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Abstract 6 

Small-scale convection (SSC) in the Earth’s mantle contributes to intraplate deformation, heat flow and 7 

volcanism. In this review, I give an overview over the causes and effects of SSC. SSC is a boundary layer 8 

instability that is driven by a density inversion, and mostly restricted to low-viscosity layers such as the 9 

asthenosphere. The density inversion that supports SSC can be related to thermal and/or chemical 10 

stratification. SSC is thought to occur beneath mature oceanic basins to restrict their subsidence and 11 

stabilize geothermal heat flux. The onset of SSC is preferentially triggered near lateral heterogeneity such 12 

as fracture zones or other steps in lithospheric thickness. SSC may also occur beneath continents, and 13 

seismic evidence for related perturbations has indeed been found. Both in continental and oceanic 14 

environments, SSC can cause dynamic topography, intraplate deformation, as well as melting of mantle 15 

rocks. Mantle melting can boost SSC through a positive-feedback mechanism, and most importantly, 16 

feeds intraplate volcanism. While plate tectonics and related natural hazards are mostly caused by large-17 

scale whole-mantle circulation, intraplate geologic activity may be sustained by SSC in the upper mantle. 18 
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 23 

1. Introduction 24 

The transport of primordial and radiogenic heat from the deep Earth’s interior to the surface is mostly 25 

accomplished by mantle convection. Large-scale mantle flow drives the motion of tectonic plates and is 26 

thus responsible for first-order geological activity on Earth − such as mountain building, continental 27 

breakup, mid-ocean ridge and subduction-related volcanism – as well as the related natural hazards. 28 

Smaller scales of mantle flow, mostly occurring in the low-viscosity upper mantle, are superimposed on 29 
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these large scales of whole-mantle circulation, and sustain deformation within tectonic plates. Such 30 

deformation can be e.g. expressed as dynamic uplift and extension (Göğüş and Pysklywec, 2008b), or 31 

subsidence and sedimentation (Petersen et al., 2010). Small-scale convection (SSC) upwellings may 32 

further feed mantle melting and intraplate volcanism, thus e.g. supporting seamount and ocean-island 33 

formation (Ballmer et al., 2007; Bonatti and Harrison, 1976; Bonatti et al., 1977; King, 2007). Moreover, 34 

SSC can drive the motion of microplates within mobile belts, such as in the Mediterranean (Faccenna et 35 

al., 2013), and thus control first-order geologic activity along microplate boundaries. SSC might be even 36 

an important mechanism for the generation of plate boundaries, e.g. by initiating subduction zones 37 

(Solomatov, 2004). Although several articles and book chapters have been published about SSC in the 38 

mantle, and some review chapters have summarized some of the related issues (e.g., Ballmer et al., 39 

2015c; Parmentier, 2007), no comprehensive review has yet been dedicated to the topic. In this module, I 40 

will discuss the causes for, and consequences of, SSC in the Earth’s mantle. 41 

 42 

2. Physical Background 43 

Convection across a fluid layer is an efficient mode of heat transport with heat being transported along 44 

with the flow of anomalously warm or cold matter. Generally, convection is driven by unstable density 45 

stratification. Density inversion e.g. occurs as a consequnces of heating a fluid from below and/or cooling 46 

from above, such that low-density warm fluid is overlain by high-density cold fluid.  47 

On all scales, convection competes with other modes of heat transport. For the Earth’s interior, the most 48 

relevant competing mode is conduction of heat. Thermal convection is a more efficient mode than 49 

conduction if the fluid layer’s Rayleigh number Ra = αρ0ΔTgd3/κη exceeds a critical value (i.e., on the 50 

order of ~1000) (Bénard, 1901; Turcotte and Schubert, 1982). In this case, even infinitesimally small 51 

thermal perturbations grow exponentially to sustain the formation of convection cells. As thermal 52 

expansivity α, gravity g, reference density ρ0, and conductivity κ are well-constrained and/or near-53 

constant across the mantle, the temperature jump across the fluid layer ΔT, the layer thickness d and the 54 

viscosity of the fluid η control the Rayleigh number with Ra ~ ΔTd3/η.  55 

In a fluid heated from below and cooled from above, convection is usually driven by thermal boundary 56 

layer instability. Thin thermal boundary layers (TBL) with steep thermal gradients are sustained, because 57 

conduction is more efficient than convection for small d. Convective instability usually rises out of these 58 

