farnetani and Hofmann, 2009; Farnetani and

Richards, 1995; Farnetani et al., 2002). Solitary waves traveling

rapidly and in isolation up the plume conduit moreover pre-

clude any mixing of the hottest plume pulses with the ambient

mantle (e.g., Whitehead and Helfrich, 1988). In contrast,

strongly tilted plumes may be able to entrain ambient material

more efficiently, perhaps even into the hot center of the

Comp. by: Rvijayaraj Stage: Revises1 Chapter No.: 133 Title Name: TGP2
Date:22/11/14 Time:08:53:01 Page Number: 35

TGP2: 00133
Hotspots, Large Igneous Provinces, and Melting Anomalies 35

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and
typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



conduit (Richards and Griffiths, 1989). Understanding ther-

mal entrainment is essential for constraining the depths of

origin of geochemical signatures identified in hot spot lavas

(cf. Section 133.3.6).

s0165 133.3.3.3 Thermochemical plumes
p0630 Thermal plumes rising from deep boundary layers have cer-

tainly guided much of our understanding of the causes for the

largest hot spots. It is nevertheless likely that the density of

many plumes is influenced by composition in addition to

temperature. A large volume of compositionally dense but

still hot and thermally buoyant material is thought to be

present in the deep part of the lower mantle (Kellogg et al.,

1999; McNamara and Zhong, 2005) and feed rising thermo-

chemical plumes (e.g., Deschamps et al., 2011).

p0635 The structure of the thermochemical boundary layer at the

base of the mantle can control the thermal, compositional, and

rheological structure of the rising plumes. Without rapid ambi-

ent flow, materials originating from deeper versus shallower

parts of the layer are expected to be entrained into the more

central versus more peripheral plume conduit, respectively

(Farnetani and Hofmann, 2009). If the layer is composition-

ally stratified, the deepest (i.e., densest albeit hottest) parts of

the layer tend to remain stable and not rise into the plume

(Farnetani, 1997; Lenardic and Jellinek, 2009). In addition to

effects on plume composition and rheology (and therefore

ascent style), such a situation may result in plume tempera-

tures significantly smaller than CMB temperatures. These mod-

erately hot plumes, further cooling along an adiabat that is

steeper than that of the ambient mantle (Leng and Zhong,

2008), may reconcile the discrepancy between temperature

anomalies at hot spots (e.g., Herzberg et al., 2007) and the

much larger estimates for the temperature jump across the

CMB (e.g., Boehler, 2000).

p0640 In addition, ambient mantle flow can trigger the creation of

a plume and influence its thermochemical structure. For exam-

ple, large-scale mantle convection tends to modulate the

topography of the thermochemical boundary layer to focus

plume upwellings (Steinberger and Torsvik, 2012). On a

more regional scale, Tackley (2011) showed that the impinge-

ment of downgoing slabs on a thermochemical boundary layer

can trigger plumes of various types (Figure 19). The angle of

slab impingement influences the amount of mafic (and harz-

burgitic) materials entrained by, and the distribution of these

materials within, the plume (e.g., the presence of mafic and/or

refractory harzburgitic materials in the plume head). These

predictions are relevant for the geochemical expression of LIP

and hot spot volcanism, as well as LIP–hot spot connections

(see Chapter 134).

p0645 Due to a competition between negative chemical and pos-

itive thermal buoyancy forces, entrainment of compositionally

dense (e.g., mafic) materials strongly affects thermochemical-

plume behavior (Figure 20). Plume behavior is predominantly

controlled by the lateral thermal and compositional buoyancy

profiles across the plume. These profiles depend on the tem-

perature and density contrasts across the boundary layer from

which they rise, the thickness of the chemical layer, and the

contrast in compressibility between the two materials (Huang

et al., 2010; Lin and van Keken, 2006a,b,c; Samuel and

Bercovici, 2006; Tan and Gurnis, 2007). Predicted plume

ascent styles for different density (Figure 20(e)–20(l)) and

compressibility contrasts range from nearly stagnant, wide

plumes in the lower mantle (‘domes’ or ‘superplumes’) to fast

episodic pulsations traveling up the plume conduit (e.g.,

Davaille, 1999; Kumagai et al., 2008; Lin and van Keken,

2005). For somewhat lower density contrasts, the dense layer

may get entrained into the plume and then cause the ascent of

the plume to stall in the lower mantle (Samuel and Bercovici,

2006) or to oscillate for a range of conditions (Davaille, 1999;

Lin and van Keken, 2006b,c; Huang, 2008). The large range in

predicted morphologies combined with the potential for stal-

ling or sinking of thermochemical plumes at different depths

(Figure 20(e)–20(l)) will complicate identifications of mantle

upwellings in seismic images (Farnetani and Samuel, 2005;

Kumagai et al., 2008; Lin and van Keken, 2006b,c), indepen-

dent of how chemically dense materials (such as eclogite)

influence seismic wave velocities (cf. Abalos et al., 2011;

Connolly and Kerrick, 2002; Xu et al., 2008; Zhang and

Green, 2007).

p0650Further complexities arise from the interaction of thermo-

chemical upwellings with mantle phase transitions. Farnetani

and Samuel (2005) showed that the endothermic phase tran-

sition (and the associated viscosity jump) between the lower

mantle and the upper mantle can alter thermochemical plume

morphologies, for example, by promoting spout morphologies

in the upper mantle (Figure 20(a)–20(d)). Furthermore, the

density maximum of eclogite relative to peridotite in the depth

range of 300–410 km (Aoki and Takahashi, 2004) can cause

mantle upwellings to intermittently stall in the mid-upper

mantle (Ballmer et al., 2013b; Figure 20(m)), which as dis-

cussed in Section 133.2.5.2 can address the seismic structure of

the Hawaiian plume (Cheng et al., in press; Wolfe et al., 2009).

p0655The characteristics of thermochemical plume dynamics are

relevant for our understanding of hot spot and flood basalt

volcanism. The gravitational pull exerted by high-density eclo-

gites in thermochemical plumes may account for the lack of
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Figure 19 f0100From Tackley (2011). Thermochemical plumes triggered by
downgoing slabs that interact with a thermochemical boundary layer
for three different initial slab angles (different columns). Green and
blue isosurfaces denote eclogitic and harzburgitic material, respectively.
The red isosurface is the 3000 K isotherm.
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premagmatic uplift for the Siberian Traps (Sobolev et al., 2011)

and other flood basalt provinces (see Section 133.2.3). Oscil-

latory plume behavior may not only explain the episodicity of

LIP emplacement (Lin et al., 2005) but also reconcile

magmatic-flux variations evident in the geologic record along

many hot spot tracks (e.g., Adam et al., 2007; Mjelde et al.,

2010; Zhang et al., 2011) such as Hawaii (van Ark and Lin,

2004; Vidal and Bonneville, 2004) and Iceland (Ito et al.,

1999; Parnell-Turner et al., 2013; Poore et al., 2011). Finally,

small plumes are predicted to rise intermittently from large,

stagnant thermochemical domes (Davaille, 1999) to provide

an explanation for short-lived hot spot activity as evident in the

S and W Pacific (Clouard and Bonneville, 2005; Courtillot

et al., 2003; Koppers et al., 2003).