TBL. For viscous instability developing from a cold TBL, over which the viscosity varies by several 59 

orders of magnitude, the concept of a local Ra has been shown to be useful (e.g., Parson and McKenzie, 60 
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1978), because only the negative buoyancy of the viscously deformable base of the TBL is available to 61 

drive convection. This situation needs to be accounted for to in determining the relevant parameters that 62 

control the Ra. For convection driven by unstable compositional stratification (Rayleigh-Taylor 63 

instability; see section 3.3), the relevant compositional Racomp = Δρcompgd3/κη, where Δρcomp is the 64 

compositional density contrast. 65 

In a fluid that is rheologically layered (and compositionally heterogeneous), such as the Earth’s mantle 66 

(e.g., Mitrovica and Forte, 2004; Zindler and Hart, 1986), convection can simultaneously occur on 67 

various scales (and be manifested as thermal plus compositional ─ or thermochemical ─ convection). 68 

Large-scale convective flow organizes across the whole mantle (i.e., on scales of several thousands of 69 

km), because Ra becomes super-critically large for large d (and large ΔT). Smaller scales of convection 70 

(i.e., of the order of hundreds of km) can organize within low-viscosity layers close to the global TBL at 71 

the top or bottom of the mantle, because Ra becomes sufficiently large for low η (and significant ΔT), 72 

even for rather small d (e.g., Korenaga and Jordan, 2003; Solomatov and Moresi, 2000). Thus, SSC may 73 

occur in the asthenosphere (Richter and Parsons, 1975), in low-viscosity regions near the core-mantle 74 

boundary (Cizkova et al., 2010), or even across the whole upper mantle (Korenaga and Jordan, 2004). 75 

SSC may also develop near regional TBLs, such as the roofs of the large low shear-wave velocity 76 

provinces, where small-scale “plumelets” are thought to rise and feed hotspot volcanism (Davaille, 1999), 77 

or at the base of subducted slabs that stagnate in the mantle transition zone (Motoki and Ballmer, 2015).  78 

The specific layer that undergoes convective instability must include a finite ΔT to maximize the relevant 79 

local Ra. So, in the case of top-down driven SSC from a cold TBL, the layer must include at least the 80 

relatively soft base of the TBL, and the relevant local Ra is limited by the viscosity of this base. In case of 81 

bottom-up driven SSC from a hot TBL, the local Ra is in turn restricted by the viscosity and thickness of 82 

the overlying layer. 83 

 84 

3. Styles of SSC 85 

Due to its applicability to surface geologic processes, the occurrence of SSC in the asthenosphere has 86 

been most closely studied. SSC in the asthenosphere is top-down driven by a density inversion with cool 87 

sublithospheric mantle overlying the warm asthenosphere, and facilitated by intrinsically low viscosities. 88 

The low viscosity of the asthenosphere is thought to be sustained by the abundance of small amounts of 89 

melt (Anderson and Sammis, 1970), a local dominance of dislocation creep (Karato, 1987), reduced 90 
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mineral grain sizes (Faul and Jackson, 2005), relatively large temperatures (“plume-fed asthenosphere”) 91 

(Morgan et al., 1995), and/or relatively high water contents (Karato and Jung, 1998).  92 

3.1  SSC beneath the oceanic lithosphere 93 

A textbook case of SSC occurs beneath oceanic plates (Richter, 1973). Here, the sublithospheric TBL 94 

grows as the plate moves away from the mid-ocean ridge (MOR). As soon as the TBL exceeds a critical 95 

thickness, the local Ra becomes sufficiently large, and sublithospheric SSC initiates (Fleitout and Yuen, 96 

1984; Houseman and McKenzie, 1982; Parsons and McKenzie, 1978; Zaranek and Parmentier, 2004). 97 

SSC is thought to initiate beneath oceanic lithosphere of age ~70 Ma, depending on regional conditions. 98 

Beneath significantly younger oceanic lithosphere, the TBL is thinner than the lithospheric harzburgite 99 

layer, the stiff depleted residue from MOR melting (Ra is small due to high η), and hence SSC should 100 

normally not occur. Beneath oceanic lithosphere of age ~70 Ma and older, the TBL instead extends 101 

through this stiff depleted residue and into the weak asthenosphere to drive SSC (Afonso et al., 2008; 102 

Ballmer et al., 2009; Lee et al., 2005).  103 

SSC acts to remove the base of the TBL and replace it by warm mantle from below, thereby transporting 104 

heat to the base of the lithosphere and balancing the thickness of the plate. Thus, the occurrence of SSC 105 

can account for the observed flattening of seafloor topography and of heat flow on oceanic plates older 106 

than ~70 Ma (Cazenave et al., 1988; Crosby et al., 2006; Doin and Fleitout, 1996; Hasterok and 107 

Chapman, 2011; Parsons and Sclater, 1977; Stein and Stein, 1994a; b), as well as seismic estimates for 108 

the thickness of the oceanic lithosphere (Priestley and McKenzie, 2006; Ritzwoller et al., 2004). These are 109 

the main observations that support the SSC model. An alternative mechanism to account for these 110 

observations involves the collective effect of the mantle plumes (Crough, 1975; Hayes, 1988; Morgan et 111 

al., 1995).  112 

Direct observations of SSC beneath oceanic plates instead remain controversial. SSC is predicted to 113 

organize as convection rolls that are mostly confined to the low-viscosity asthenosphere (e.g., Hall and 114 

Parmentier, 2003; van Hunen et al., 2005) (Fig. 1). To minimize the interaction with asthenospheric 115 

shearing and large-scale flow, SSC rolls more-or-less strictly align with the direction of the overriding 116 

plate (Richter and Parsons, 1975), depending on plate velocity and the time since the last plate 117 

reorganization (Marquart, 2001; van Hunen and Zhong, 2006). Accordingly, SSC are predicted to be 118 

associated with lineations in heat flow, gravity, seismic anomalies and seafloor topography (Buck and 119 

Parmentier, 1986) with wavelengths similar to the vertical extent of the asthenosphere (but cf. Lev and 120 

Hager, 2008). However, heat flow measurements and seismic tomography remain challenging in oceanic 121 

basins. Also, dynamic topography associated with SSC on thick and old lithosphere is predicted to be too 122 
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small to be resolved (Sleep, 2011). On the much younger oceanic lithosphere close to the East Pacific 123 

Rise, lineations in geophysical observables of wavelengths ~100 km have been detected, and in many 124 

aspects are consistent with the effects SSC (Harmon et al., 2011; Haxby and Weissel, 1986). Because of 125 

their geographic patterns that extend to very close of the East Pacific Rise, however, these lineations are 126 

difficult to be reconciled at least with the textbook case of SSC, unless the asthenospheric viscosity is 127 

very low (~1018 Pa∙s or smaller), and (interaction with) alternative mechanisms such as viscous fingering 128 

(Ballmer et al., 2013; Weeraratne et al., 2007), or off-axis melting instabilities (Barnouin-Jha et al., 129 