s0170133.3.3.4 Effects of variable mantle properties on plume
dynamics

p0660In addition to thermochemical effects, variations in mantle

material properties can lead to complex forms and time depen-

dence of mantle plumes. For example, a combination of

increasing ambient mantle viscosity and thermal conductivity

and decreasing thermal expansivity with depth has been shown
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Figure 20f0105 Complexity of thermochemical plume dynamics in vertical cross sections through three-dimensional geodynamic models. (a–d) Time series
of a plume rising from a deep thermochemical boundary layer and interacting with a viscosity jump at 660 km depth. Colors denote temperature
(scale displayed on central right). (e–l) Diverse plume shapes (as snapshots) for different compositional densities of the dense material (i.e., different
buoyancy numbers B0). The dense material is light orange; isotherms are light green. The case with B0¼0 (e) corresponds to a purely thermal
upwelling. (m) Snapshot of a thermochemical plume in the upper mantle. The ascending plume with an eclogite content of 15% interacts with phase
changes that modulate the excess density of eclogite relative to peridotite (see inset at bottom left as modified from Aoki and Takahashi (2004)).
Potential temperatures and compositional buoyancy are displayed as colors and shadings, respectively. Black arrows show mantle flow velocities. (a–d)
Reproduced from Farnetani CG and Samuel H (2005) Beyond the thermal plume hypothesis. Geophysical Research Letters 32: L07311, http://dx.doi.org/
07310.01029/02005GL022360. (e-l) Reproduced from Kumagai I, Davaille A, Kurita K, and Stutzmann E (2008) Mantle plumes: Thin, fat, successful, or
failing? Constraints to explain hot spot volcanism through time and space. Geophysical Research Letters 35. (m) Reproduced from Ballmer MD,
Ito G, Wolfe CJ, and Solomon SC (2013b) Double layering of a thermochemical plume in the upper mantle beneath Hawaii. Earth and Planetary
Science Letters 376: 155–164.
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to cause plumes to be relatively broad in the deep mantle but

become thinner when migrating upward (Albers and

Christensen, 1996; Leng and Gurnis, 2012). Several effects

that are often ignored in geodynamic models, such as those

related to radiative heat transport (Matyska et al., 1994), the

postperovskite transition (Matyska and Yuen, 2005, 2006),

and/or the iron spin-state crossover (Matyska et al., 2011),

also tend to increase plume widths in the deep mantle, perhaps

to extents comparable to thermochemical domes.

p0665 The largest variations in mantle material properties occur at

the upper mantle-to-lower mantle transition at 660 km depth.

The sharp decrease in viscosity from the lower to upper mantle

causes a sudden drop in the width of rising plumes, as well as a

related increase in ascent rate (Kumagai et al., 2007; Leng and

Gurnis, 2012; van Keken and Gable, 1995). The density con-

trasts associated with the 660 km discontinuity can further

contribute to acceleration and episodicity of plume flow

(Brunet and Yuen, 2000; Nakakuki et al., 1997). Tosi and

Yuen (2011) showed that plumes with strongly temperature-

dependent rheology may be deflected horizontally just below

the 660 km discontinuity, which itself has been identified as a

potential source region for plumes (Cserepes and Yuen, 2000).

p0670 An important aspect of mantle rheology is that under high-

strain-rate conditions, the rheology is dominated by non-

Newtonian effects with a nonlinear dependence of viscosity

on stress. Such a rheology can dramatically enhance the defor-

mation rate of boundary layer instabilities and lead to much

higher rise speeds than is observed in Newtonian fluids (Larsen

and Yuen, 1997; Larsen et al., 1999; van Keken, 1997). Starting

plume heads can rise sufficiently fast to almost completely

separate from the narrower (and thus slower) tail, a behavior

that may form an alternative explanation for the observed LIP

episodicity (van Keken, 1997). In turn, nonlinear yield-stress

rheology has been shown to promote spoutlike instead of

mushroomlike plume morphologies (Davaille et al., 2013;

Massmeyer et al., 2013).

p0675 In summary, the classical descriptions of plumes as cylin-

drical, axisymmetric, continuously rising features from the

CMB to the lithosphere captured many of the first-order phys-

ical processes and thus provided a powerful framework for

understanding localized upwellings that give rise to hot spots.

New observations and more sophisticated models, however,

have shown that plume-like upwellings are likely to take on

complex morphologies, be time-dependent, and originate

from different depths in the mantle. Systematic comparison

of model predictions with observations, as well as new con-

straints from mineral physics, is required to identify the range

of behaviors that are most applicable to the Earth’s mantle.

s0175 133.3.3.5 Small-scale sublithospheric convection
p0680 Beyond the complexities of active plume ascent, other forms of

upwelling have been proposed to sustain intraplate volcanism.

While plumes rise from a hot thermal boundary in the deep

mantle, passive upwelling can be triggered by instabilities drip-

ping down from the cold thermal boundary layer at the base of

the lithosphere. Analogous to bottom-up Rayleigh–Bénard

instabilities discussed earlier, such top-down-driven small-

scale convective instabilities are promoted by the thickening

of the cool material at the base of the lithosphere and low

viscosities of the underlying asthenosphere. Small-scale

convection (SSC) has been shown to be typically organized

as rolls (Figure 21(a)), aligned by the direction of plate motion

(Richter, 1973). Rolls are at first limited to the asthenosphere

with typical wavelengths of 200–300 km but may extend dee-

per beneath mature plates (Korenaga and Jordan, 2004). In

both cases, SSC acts to remove the cool base of the lithosphere

and to replace it by warm materials from below.

p0685Such a process can provide an explanation for the observed

flattening of seafloor bathymetry (and of surface heat flux) in

ocean basins of ages>70 Ma (Davaille and Jaupart, 1994; Doin

and Fleitout, 1996; Stein and Stein, 1994; Zlotnik et al., 2008).

Instead, SSC beneath young seafloormay be restricted due to the

presence of the residual harzburgite frompreviousMORmelting

(Afonso et al., 2008; Hirth and Kohlstedt, 1996; Lee et al.,

2005). The occurrence of SSC can further be tested using seismic

observables (cf. Sleep, 2011). For example, it is consistent with

the seismically derived thermal structure of the Pacific litho-

sphere (Ritzwoller et al., 2004; van Hunen et al., 2005).

p0690The removal of the base of the cool (and depleted) litho-

sphere by SSC may moreover act to induce decompression

melting (Figure 21(b); Ballmer et al., 2007; Buck and

Parmentier, 1986). According to the geometry typical for SSC

(Figure 21(a)), magmatism is predicted to emerge along one

or multiple hot lines parallel to the direction parallel to plate

motion (Bonatti and Harrison, 1976; Bonatti et al., 1977),

rather than at localized hot spots. Associated volcanic activity

can thus occur coevally over distances of up to 1000–2000 km

(Ballmer et al., 2009). Such extensive volcanism can create

complex age–distance patterns such as those observed among

various seamount chains in the western and southern Pacific

(cf. shaded fields in Figure 5).

p0695An important limitation for this mechanism involves that

significant decompression melting requires SSC to occur

beneath thin lithosphere of moderate or young ages (Ballmer

et al., 2007; Buck and Parmentier, 1986; Harmon et al., 2011;

Haxby and Weissel, 1986). Seafloor flattening, instead, indi-

cates that SSC is typically restricted to thick lithosphere of

ages >70 Ma, mostly due to the presence of the dehydrated

harzburgitic residuum from MOR melting to delay SSC

(Afonso et al., 2008; Hirth and Kohlstedt, 1996; Lee et al.,

2005). Accordingly, SSC would likely have to stir up fertile or

excessively hot materials to feed significant volcanism (Ballmer

et al., 2010). Alternatively, SSC may be advanced toward youn-

ger lithospheric ages near fracture zones (Dumoulin et al.,

2008; Huang et al., 2003).

p0700Adjacent to larger steps in lithospheric thickness, convec-

tion is expected to be triggered almost independently of the

thickness of the thermal boundary layer. This form of ‘edge-

driven’ thermal convection can spawn decompression melting

along rifts, as well as parallel to the edges of thick continental

lithosphere (Figure 22) with opportunities for volcanism

(Buck, 1986; Hardebol et al., 2012; King, 2007; King and

Anderson, 1998; King and Ritsema, 2000; Missenard and

Cadoux, 2012; Till et al., 2010; vanWijk et al., 2010). Recently,

Milelli et al. (2012) showed in analogue experiments that

convective instability may also form perpendicular to conti-

nental margins, a configuration that could provide an expla-

nation for mantle melting beneath the Cameroon volcanic line

(cf. Figure 6). Edge-driven convection along rifted margins,

alone or in combination with elevated mantle temperatures,
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has been even identified as a possible mechanism for flood

basalt volcanism (Korenaga, 2004; Mutter and Zehnder, 1988;

Nielsen and Hopper, 2004; Nielsen et al., 2002; Sleep, 2007).

Spatially and temporally more restricted convective processes

such as the return flow associated with local foundering and

delamination of the lower continental lithosphere have also

been proposed to account for intraplate volcanism (e.g., in

western North America) and flood volcanism without elevated

mantle temperatures (Crow et al., 2011; Elkins-Tanton, 2007;

Gogus and Pysklywec, 2008a,b; Hales et al., 2005; Houseman

et al., 1981; Le Pourhiet et al., 2006; Levander et al., 2011;

Paczkowski et al., 2012; Reid et al., 2012; van Wijk et al., 2001;

West et al., 2009).

s0180 133.3.3.6 Buoyant decompression melting
p0705 A separate form of convective instability can occur in response

to melting itself. Partial melting reduces the density of the solid

residue ( Jordan, 1979; Oxburgh and Parmentier, 1977; Schutt

and Lesher, 2006) and generates intergranular melt. Both fac-

tors can reduce the bulk density of the partially molten mantle

and drive ‘buoyant decompression melting’ (Figure 23). Buoy-

ant decompression melting has been shown to be relevant near

MORs, for example, in supporting off-axis melting anomalies

(e.g., Jha et al., 1994; Scott and Stevenson, 1989; Sparks et al.,

1993; VanDecar et al., 1995). It has also been proposed to be

relevant for intraplate volcanism, on both continental and

oceanic plates (Hernlund et al., 2008a,b; Raddick et al., 2002;

Tackley and Stevenson, 1993). The key ingredients for buoyant

decompression melting to occur well away from MORs are an

asthenosphere close to or at its solidus and a perturbation that

locally initiates melting. Such a perturbation could be caused

by extension of the overlying lithosphere (Hernlund et al.,

2008b), the flow of mantle across a step in lithospheric thick-

ness (Raddick et al., 2002), or some form of passive mantle
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flow. Significant retention of buoyant melts and low mantle

viscosities tend to promote this convective instability. Since

higher mantle water contents act not only to reduce the viscos-

ity of the solid mantle but also to mobilize the equilibrium

liquid, its effects on buoyant decompression melting remain

unclear and thus motivate future studies.

s0185133.3.3.7 Shear-driven upwelling and viscous fingering
p0710All processes for decompression melting described so far

require an inversion in density stratification (e.g., cool mantle

overlying hot mantle) as the (potential) energy source of

upwelling. Alternatively, vertical flow can result from horizon-

tal shearing of the asthenosphere independent of mantle den-

sity variations (Bianco et al., 2011a; Conrad et al., 2010).

Asthenospheric shearing is commonly imposed by the motion

of the tectonic plates relative to that of the mesosphere and can

drive upwelling in two different situations. First, (1) horizontal

shear flow is predicted to be guided upward (or downward) at

a step in lithospheric thickness (Figure 24(a)). Second, (2)

redistribution of horizontal shear flow due to strong viscosity

heterogeneity is predicted to be accommodated by local

upwellings and downwellings (Figure 24(b)); vertical motion

arises as shear flow is guided around a high-viscosity anomaly

or focused within a low-viscosity anomaly.

p0715Shear-driven upwelling due to the presence of a low-

viscosity anomaly (situation (2); Figure 24(b)) is an attractive

scenario for intraplate volcanism, since such anomalies are

likely to be damp or warm and therefore close to the solidus.

Regions of anomalously low seismic-wave speeds in the upper

mantle (Laske et al., 2011; Schmandt and Humphreys, 2010;

Weeraratne et al., 2007) provide evidence for low-viscosity

pockets due to excess temperature, partial melt, elevated

water content, or a combination thereof. Shear-driven upwell-

ing at the edges of such pockets can support moderate magma-

tism (Figure 24(c)). Associated age progressions are predicted

to be similar to those of (rapidly) drifting hot spots but with

more variability (Ballmer et al., 2013a; Bianco et al., 2011a),

similar to that evident along, for example, the Pukapuka ridge

(cf. Figure 4(c)). Global mantle convection models predict
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that intraplate regions with excessive intraplate volcanic activ-

ity, such as the eastern Pacific (Figure 4), western North

America, and northeastern Australia (Figure 7), are indeed

underlain by a strongly sheared asthenosphere (Conrad

et al., 2011).

p0720 Identifying shear-driven upwelling as the dominant mech-

anism for decompression melting in a given volcanic province,

however, requires careful analysis of the tectonic setting. In

both situations (1) and (2), in which shear-driven upwelling

is predicted to occur (near steps in lithospheric thickness and

low-viscosity anomalies; Figure 24(a) and 24(b)), alternative

mechanisms for decompression melting, such as buoyant

decompression melting and (edge-driven) small-scale convec-

tion, are also expected to be relevant (e.g., Huang et al., 2003).

Increasing asthenospheric background viscosities and/or the

rate of asthenospheric shearing promotes shear-driven upwell-

ing relative to convective instabilities.

p0725 Future efforts should be specifically directed at testing the

general significance of shear-driven upwelling along the mar-

gins of low-viscosity anomalies (situation (2); Figure 24(b)).

Geophysical studies are needed to assess whether anomalies

imaged by tomography can provide sufficient viscosity con-

trasts (i.e., 1–2 orders of magnitude at a given rate of astheno-

spheric shearing). Whereas deformation of the pocket in the

large-scale flow field has been shown to be less of an issue (cf.

Ballmer et al., 2013a; Bianco et al., 2011a), the persistence of

magmatism should be limited by the progressive consumption

of volatiles or fertile rocks in the pocket. Accordingly, it is

imperative to address the origin of the pocket together with

that of melting.

p0730 A mechanism that can spawn viscosity heterogeneity in the

asthenosphere and that may even lead to excess volcanism by

itself has been suggested to be operant in the South Pacific.

When two fluids are contained in a thin layer and one fluid

displaces a more viscous fluid (driven by a pressure gradient),

the boundary between the two becomes unstable and undu-

lates with increasing amplitude (Saffman and Taylor, 1958).

Such viscous fingering instabilities may occur in nature, where

warm and fertile material diffusely rising beneath the South

Pacific Superswell is injected into the ambient asthenosphere.

This process may account for the apparent ‘Haxby’ gravity

lineations (Goodwillie, 1995; Harmon et al., 2011; Haxby

and Weissel, 1986; Sandwell et al., 1995; Weeraratne et al.,

2007) and associated volcanism (e.g., along the Pukapuka

ridge) as warm and buoyant fingers travel along the base of

the oceanic lithosphere (Sleep, 2008; Weeraratne et al., 2007;

Figure 4). Whereas related rates of decompression melting

should be rather small beneath the quasiflat lithospheres of

fast or old plates, a combination with shear-driven upwelling

at the tips of the fingers is expected, as both mechanisms are

driven by similar physics.

p0735Similarly, material injected into the asthenosphere bymantle

plumes (Phipps Morgan et al., 1995b; Yamamoto et al., 2007)

may feed warm low-viscosity channels. Geodynamic models

predict that the pressure low expected beneath MORs can assist

in drawing material from nearby plumes toward ridges in rela-

tively narrow channels (e.g., Sleep, 1996; Yale and Phipps

Morgan, 1998), as was originally hypothesized by Morgan

(1978). Channeling of plume material is consistent with hot

spot-flavored geochemical fingerprints of basalts formed near or

at MORs (Geldmacher et al., 2013; Haase et al., 1996; Niu et al.,

1999; Vlastelic and Dosso, 2005), as well as between the Canary

hot spot and a subduction zone near Gibraltar (see Duggen et al.

(2009) and Figure 25), respectively.
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s0190 133.3.3.8 Vertical motion of the lithosphere
p0740 Finally, vertical motion of the whole lithosphere and surface of

the Earth can cause mantle upwelling and melting. For exam-

ple, volcanism off southern Greenland (Uenzelmann-Neben

et al., 2012) and peaks in volcanic activity in Iceland (Slater

et al., 1998) have been attributed to glacial rebound. Another

opportunity for mantle decompression is offered by the growth

of large volcanoes (created by another mechanism such as a

plume), which not only causes the underlying lithosphere to

sink downward but also leads to flexure-induced upwarping in

a donut- or arch-shaped zone around the volcano. The small

amounts of decompression associated with this flexural uplift

are only expected to give rise to magmatism as long as an

appreciable portion of the asthenosphere is already near or at

its solidus (Bianco et al., 2005). Flexural decompression may

thus explain secondary (or rejuvenated-stage) volcanism near

the Hawaiian and other major hot spots (e.g., Bianco et al.,

2005; Garcia et al., 2010). Upward flexural bulging also occurs

on the seaward side of subduction zones and may sustain the

activity of ‘petit-spot’ volcanism off the Japan Trench (Hirano

et al., 2001, 2008), as well as contribute to extensive rejuve-

nated volcanism at the Samoan hot spot (Konter and

Jackson, 2012).

s0195 133.3.4 Swells

s0200 133.3.4.1 Swell support mechanisms
p0745 The origin of hot spot swells was initially attributed to heat

anomalies in the mantle that effectively rejuvenate or thin the

overriding lithosphere (Crough, 1978; Detrick and Crough,

1978; Crough, 1983). The evidence for such thermal rejuvena-

tion is somewhat ambiguous, as heat flow data fail to show

evidence for heated or thinned lithosphere (DeLaughter et al.,

2005; Stein and Stein, 1993, 2003). However, it is likely that

any such evidence would be obscured by shallow hydrother-

mal circulation (Harris and McNutt, 2007; McNutt, 2002).