1997), need to be considered. The much more extensive lineations of wavelengths 1500~2000 that are 130 

evident in full-waveform S-wave tomography (French et al., 2013) as well as the gravity field (Hayn et 131 

al., 2012) are also not fully consistent with sublithospheric SSC (i.e., mostly confined to the 132 

asthenosphere), both because of their large wavelengths as well as their manifestation beneath young 133 

oceanic plates, even crossing MORs (also see discussion). Future studies are indeed required to 134 

understand the interaction of SSC with other geodynamic mechanisms (e.g., viscous fingering), as well as 135 

the much larger scales of whole-mantle circulation. 136 

3.2  SSC related to mantle plume activity 137 

Small-scale convection can also occur in regionally restricted settings, such as in mantle plumes that pond 138 

beneath the lithosphere as a “pancake” of hot material. In this specific case, the conditions mentioned 139 

above in terms of the age of the lithosphere required for SSC are relaxed, because the viscosity of 140 

pancake is sufficiently low (Agrusta et al., 2013; Moore et al., 1998; Moore et al., 1999; Thoraval et al., 141 

2006). The manifestation of SSC in the Hawaiian plume pancake can explain the occurrence of 142 

rejuvenated-stage volcanism and off-axis volcanism, the decrease geoid-to-topography ratio of the swell 143 

to the WNW, as well as geochemical asymmetry of shield-building volcanism (Ballmer et al., 2011; 144 

Cadio et al., 2012; Garcia et al., 2010). In turn, SSC far away from mantle plumes (section 3.1) can 145 

sustain “hot-line” volcanic chains that ─ in contrast to plume-fed hotspot volcanism ─ display coeval 146 

activity over >1000 km (Bonatti and Harrison, 1976; Bonatti et al., 1977; Ballmer et al., 2007; 2009) (Fig. 147 

1). 148 

3.3  Compositional SSC 149 

While the textbook case of SSC is exclusively driven by an inversion of thermal density, convective 150 

instability may be alternatively fueled by an inversion of compositional density (i.e., Rayleigh-Taylor 151 

instability (Rayleigh, 1913)) with high-density fluid underlain by low-density fluid. Such a situation can 152 

e.g. occur near subduction zones, where the slab carries a layer of low-density materials such as 153 

sediments or serpentinized basalt into the mantle. Dehydration of serpentinite leads to hydration and/or 154 
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partial melting of overlying mantle rock. The resulting mélange of low-density rocks becomes 155 

convectively unstable as soon as it is juxtaposed to the high-density peridotitic mantle wedge above 156 

(Gerya and Yuen, 2003). In this case, a strongly unstable compositional density inversion can even 157 

overcome stable thermal layering (i.e., the hot mantle wedge overlying the cool slab). Similarly, 158 

compositional instability can rise out of the buoyant harzburgitic underbelly of a subducted slab that 159 

stagnates in the transition zone (Motoki and Ballmer, 2015) or near the core-mantle boundary (Tackley, 160 

2011). 161 

Another form of compositional SSC is buoyant decompression melting (BDM) instability. A layer of rock 162 

that is very close to or at its solidus may undergo localized melting due to small lateral thermal variations 163 

and/or passive upwelling. Any such localized melting induces focused upwelling, because melt (as well as 164 

the residue of melting) is less dense than rock. Since this upwelling in turn causes further decompression 165 

melting in a positive-feedback loop, short-lived small-scale convection cells emerge (Tackley and 166 

Stevenson, 1993). BDM usually ceases after one full overturn, because it runs out of fuel; the depleted 167 

residue of magmatism cannot continue melting without additional heat input (Raddick et al., 2002) (Fig. 168 

2). Nevertheless, the process of BDM can assist other mechanisms such as SSC in sustaining magmatism 169 

(Ballmer et al., 2009). Episodes of BDM can also occur near a MOR, as initial melts are produced on-axis 170 

and subsequently undergo instability off-axis (Barnouin-Jha et al., 1997; Sparks et al., 1993). In this case, 171 

BDM is boosted by a cessation of extension and divergence as the partially molten material moves away 172 

from the ridge axis (Hernlund et al., 2008a). A cessation of extension can also trigger BMO within the 173 

partially molten asthenosphere in intraplate settings (Hernlund et al., 2008b). 174 