Seismic studies, in turn, are able to provide evidence for

lithospheric thickness variations at some hot spots. For exam-

ple, Rayleigh-wave tomography reveals strong variations in

lithospheric thickness at the Galápagos hot spot (Villagomez

et al., 2007). At the Hawaiian hot spot, S-wave receiver func-

tions indicate substantial lithospheric thinning of 50–60 km

from the hot spot toward the NW (Li et al., 2004), whereas

recent evidence from regional surface-wave tomography as well

as SS precursors suggests only modest thinning (by about

10–20 km) (Laske et al., 2011; Schmerr, 2012).

p0750Perhaps, the more prevalent view at this point is that hot

spot swells are primarily dynamically supported by the hot and

buoyant plume layer that is predicted to pond beneath the

lithospheric plate (Cadio et al., 2012; Cserepes et al., 2000;

Olson, 1990; Parsons and Daly, 1983; Ribe and Christensen,

1994). For example, dynamic support by anomalously hot

mantle (as evident from seismic tomography) can explain

excess topography associated with the Yellowstone hot spot

(Becker et al., 2013). In addition to the thermal buoyancy of a

plume, compositional buoyancy associated with melt extrac-

tion may also be important in creating hot spot swells (Phipps

Morgan et al., 1995a).

p0755Evidence for such compositional contributions to swell

support has been revealed at various hot spots. Exposures of

harzburgite along the rifted Marion and Azores Rises, for
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instance, indicate compensation by buoyant melt residuum

(Zhou and Dick, 2013). Uplift histories and receiver function

measurements argue for a combination of buoyant melt resid-

uum and magmatic underplating to support the �2 km high

Cape Verde swell (Lodge and Helffrich, 2006; Ramalho et al.,

2010). For the Marquesas swell, geoid observations and seis-

mic reflections also suggest a role for magmatic underplating

(Caress et al., 1995; McNutt and Bonneville, 2000).

p0760 A viable tool to quantify the compensation depth of the

swell and thus to distinguish between crustal (e.g., magmatic

underplating), lithospheric (e.g., lithospheric thinning), and

mantle (e.g., dynamic support and buoyant melt residuum)

contributions is the analysis of the geoid-to-topography ratio

(Marks and Sandwell, 1991; Parsons and Daly, 1983; Ribe and

Christensen, 1994). For example, once the local effects of

volcanic loading are removed (cf. Cserepes et al., 2000), wave-

let analysis of the geoid-to-topography ratio reveals that the

Hawaiian swell is predominantly compensated at sublitho-

spheric depths (Cadio et al., 2012). The best candidate for

such a deep compensation is dynamic support by a mantle

plume.

s0205 133.3.4.2 Plume models and hot spot swells
p0765 The dynamic support hypothesis for the generation of hotspot

swells has been quantitatively tested by geodynamic models.

Three-dimensional plume models, for example, have success-

fully predicted the shape and uplift history of the Hawaiian

swell (Asaadi et al., 2011; Cadio et al., 2012; Ribe and

Christensen, 1994; van Hunen and Zhong, 2003; Zhong and

Watts, 2002): they predict that the plume pushes up the plate

by ponding like a ‘pancake’ of hot material (cf. red layer in

Figure 26(a)). They also predict the eventual waning of

swell topography to occur due to spreading and thinning as

well as cooling of the plume pancake. Consideration of

stress-dependent rheology appears to be critical to match the

plan-view shape of the swell to the NW of Hawaii (Asaadi et al.,

2011). The additional effects of small-scale convection in the

pancake removing the base (about 15–20 km) of the litho-

sphere (Agrusta et al., 2013; Ballmer et al., 2011; Moore

et al., 1998) can account for the systematic decrease of the

geoid-to-topography ratio that is evident along the Hawaiian

swell (Cadio et al., 2012). These predictions provide a straight-

forward explanation for the decay of hot spot swells along the

Hawaiian and Louisville chains as well as the lack of swells

around very old portions of other volcano chains.

s0210 133.3.5 Large Igneous Provinces

p0770 The rapid and massive magmatic production of LIPs, com-

bined with their strong connection to continental breakup

and present-day hot spot volcanism, provides major challenges

for our understanding of planetary volcanism. The wide range

of eruptive volumes (Figure 10) and differences in tectonic

style (Section 133.2.3) appear to suggest that multiple mech-

anisms account for flood basalt volcanism.

p0775 The observation of large plume heads followed by thin tails

in fluid dynamic experiments has traditionally been used to

explain LIP–hot spot connections (Richards et al., 1989) and

remains, because of its simplicity and plausibility, an attractive

base model for the formation of LIPs. Its strengths include that

(1) it is supported by fluid dynamic experiments with increas-

ingly realistic assumptions about mantle composition and

rheology (see Section 133.3.3; in fact, modifications to the

base model (cf. Figure 20) can reconcile the diversity seen in

the geologic record), (2) it can explain the natural link between

LIP and hot spot volcanism, (3) it reconciles the early occur-

rence of high-MgO basalts in the LIP record (as the hottest
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Figure 26 f0135Three-dimensional images (in angled views from above) of
plume dynamics and the expressions of compositional heterogeneity in
magmatism. Whereas melting is affected by both temperature and
composition in the geodynamic models shown, plume dynamics are
governed by thermal effects only. (a) From Bianco et al. (2008). White
contours (isotherms), as well as red-to-yellow colors, denote
temperature. The blue and light green fields show the melting zones of a
fertile and refractory compositional component, respectively. The
compositional heterogeneity is assumed to be in the form of evenly
dispersed fine-scale fertile veins in a refractory matrix. A horizontal cross
section through the box at 150 km depth is lifted from the top for
visibility. (b) From Farnetani et al. (2012). The isosurface outlines the hot
plume; the colored lines denote streamlines tracking large-scale
compositional heterogeneity. Heterogeneity is assumed to be distributed
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material is predicted to erupt first), and (4) it implies contem-

poraneous uplift and extension as is observed in the geologic

record of many LIPs (see Section 133.2.3). The main weak-

nesses of this model involve that the strong correlation of LIPs

and continental breakup and the lack of uplift during OJP

formation (d’Acremont et al., 2003) are not explained.

p0780 There are a number of alternatives that can address some of

the weaknesses of the plume model that include assumptions

that LIPs may be generated by processes occurring near the

surface of the Earth or by extraterrestrial processes. While the

plume model has received significant attention and quantita-

tive hypothesis testing, the majority of the alternatives are

currently still in rather qualitative form.

p0785 The first alternative involves that the accumulation of heat

below the insulating continent or supercontinent during tec-

tonic quiescence provides warmer than normal mantle and

significantly larger eruptive volumes during continent breakup

(Anderson, 1994b; Coltice et al., 2007; Grigne et al., 2007;

Coltice et al., 2009). While this hypothesis addresses the corre-

lation between LIPs and continental breakup, it does not clarify

why flood volcanism does not generally occur along all rifted

margins. Also, the connection to a long-lived hot spot trail

remains unpredicted. Nevertheless, the correlation between the

LIPs and the continental breakup is intriguing, and it is quite

likely that regional variations in the composition and strength of

the lithosphere have an important control on the location of

magma eruption (King and Anderson, 1995, 1998).

p0790 A second alternative is that compositional, rather than ther-

mal, effects cause the generation of excessive melt by, for

example, the presence of eclogite or volatiles in the source

rock (e.g., Anderson, 1994a, 2005; Cordery et al., 1997;

Korenaga, 2004, 2005; Sobolev et al., 2011). Its strengths

include that the lack of uplift at some LIPs, including the

OJP, could be explained for the presence of dense eclogite.

The main weakness of eclogite as the primary source of melting

is that eclogite is dense and requires some mechanism to stay

near or be brought back to the surface. It would be more than

likely in this case that emplacement of the OJP involved both a

thermal origin and a compositional origin. For purely compo-

sitional effects, the common LIP–hot spot connection (requir-

ing continuous upwelling of more fertile mantle) further

remains unexplained. An interesting alternative to a composi-

tional cause for the lack of significant uplift at some LIPs,

including the OJP, is the potential for lower crustal flow during

magma emplacement (Flament et al., 2011).

p0795 The enigmatic nature of the OJP has also led to the sugges-

tion that meteorite impacts could have been responsible for

LIP emplacement (Ingle and Coffin, 2004; Rogers, 1982).

A possible strength of this hypothesis is that the decompres-

sion of mantle following impact may generate extensive melt-

ing ( Jones et al., 2002a). A weakness is that the strong

connections with continental breakup and hot spot volcanism

are unexpected. Furthermore, direct evidence for meteorite

impact during LIP emplacement is rare. One of the few con-

vincing observations is the Ir anomaly embedded in the

Deccan Traps, but this impact signal postdates the start of

volcanism and is most likely related to the Chicxulub impact

located on the other side of the planet. There are also doubts

whether the dynamics of meteorite impact can indeed cause

sufficient melting, unless the mantle is already anomalously

hot or fusible (Ivanov and Melosh, 2003). Another issue is that

it has been shown to be statistically unlikely that the majority

of Phanerozoic LIPs originated as impacts (Elkins-Tanton and

Hager, 2005; Ivanov and Melosh, 2003).

p0800Finally, delamination of continental lithosphere and sec-

ondary convection at rifted margins have been suggested as

alternatives for LIP formation (Anderson, 2005; Hales et al.,

2005; van Wijk et al., 2001). While these processes are likely to

have occurred regularly in the past, the extent to which they can

provide a consistent explanation for the rapid and massive

outpourings of flood basalts remains to be quantitatively

evaluated.

s0215133.3.6 The Origin of OIB Geochemical Signatures

s0220133.3.6.1 Tracing mantle heterogeneity by isotopic
signatures of OIB

p0805The geochemical signatures of ocean island basalts (OIBs) may

provide key constraints on the composition of mantle reser-

voirs. Highlighting the differences between OIB andMORB, we

have focused on 87Sr/86Sr, 206Pb/204Pb, and 3He/4He

(Table 1). These ratios are key to tracing five different geo-

chemical flavors in the OIB dataset, which have been associ-

ated with five different mantle reservoirs, each with distinct

time-averaged, chemical histories (e.g., Hanan and Graham,

1996; Hart et al., 1992; Zindler and Hart, 1986). Lavas with

low 3He/4He and minimal 87Sr/86Sr and 206Pb/204Pb are

derived from depleted mantle material (DM), referring to

depletion in incompatible elements. Enriched (EM1 or EM2,

i.e., high 87Sr/86Sr) and HIMU (i.e., high 206Pb/204Pb) mantle

sources are instead thought to be derived from subducted

material – the former from ancient oceanic sediments or meta-

somatized lithosphere and the latter from oceanic crust – that

has evolved in the mantle for >1 Gyr and subsequently been

recycled (e.g., Cohen and O’Nions, 1982; Hanyu et al., 2011;

Hart et al., 1992; Hofmann, 1997; Hofmann and White, 1982;

Sobolev et al., 2008; Zindler and Hart, 1986).

p0810High 3He/4He, moderately low 87Sr/86Sr, and intermediate-

to-high 206Pb/204Pb compositions mark the fifth geochemical

end-member, which we will here refer to as FOZO (Hart et al.,

1992). Its origin is perhaps least well understood. The ‘standard’

hypothesis implies that the high 3He/4He fingerprints primor-

dial and relatively undegassed mantle material (Hart et al.,

1992; see also Gonnermann and Mukhopadhyay, 2009). In a

variant of this standard hypothesis, FOZO is not just a leftover of

quasihomogenous primordial mantle, but has been enriched

through a differentiation process occurring early in the Earth’s

history (Coltice et al., 2011; Davies, 2010; Lee et al., 2010). The

standard hypothesis, however, has recently altogether been chal-

lenged by suggestions that FOZO, in fact, has been depleted in

highly incompatible elements during partial melting processes.

In this scenario, helium degasses only incompletely during par-

tial melting (Class et al., 2005), and FOZO’s high 3He/4He ratio

reflects a low 4He concentration as a result of low U and Th

content (with U and Th being more incompatible than helium)

(Coltice and Ricard, 1999; Meibom et al., 2005; Parman et al.,

2005; Stuart et al., 2003). However, any alternatives to the

standard hypothesis do not satisfy constraints from other

noble-gas systems such as 129Xe/130Xe and 20Ne/22Ne, which

require that the relatively undegassed reservoir (i.e., FOZO)
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formed within the first 100 million years of the Earth’s history

and since then has not been homogenized with the other man-

tle reservoirs (Mukhopadhyay, 2012; Peto et al., 2013).

p0815 The key observation is that MORB appears to be character-

istically similar to DM and to be relatively less influenced by

subducted materials and FOZO, whereas hot spot lavas and

many other intraplate basalts appear to be influenced substan-

tially by all five components (albeit to different degrees for

different volcano groups; cf. Figure 11). The dominant expla-

nation for this observation is that the pressure/temperature

dependence of mantle viscosity and mineralogy, as well as

density differences between the different mantle materials, pro-

motes large-scale (partial) layering in mantle geochemistry.

DM is likely to be compositionally light and may tend to

concentrate in the upper mantle where it is sampled by MOR

magmatism (cf. Nakagawa et al., 2010) Mantle plumes, which

feed hot spots, rise from deeper levels in the mantle and hence

may incorporate the other materials in addition to DM. For

example, geochemical reservoirs associated with subducted

slabs that evolved in the mantle for >1 Gyr (EM, HIMU)

or even the more ancient FOZO are likely to be stored in the

lowermost mantle (e.g., Brandenburg et al., 2008; Christensen

and Hofmann, 1994; Coltice and Ricard, 1999).

s0225 133.3.6.2 Constraining source materials from
major-element characteristics of OIB

p0820 While the various mantle reservoirs are well traced by their

isotopic signatures in OIB, understanding their major-element

signatures is needed to define their physical properties as well

as melting behaviors. As a first step toward this goal, Jackson

and Dasgupta (2008) demonstrated that major-element con-

centrations of OIB are correlated with isotopic ratios using a

global dataset. At a given MgO, HIMU-flavored volcano chains

are systematically lower in SiO2 and Al2O3 and higher in TiO2,

Na2O, FeOX, and CaO than EM-flavored volcano chains, and

both are distinct from MORB (Figure 27). Tholeiitic basalts

from Hawaii, the Galápagos, and Iceland display major-

element compositions intermediate to these two OIB sub-

groups and MORB. Thus, mantle reservoirs can in principle

be distinguished not only by OIB isotopic signatures but also

by OIB major-element concentrations.

p0825 To understand the composition of mantle reservoirs and

OIB source lithologies, petrologists have compared experimen-

tal melts with typical alkalic OIB signatures. Although

low-degree melting of ‘common’ mantle peridotites is able to

produce alkalic melts, experimental evidence is so far lacking

that such melts can match the specific major-element signature

of OIB (Davis et al., 2011; Hirose and Kushiro, 1993; Mueller

et al., 1998; Takahashi and Kushiro, 1983) Addition of CO2-

rich liquid to peridotites would be required to better match

these signatures (blue triangles in Figure 12; Dasgupta et al.,

2007). The characteristic HIMU isotopic fingerprint of most

alkalic OIB further calls for a subduction-related origin for the

CO2-rich liquid ( Jackson and Dasgupta, 2008).

p0830 Alternative materials for the OIB source are subduction-

related lithologies such as basaltic oceanic crust that has trans-

formed to eclogite and evolved in the mantle. While direct

eclogite melting produces liquids that are much too high in

SiO2, two-stage eclogite melting can reconcile the major-

element characteristics of OIB. In the first step, highly silicic
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Galápagos, and Iceland, which plot closer to MORB (cf. gray rectangle)
than alkalic OIB. Arrows in (c) elucidate that neither dissolution of
clinopyroxene nor precipitation of olivine can account for the global
trend in CaO/Al2O3 vs. SiO2. Reproduced from Jackson, and Dasgupta
R (2008) Compositions of HIMU, EM1, and EM2 from global trends
between radiogenic isotopes and major elements in ocean island basalts.
Earth and Planetary Science Letters 276: 175–186.