3.4  Edge-driven convection 175 

Convective instability is generally assisted by lateral heterogeneity. The presence of lateral heterogeneity, 176 

such as fracture zones or cratonic margins, strongly reduces the timescales for the onset of convective 177 

instability, and thereby acts to trigger SSC (Dumoulin et al., 2005; Huang et al., 2003). Thus, the most 178 

vigorous and stable downwellings of SSC occur near steps of lithospheric thickness, such as the edges of 179 

cratonic keels or orogenic roots (Fig. 3). Upwelling return flow is in turn focused at a distance of several 180 

hundreds of km away from the step to induce uplift and magmatism (Kaislaniemi and van Hunen, 2014; 181 

King, 2007; Missenard and Cadoux, 2012; Shahnas and Pysklywec, 2004; Till et al., 2010; van Wijk et 182 

al., 2010). This variant of SSC has been dubbed “edge-driven” convection (King and Anderson, 1998). 183 

The edge-driven convection model implies that downwellings consistently emerge along cratonic margins 184 

with uplift and volcanism along a belt parallel to the margin at a distance of a few 100s of km. It has been 185 
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used to account for intraplate volcanism as well as seismic observations mainly on the African and South 186 

American plates (King and Ritsema, 2000; King, 2007). 187 

3.5  SSC beneath continents 188 

Beneath the continents, SSC is most likely caused by a combination of mechanisms. As beneath the 189 

oceans, TBL instability remains an important driving mechanism for continental SSC (see section 3.1) 190 

(Houseman et al., 1981), but variations in composition (section 3.3) (Houseman and Molnar, 1997; Neil 191 

and Houseman, 1999) as well as steps in lithospheric thickness (section 3.4) (King and Anderson, 1998) 192 

are common ingredients beneath continents that can trigger SSC. Sublithospheric topography is common 193 

beneath continents, and likely controls the geometry of SSC beneath the slow-moving continental plates 194 

(Fourel et al., 2013; Milelli et al., 2012). For example, a combination of horizontal flow, edge-driven 195 

convection and viscosity heterogeneity in the asthenosphere can give rise to vertical flow and magmatism 196 

(Ballmer et al., 2015a; Conrad et al., 2010; Kaislaniemi and van Hunen, 2014; Till et al., 2010) (Fig. 3). 197 

Entrainment of warm plume material or enriched slab-derived material into such upwellings may provide 198 

the conditions for mantle melting (e.g., Duggen et al., 2009). Intraplate extension acts to advance small-199 

scale convective instability due to the induction of mantle upwelling as well as the creation of 200 

sublithospheric topography (e.g., along rifts) (Boutilier and Keen, 1999; Buck, 1986; van Wijk et al., 201 

2008; van Wijk et al., 2010). Alternatively, underplating of dense plutonic rocks may drive top-down 202 

instability (Zhai et al., 2007). Any related SSC has been suggested to be sufficient to even destroy stable 203 

cratonic roots (e.g., Gao et al., 2009). In turn, compositional variations may also stabilize cratonic roots, 204 

e.g. by muting SSC as a consequence of decreased lithospheric viscosity and/or density. As the viscosity 205 

structure in continental plates is usually layered, deformation during convective instability may be 206 

focused along weak horizons and therefore lead to the “delamination” of elongated chunks of the lower 207 

crust (Göğüş and Pysklywec, 2008b; Kay and Kay, 1993). Accordingly, delamination of the lower crust 208 

may be regarded as a variant of SSC in the presence of complex rheology (Burov and Molnar, 2008), in 209 

which the local Ra is controlled by the viscosity of the weak zone, and strongly anisotropic viscosity 210 

controls the geometry of downwellings. Delamination and dripping are two geometrical end-members of 211 

SSC beneath continents. 212 

Subcontinental SSC has various geological and geophysical implications. Intraplate uplift and subsidence 213 

is commonly related to SSC up- and downwellings. Hence, SSC controls erosional patterns as well as 214 

sustains the formation of sedimentary basins (Petersen et al., 2010). For example, delamination may 215 

induce rapid uplift and erosion just after detachment of the lower crust, followed by persistent subsidence 216 

due to focusing of downwelling flow (Göğüş and Pysklywec, 2008a). Beneath continents with dense 217 
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seismic networks, it is possible to detect isotropic and anisotropic seismic velocity anomalies that can be 218 

directly related to SSC (Alsina and Snieder, 1995; Makeyeva et al., 1992; Schmandt and Humphreys, 219 

2010; West et al., 2009; Yang and Forsyth, 2006). Intraplate seismicity, deformation, mountain building 220 

and volcanism have also been related to SSC. While large-scale convection drives the motion of tectonic 221 

plates and major geologic activity along plate boundaries, SSC can account for a wide range of intraplate 222 

geological processes. 223 

 224 

4. Discussion 225 

A key issue regarding the “theory” of SSC in the mantle is the observability of the process. From a fluid 226 

dynamics point of view, SSC is well-established and almost an inevitable product of convection in a high-227 

Ra fluid with significant rheological layering, as is the Earth’s mantle. Even though any methods for 228 

determining the radial viscosity structure of the Earth suffer fundamental trade-offs, at least a relatively 229 

weak asthenosphere and viscosity jump somewhere near 660~1,000 km depth are robust features of 230 

glacial-rebound and geoid inversions, respectively (e.g., Rudolph et al., 2015). Also, the predictions of the 231 

theory of SSC on a broader scale (e.g., seafloor flattening) are well consistent with observations, and a 232 

wide range of circumstantial evidence supports the theory (see above). However, from a phenomenon 233 

point of view, there are few direct observations of SSC in the mantle, and the patterns of convection 234 

remain poorly constrained.  235 

In recent years, at least “mid-scale” convective patterns become well in reach of proper characterization 236 

by geophysical observations. Here, I consider mid-scale convection as SSC with wavelengths on the order 237 

of ~1,200 to 2,000 km. For simple rheology, such mid-scale wavelengths are expected for convection 238 

across the entire upper mantle, or even down to ~1,000 km depth. Such mid-scale convection is expected 239 

to be sustained by progressive cooling of the asthenosphere by sublithospheric SSC, which accordingly 240 

tends to break down into larger convection cells down to the base of the transition zone (Korenaga and 241 

Jordan, 2004). Mid-scale convection may further rise from a second-order TBL at the base of the 242 

transition zone (Motoki and Ballmer, 2015), for example due to limited material exchange between the 243 

upper and lower mantles (Ballmer et al., 2015b; Ballmer et al., 2017; Tackley et al., 1993), which is also 244 

evident by slab stagnation at various depths in the mid mantle (Fukao and Obayashi, 2013; Goes et al., 245 

2017). Alternatively, SSC on wavelength of 1,000-2,000 may be mostly confined to the asthenosphere if 246 

the rheology, for example due to lattice-preferred orientation beneath the moving plates, is significantly 247 

anisotropic (Lev and Hager, 2008). 248 
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The specific patterns of mid-scale convection (whether confined to the asthenosphere or throughout the 249 

upper mantle) may be related to geophysical observations. Viable candidates are low-viscosity fingers as 250 

retrieved from seismic tomography (French et al., 2013; Katzman et al., 1998), as well as undulations of 251 

the residual (dynamic) topography (Hoggard et al., 2016) and gravity field (Hayn et al., 2012) on the 252 

relevant scales. It may further be mirrored by the patterns of slab sinking (and related return flow 253 

(Faccenna et al., 2013)) near subduction zones, and by that of microplates in mobile belts such as the 254 

Mediterranean (Faccenna et al., 2010). Along these lines, we may already be able to map the patterns of 255 

mid-scale convection over vast regions of our planet, although continental regions without sufficient 256 

seismic instrumentation remain problematic (due to lithological heterogeneity and tectonic complexity). 257 