TGP2: 00133
Hotspots, Large Igneous Provinces, and Melting Anomalies 45

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and
typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



liquids react with the wall rock (i.e., ambient mantle perido-

tites) to form hybrid lithologies such as pyroxenites (Yaxley

and Green, 1998). In a second step, these hybrid lithologies

can produce OIB-like liquids as they melt (they do so at lower

pressures than eclogites themselves) (Kogiso and Hirschmann,

2006). Oxide ratios in olivine phenocrysts of Hawaiian lavas

have indeed been interpreted as evidence for such a two-stage

melting process (Sobolev et al., 2005; 2007). Alternatively,

incomplete reaction of eclogitic melts with the wall rock (e.g.,

alongmelt channels) can leave a modified liquid that satisfies a

range of OIB compositions (Mallik and Dasgupta, 2012).

Depending on the extent of wall-rock reaction, either alkalic

or tholeiitic liquids are generated.

p0835 Hornblendite veins are another viable source lithology for

OIB (Pilet et al., 2008; Figure 12). Their origin is thought to be

a near-ridge environment, where low-degree peridotitic melts

freeze into the lithospheric mantle (Pilet et al., 2010). Horn-

blendite or similar metasomatic lithologies (Halliday et al.,

1995; Niu et al., 2002b) have indeed been mapped in perido-

tite massifs and sampled as xenoliths (Frey et al., 1985; O’Reilly

and Griffin, 1988; Takazawa et al., 2000). The metasomatized

base of the oceanic lithosphere may contribute to producing

OIB-like liquids as it is moved over a hot spot or as it is

decompressed as part of a mantle upwelling after recycling. In

particular, the rather high K2O/Na2O and Al2O3/MgO ratios in

OIB may indicate the presence of hornblendite in the source or

at least provide evidence for the equilibration of the rising

magmas with hornblendite.

s0230 133.3.6.3 The origin of geographic variations in OIB
geochemistry

p0840 The variability of hot spot geochemical signatures has typically

been ascribed to mantle source heterogeneity. In the frame-

work of plume theory, geographic patterns in OIB geochemis-

try, such as the large variability of isotopic signatures among

South Pacific and Darwin Rise OIB (Koppers et al., 2003;

Staudigel et al., 1991) or the distinction between the ‘Loa’

and the ‘Kea’ trends of Hawaiian volcanism (Abouchami

et al., 2005), are thought to reflect heterogeneity in the deep

mantle (Farnetani and Hofmann, 2009; Huang et al., 2011;

Konter et al., 2008; Koppers and Watts, 2010; Weis et al.,

2011). For example, deep mantle heterogeneity is expected to

be directly reflected as lateral zonation of the plume conduit

(Farnetani and Hofmann, 2009, 2010; Farnetani et al., 2012;

Figure 26(b)). However, as major-element variations associ-

ated with such compositional zonation can severely affect the

dynamics of the rising plume (see Section 133.3.3.3), map-

ping the deep mantle from geographic patterns of lava compo-

sitions is not straightforward (cf. Ballmer et al., in press).

Moreover, plume pulsations in general and those induced by

solitary waves (e.g., Whitehead and Helfrich, 1988) in partic-

ular may tend to homogenize material within the hottest parts

of the plume.

p0845 Another important aspect to consider is the melting behav-

ior of a heterogeneous source (Phipps Morgan, 1999). Geo-

chemical evidence indicates that such source heterogeneity is

present over a range of spatial scales, including scales much

smaller than the size of upper mantle melting zones (e.g.,

Ellam and Stuart, 2004; Ingle et al., 2010; Jackson et al.,

2012; Kogiso et al., 2004; Koornneef et al., 2012; Marske

et al., 2007; Niu et al., 1996; Phipps Morgan, 1999; Reiners,

2002; Saal et al., 1998; Salters and Dick, 2002; Stracke et al.,

2003). As different materials melt over different depth ranges

for a given mantle temperature (cf. Figure 26(a)), spatial

differences in mantle temperature, lithospheric thickness, and

the rate of mantle flow through the melting zone can influence

the proportions, to which the materials are represented in the

lavas. For example, MOR melting is expected to be dominated

by the peridotitic DM matrix, a refractory yet the most abun-

dant component, because the thin lithosphere at and near

MORs allows for the greatest amount of decompression.

Mainly due to the effects of a thicker lithosphere, hot spot

magmatism away from MORs is instead predicted to be more

heavily influenced by the less abundant but more fertile com-

ponents, something that may reconcile the difference between

OIB and MORB (Ito and Mahoney, 2005a; 2006). In such a

framework, mechanisms for non-hot spot volcanism (see

Sections 133.3.3.5–133.3.3.8) occurring well away from

MORs would similarly generate OIB-like liquids (e.g.,

Ballmer et al., 2010). First-order global trends indeed display

significant correlations of major and trace-element composi-

tions of OIB with the thickness of the lithosphere at the time of

volcanism (Dasgupta et al., 2010; Humphreys and Niu, 2009;

Ito and Mahoney, 2005b; Keller et al., 2004).

p0850At the regional scale of an individual island group, lateral

gradients in temperature andmantle upwelling rate can also give

rise to systematic geographic variations in lava chemistry, inde-

pendent of any lateral compositional zonation of the mantle

source (Bianco et al., 2008, 2011b, 2013; Ballmer et al., 2010,

2011; Shorttle et al., 2010; Shorttle and Maclennan, 2011;

Ballmer et al. 2013a). For example, any lateral thermal gradient

beneath the Hawaiian hot spot will shift the melting zones of

fertile and of refractory mantle components relative to each

other to contribute to the apparent ‘Loa’ versus ‘Kea’ geochem-

ical trends (cf. Ballmer et al., in press).

s0235133.3.7 Plumes in the Context of Mantle Convection
and Plate Tectonics

p0855Our discussion of plumes and alternative forms of mantle

upwelling is set amid the background of larger-scale processes

of plate tectonics and mantle convection. The cooling of the

oceanic lithosphere ultimately drives mantle convection and

plate motion. While the volume of mantle that participates in

the plate tectonic cycle is still debated, a consensus model has

emerged of moderated whole mantle convection, with signifi-

cant material exchange across the 660 km discontinuity.

Plumes naturally develop from the hot thermal boundary

layer at the CMB and are displaced when rising through the

convecting mantle (Husson and Conrad, 2012; Olson and

Singer, 1985; Richards and Griffiths, 1989; Steinberger, 2000;

Whitehead and Luther, 1975).

s0240133.3.7.1 Connection of hot spots with thermochemical
structures in the deep mantle

p0860An important line of evidence for mantle plume theory is the

connection of seismic structures in the deepmantle with occur-

rences of hot spot volcanism at the surface (Castillo, 1988;

Williams et al., 1998). The locations of active hot spots, as

well as reconstructed locations of extinct hot spots and LIPs,
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have been shown to be spatially related to the margins of

LLSVPs in the lowermost mantle (Burke and Torsvik, 2004;

Torsvik et al., 2006, 2010a; Figures 28(a) and 29(b)). This

relation holds if the advection of the putative underlying

plumes by ambient mantle flow is accounted for (Boschi

et al., 2007). The LLSVPs are hot domes or ridges (Figure 28

(b)) of chemically dense materials (one located beneath Africa,

another beneath the South Pacific) with significant topography

(500–1000 km) (Garnero and McNamara, 2008; Ishii and

Tromp, 1999; Masters et al., 2000; Mosca et al., 2012).

Geographic variations seen in OIB geochemistry such as the

large-scale DUPAL anomaly (Dupre and Allegre, 1983) have

indeed been associated with the LLSVPs (Castillo, 1988; Wen,

2006).

p0865 The origin of these large chemically distinct structures is

related to the accretion and chemical differentiation of our

planet. For example, they may represent primordial material

that is unmodified by subsequent melting, or they may be the

residuum of a basal magma ocean as formed very early in the

Earth’s history (Deschamps et al., 2012; Kellogg et al., 1999;

Labrosse et al., 2007; Mukhopadhyay, 2012). Along these

lines, the LLSVPs have been identified as good candidates to

host the FOZO reservoir, a commonmember in many hot spot

lavas (see Section 133.3.6.1). As an alternative, or perhaps in

addition to these ancient origins for the LLSVPs, subducted

crust composed of dense eclogitic material is expected to settle

and accumulate at the base of the mantle (Brandenburg and

van Keken, 2007; Brandenburg et al., 2008; Nakagawa et al.,

2010). Such a replenishment of the LLSVPs would further

strengthen the connection of mantle plumes with LLSVPs, as

subduction-related isotope geochemical signatures are com-

mon in OIB (e.g., Hofmann, 1997). Both numerical and ana-

logue models indicate that mantle plumes can indeed be

anchored by the stable topography provided by high-density

layers (such as by the LLSVPs) (Davaille et al., 2002; Jellinek

and Manga, 2002; McNamara and Zhong, 2004).

p0870 Global mantle convection models (e.g., McNamara and

Zhong, 2005) indicate that any dense thermochemical mate-

rial would be swept away from subduction zones and toward

regions of diffuse upwelling. Using a realistic subduction his-

tory and assuming a compositional density difference of �2%,

the dense layer is shaped into structures similar to the imaged

LLSVPs (e.g., Steinberger and Torsvik, 2012; Figure 29). The

predicted diffuse upwellings forming above the LLSVPs may

account for the broad dynamic uplift of the overlying litho-

sphere (i.e., the South Pacific and African Superswells (Adam

et al., 2010; Cadio et al., 2011; Hillier and Watts, 2004;

Nyblade and Robinson, 1994).

p0875The details of the organization of such upwelling flow,

however, remain to be understood (see also Chapter 136).

Many models predict upward flow to focus near the crests of

the thermochemical structures (Davaille, 1999; McNamara

et al., 2010). Such a flow pattern could only be consistent

with the spatial patterns of hot spot volcanism if the LLSVPs

represented multiple ridges, swept together by ambient mantle

flow to form complex structures (Figure 28(b)). However,

other models show that plume-like upwelling can also occur

from the margins of thermochemical structures. According to

Steinberger and Torsvik (2012), large-scale mantle flow tends

to sweep the thermal boundary layer toward the margins of the

LLSVPs to trigger plume ascent. Plume ascent from the margins

is further promoted by a lower compressibility in LLSVP than

in ambient mantle materials, which causes LLSVPs to form

dome-like structures with steep sides, instead of ridgelike fea-

tures with shallower sloping sides (Tan and Gurnis, 2007; Tan

et al., 2011). Seismic constraints are insufficient to distinguish

between dome-like and ridgelike geometries for the LLSVPs (cf.

Bull et al., 2009; Lassak et al., 2007; Lay and Garnero, 2011).

s0245133.3.7.2 Interaction of plumes with plate tectonic
processes

p0880Not only plate tectonic processes such as slab subduction do

influence plume locations by piling up thermochemical mate-

rial at the base of the mantle (Figures 28 and 29), but also they

can directly interact with individual rising plumes. Recent ana-

logue models (Druken, 2012; Kincaid et al., 2013) show that

the regional flow field imposed by a sinking slab (cf. Long and

Silver, 2009) can distort plume ascent, thereby strongly alter-

ing their surface expressions (Figure 30). For example, plume

flow is predicted to be guided around a slab edge, as is evident,

for example, by Samoan-plume geochemical signatures in the

juxtaposed northern Lau back-arc basin (e.g., Jackson et al.,

2010; Lupton et al., 2012; Lytle et al., 2012). Such a massive

disruption of plume ascent could perhaps also give an expla-

nation for the occurrence of extensive secondary volcanism on

the Samoan Islands (cf. Hart et al., 2004; Konter and Jackson,

2012; Koppers et al., 2011b; Natland, 1980).
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Figure 28f0145 From Garnero and McNamara (2008). Comparison of (a) tomographic shear-wave model S20RTS (Ritsema et al., 2004) with (b) a
numerical simulation of whole mantle thermochemical convection. Blue and red isosurfaces in (a) denote lower mantle domains that are anomalously
fast and slow (�0.6%), respectively. The large, seismically slow regions at the base of the mantle are the LLSVPs. Yellow dashed lines demarcate
the steep gradient in shear-wave velocity as evident along the edges of both LLSVPs (Garnero et al., 2007). (b) Modeled chemically dense material
(orange isosurfaces) accumulates as piles at the base of the mantle, a possible explanation for the LLSVPs. In cross section, colors denote temperature
from red (hot) to blue (cold).
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p0885 Slab–plume interaction is also likely to occur in the western

United States. Although this region is well illuminated seismi-

cally (see Section 133.2.5.2), no consensus model has

emerged for the origin of the Columbia River basalt (CRB)

and YSRP hot spot track. The seismic images (Figure 17)

have been interpreted as revealing warm mantle exploiting a

slab gap in the remnant Farallon slab and rising through it

when the gap first formed, approximately coinciding with CRB

emplacement ( James et al., 2011). This interpretation is sup-

ported by geodynamic modeling (Liu and Stegman, 2011,

2012). However, it remains controversial whether the mantle

upwelling just arises from return flow through the slab gap

driven by a local gradient in dynamic pressure ( James et al.,

2011; Liu and Stegman, 2011, 2012) or is rather a mantle plume

driven by excess buoyancy of hot material (Darold and

Humphreys, 2013; Obrebski et al., 2010; Sigloch, 2011). Dis-

missing a plume origin altogether appears to be at odds with

observations of a deep-rooted low-velocity anomaly beneath

Yellowstone, as well as with the coinciding upwarping of the

660 km discontinuity (Schmandt et al., 2012; Figure 17(b)).
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Figure 29f0150 Reproduced from B and Antretter M (2006) Conduit diameter and buoyant rising speed of mantle plumes: Implications for the motion of hot
spots and shape of plume conduits. Geochemistry, Geophysics, Geosystems 7. (top) Representation of their numerical model predictions at 2800 km
depth with colors showing thermal density variations (at 0 Ma, i.e., present day; cf. lower color scale) and lines marking the locations of predicted
margins of the thermochemical domes (at 120, 80, 40 and 0 Ma). The models are based on subduction locations and fluxes inferred from global plate
reconstructions. Large colored circles denote sites, where predicted plume heads first reach the base of the lithosphere (model time: color-coded; cf.
upper color scale), corresponding to predicted LIPs. Small yellow circles with stars denote present-day location of plume tails, corresponding to
predicted hot spots. Occasionally, a modeled plume disappears or splits into two; therefore, not all predicted LIPs correspond to exactly one predicted
hot spot. (bottom) S-wave tomography model SMEAN (Becker and Boschi, 2002) and reconstructed locations of LIPs and present-day hot spot
positions (Torsvik et al., 2010a) are shown for comparison.
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The complex seismic structure of the anomaly, which continues

to challenge any interpretations in the classical framework of

plume theory, may be explained by plume bending around slab

fragments and/or plume pulsations rising out of the lower man-

tle (Schmandt et al., 2012). Moreover, Kincaid et al. (2013)

argued that some plume material is systematically entrained

into the mantle wedge to explain age-progressive volcanism

along the HLPs (Figure 8).

p0890Another discussion involves whether segmentation of

the Farallon slab occurred independently of (Sigloch, 2011)

or was assisted by the putative Yellowstone plume (Obrebski

et al., 2010). For example, the arrival of the plume head may

have perturbed the slab enough to cause part of the slab to

become convectively unstable, drip downward (i.e., the

Farallon ‘curtain’, FC in Figure 17), and create the gap through

which the plume rose (Darold and Humphreys, 2013). In this
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Figure 30f0155 From Druken (2012). Cartoons summarizing the results of analogue models of plume–slab interaction in a time series (top to bottom).
In map view, left column shows the surface projection of three upwelling plumes in three distinct tectonic configurations (plume–subducting slab,
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scenario, plume material may have been dammed up by the

previously intact slab, with the initial burst of plume material

through the slab gap perhaps explaining CRB volcanism.