First attempts to map vertical upper-mantle flow in geophysically well-characterized continental regions 258 

such as the western US are indeed promising (Afonso et al., 2016; Schmandt et al., 2014). 259 

 260 

5. Conclusion and Outlook 261 

Convection is an efficient mechanism for the transport of heat across the mantle. It is generally driven by 262 

a density inversion due to the combined effects of temperature and composition. In addition to large-scale 263 

convection on the order of thousands of km, small-scale convection (SSC) is thought to occur near 264 

thermal and compositional boundary layers, particularly across regions of reduced mantle viscosity, such 265 

as the asthenosphere. SSC should be advanced by the presence of lateral heterogeneity, for example by 266 

steps of lithospheric thickness along cratonic margins or fracture zones. Beneath continents with their 267 

complex geologic structures, SSC is influenced by various factors, including sublithospheric topography, 268 

horizontal flow, compositional heterogeneity as well as the related effects on density and viscosity 269 

structure. While only indirect evidence for the occurrence of SSC beneath mature oceanic basins is 270 

provided by the flattening of seafloor topography (and heat flow), direct evidence for the occurrence of 271 

SSC beneath continents comes from seismic observations. 272 

Future work is required to better understand the interplay between large-scale and small-scale flow in the 273 

global context. Large-scale whole-mantle convection should influence the patterns of SSC by driving 274 

shear flow in the asthenosphere, and by sustaining large-scale thermal pertubations that will delay or 275 

advance SSC through their effects on viscosity. Also, large-scale flow may set up boundary layers in the 276 

mid-mantle or transition zone, from which SSC instabilitty may develop, for example near stagnant slabs 277 

(Fukao and Obayashi, 2013) or ponding/deflected plumes (French and Romanowicz, 2015; Kumagai et 278 

al., 2008). Furthermore, the effects of mineral grain-size and fabric on mantle rheology and SSC, and 279 
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vice-versa, require detailed further study. Perhaps most importantly, future efforts should be focused on 280 

detecting the signals and pattens of SSC. For example, direct seismic evidence for the occurrence of 281 

sublithospheric SSC beneath the oceans on the expected wavelength of several 100s of km remains 282 

elusive. Systematic comparison of model predictions and observations will lead to great insight into the 283 

underlying mantle dynamics and dominant rheological mechanisms. 284 

 285 
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7. Figures 578 

 579 

Fig. 1: Cartoon of sublithospheric SSC beneath the oceanic lithosphere that grows as a function 580 

of seafloor age. At a critical seafloor age, SSC rolls develop and may potentially sustain 581 

decompression melting and coeval volcanism over large along-plate distances. Figure is 582 

reproduced from Ballmer et al. (2009) reprinted with the permission of the American Geophysical 583 

Union.  584 

585 
Fig. 2: Numerical model predictions of buoyant decompression melting (BDM). Colors show 586 

melt production rate (left column), melt retention (center) and depletion (right); arrows mark 587 

direction and speed of mantle flow; lines show isotherms (left only). From top to bottom, panels 588 
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show snapshots as model time (as annotated) increases. BDM develops from an instability of an 589 

initial melt layer (top center). It proceeds for several million years, and is shut off as depletion in 590 

the convection cell progressively increases (bottom right). Figure is reproduced from Raddick et 591 

al. (2002), reprinted with the permission of the American Geophysical Union. 592 

 593 

 594 

Fig. 3: Edge-driven convection (EDC) with (a) and without (b) asthenospheric shear-flow in the 595 

backgound mantle. Colors and arrows reflect mantle temperature and flow, respectively. The 596 

white contour (solidus) outlines the zone of potential mantle melting. EDC alone, or an 597 

interaction of EDC with “shear-driven upwelling” (Bianco et al., 2011; Conrad et al., 2010) due 598 

to the upward deflection of horizontal flow at a step of lithospheric thickness can sustain mantle 599 

melting. Figure is reproduced from Till et al. (2010), reprinted with the permission of the 600 

American Geophysical Union. 601 