p0895 Slabs are not only able to guide plume ascent but may also

trigger mantle upwellings. Small, hydrous plumes have been

proposed to rise from the top of the subducted slab to support

arc volcanism (Gerya and Yuen, 2003), as well as to hydrate the

transition zone (Richard and Bercovici, 2009). Also, slabs stag-

nating at the base of the upper mantle may sweep material to

cause plume-like upwelling and volcanism in the back-arc

(Faccenna et al., 2010). In turn, plume heads are able to

lubricate or even to actively push plates (Cande and Stegman,

2011; van Hinsbergen et al., 2011).

p0900 Plumes also interact with divergent plate boundaries. For

example, the Iceland plume alters plate geometries by inducing

ridge jumps and ridge propagators to pin the spreading center

to the hot spot (Brozena and White, 1990; Hardarson et al.,

1997; Hey et al., 2010; Mittelstaedt et al., 2011; 2012). Similar

interactions may have pinned the Réunion hot spot close to the

Central Indian Ridge until �30 Ma (cf. Tiwari et al., 2007).

p0905 In addition, a variety of geochemical and geophysical

evidences show that plume material tends to be drawn toward

as well as along seafloor spreading centers (e.g., Schilling et al.,

1985; Schilling, 1991; Georgen et al., 2001; see also review by

Ito et al., 2003). Geodynamic models show that a combination

of self-gravitational spreading, sublithospheric topography,

and a dynamic pressure low beneath the ridge facilitate this

interaction, whereas divergent flow away from the ridge due to

seafloor spreading tends to inhibit the interaction (Feighner

and Richards, 1995; Ito et al., 1996, 1997; Ribe, 1996; Ribe and

Delattre, 1998; Ribe et al., 1995; Sleep, 1996; Yale and Phipps

Morgan, 1998). The depleted residue of hot spot melting and

the downwelling curtain forming around a plume pancake

may choke nearby MOR melting (Singh et al., 2011; Zhou

and Dick, 2013).

s0250 133.3.7.3 Lithospheric controls on volcanism
p0910 In addition to their effects on mantle convective processes, the

lithospheric plates can control how ascending magmas are

focused to form discrete volcanic edifices. The weight of a

volcano exerts stresses on the lithosphere that can redirect

magma-filled cracks toward a volcano (Müller et al., 2001),

but the effects of lithospheric damage (i.e., thermomechanical

erosion of magma pathways and/or melting of the wall rock)

are essential to stabilize near-vertical melt extraction directly

beneath a volcano (Hieronymus and Bercovici, 2001a). Param-

eterized models of damage-enhanced lithospheric melt perme-

ability predict the formation of chains with realistic volcano

spacing, as distal tectonic stresses are perturbed by the load of

the volcanic edifices (Hieronymus and Bercovici, 1999; 2000;

2001b). Perturbation by volcanic loading can also explain the

volcano patterns in the Hawaiian Islands (Hieronymus and

Bercovici, 1999; ten Brink, 1991), which are expressed as a

double chain of staggered volcanoes ( Jackson et al., 1972).

p0915 Other studies have argued that the lithosphere not only acts

as a spatial filter for melts derived from the mantle but also may

control the occurrence and timing of volcanic activity itself. An

important requirement for this theory is that magmas can be

quasi-ubiquitously stabilized in the oceanic asthenosphere

(Hirschmann, 2010) or at the base of the oceanic plates

(Sakamaki et al., 2013). Such a stabilization has been advocated

for to explain the seismic and electric properties of the astheno-

sphere and/or the sharpness of the lithosphere–asthenosphere

boundary (Anderson and Sammis, 1970; Kawakatsu et al., 2009;

Naif et al., 2013), an interpretation that however remains con-

troversial (Faul and Jackson, 2005; Karato, 2012, 2013a,b;

Karato and Jung, 1998; Stixrude and Lithgow-Bertelloni,

2005). Explaining these geophysical properties and intraplate

volcanism at the same time by this mechanism, however,

requires a mechanism for melt replenishment.

p0920Volcanic ridges or island chains have been specifically related

to intraplate deformation in response to regional (e.g., Clouard

and Gerbault, 2008; Sandwell et al., 1995) and local (e.g.,

Mittelstaedt and Ito, 2005) tectonic stresses or thermal contrac-

tion (Gans et al., 2003; Sandwell and Fialko, 2004). For exam-

ple, Clouard and Gerbault (2008) argued that regional

transtensional stresses associated with the rapid subduction

along the Tonga–Kermadec Trench damage the Pacific Plate to

allow ascent of magmas along a belt across French Polynesia.

Hieronymus and Bercovici (1999, 2000) had shown that per-

turbation of the stress field by volcanic loading (see preceding

text) controls the propagation direction (i.e., parallel to devia-

toric tensile stresses) of stress-induced volcanism with opportu-

nities for rejuvenated volcanism on the second volcano of the

self-propagating chain. Propagation speed and extent are pre-

dicted to be limited by the growth of the volcanic edifices and

the abundance of sublithospheric melts, respectively. For exam-

ple, the availability of melts (if not ubiquitous) as potentially

controlled by large-scale mantle convection (e.g., diffuse upwell-

ing beneath the South Pacific Superswell) or more localized

asthenospheric upwelling (see Sections 133.3.3.5–133.3.3.8)

may restrict the final length of the chain.

p0925Accordingly, discrimination between lithospheric controls

and other mechanisms for non-hot spot intraplate volcanism

remains challenging. Whereas plume theory provides relatively

clear and unique testable predictions in terms of geographic

age patterns, predictions related to lithospheric controls, small-

scale convection (Section 133.3.3.5), buoyant decompression

melting (Section 133.3.3.6), and shear-driven upwelling

(Section 133.3.3.7) are generally more complex. Distinguish-

ing between these mechanisms thus requires sufficient geo-

chronological data (and appropriate statistical analysis) and/

or additional geophysical constraints (Harmon et al., 2011).

Future such efforts are needed to understand whether it is melt

production, extraction, or ascent that is the bottleneck that

limits volcanic activity in the interior of oceanic as well as

continental plates.

s0255133.4 Conclusion

p0930In the past few decades, our understanding of hot spots and

melting anomalies has seen great advancements. It has been

realized that not all melting anomalies are related to hot spot

activity and that not all hot spots are necessarily underlain by a

mantle plume.Many alternativemechanisms for sustainingman-

tle melting have been proposed and in some cases have been

successfully tested with observations (see Sections 133.3.3.5–

133.3.3.8 and 133.3.7.3). In particular, non-hot spot volcano
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chains are best explained by non-plume mechanisms. Yet,

plumes remain a viable explanation for large and long-lived hot

spots and many LIPs.

p0935 Classical plume theory makes a range of specific testable

predictions, some of which are successful, whereas others fail

at a given hot spot. While the most robust predictions of plume

theory have been confirmed to at least the first order at many

hot spot chains, second-order departures of observations from

predictions require revision of the classical concept. These

departures may be related to, for example, thermochemical

convection, variable mantle properties, and interaction of

plumes with large-scale or regional mantle flow. That plumes

may indeed rise from the lower mantle has been confirmed by

the spatial correlation of hot spots with structures in the deep

mantle and, for a subset of hot spots, by regional seismic

tomography studies. Future advancements to understand man-

tle dynamics and composition by studying melting anomalies

will require interdisciplinary efforts including geophysicists,

geochemists, geologists, and mineral physicists.
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Non-Print Items

Abstract:

This chapter describes the progress that has been made over the past decades in understanding observations of large-scale melting anomalies that are

not readily explained by plate tectonic theory. Fundamental observations include the volume and geochemistry of flood basalts and ocean island

basalts, the age progression of volcano chains, the geometry of hotspot swells, and the seismic imaging of crust and mantle structures. Observations

of a subset of melting anomalies can be explained by classical plume theory, in which buoyancy-driven upwellings rise through the entire mantle to

cause massive flood basalt volcanism that is trailed by an age-progressive hotspot volcano chain. However, a range of observations call for significant

extensions to classical theory, and some sites of excess volcanism are better explained by alternative mechanisms, such as small-scale convection or

shear-driven upwelling, than by plume theory. Detailed studies of upwelling and melting can provide constraints for heat and material fluxes

through the mantle and provide a better understanding of the long-term thermal and chemical evolution of the Earth’s interior.

Keywords: Decompression melting; Dynamic topography; Flood basalts; Hotspot; Hotspot swell; Intraplate volcanism; Large igneous provinces;

Mantle plumes; Ocean island basalts; Seismic mantle tomography; Shear-driven upwelling; Small-scale convection; Thermochemical convection
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