Seafloor age and the evolution of plate tectonic heat transport **Thorsten Becker** University of Southern California Clint Conrad (U Hawaii) Bruce Buffett (UC Berkeley) Lapo Boschi (ETH Zürich) Sean Loyd (USC) Carolina Lithgow-Bertelloni (UCL) Bernhard Steinberger (GFZ) Frank Corsetti (USC) Brad Foley (Yale) Dietmar Müller (U Sydney) 11th International Workshop on Modeling of Mantle Convection and Lithospheric Dynamics June 30, 2009

Questions about the mantle system (chemistry and rheology)

What causes and controls plate tectonics?

- Spatial strain localization, memory/damage
- Why (only) Earth?
- Temporally cyclic, uniform, or punctuated?
- Thermo-chemical evolution of Earth
 - Role of H₂0 and C cycling, biosphere
 - Role of continental dynamics
 - Role of the lower thermal boundary and plumes?

Mantle heat transport constraints

Oceanic lithosphere

Plume flux from the CMB

Present day heat budgets

q [mW/m²]

~44 TW total heat flux
~ 8 TW heating by continental crust
~36 TW for convective heat flux
~70% of heat loss through oceanic lithosphere (i.e. plate tectonics)
~3 x radiogenic heating in mantle, i.e. Urey ratio ~ 1/3

200

100

Seafloor age constraint

- 100

150

age [Ma]

50

0

Product of plate reorganizations and spreading rate variations
 Besides heat flow, implications for relative sealevel, ocean geochemistry, and ocean circulation

Present-day seafloor age distribution

- Triangular age distribution may indicate
 - Uniform subduction rate, unlike thermal convection (Parsons, 1982)
 - Constant seafloor
 production since
 180 Ma
 (Rowley, 2002)

Continents and sphericity will affect age distribution (Labrosse & Jaupart, 2007)

A 1-D model of seafloor age distribution (α) over time $\alpha(\tau + d\tau, t + dt) = \alpha(\tau, t) - \Phi(\tau, t) dt$

- Model equation
 τ = age t = time
 Φ = destruction rate
- Total area constant
 C = production rate
 α(τ = 0, t) = C(t)

$$\frac{\partial \alpha}{\partial \tau} + \frac{\partial \alpha}{\partial t} = -\Phi(\tau, t)$$

$$\Phi(\tau, t) = \alpha(\tau, t)\phi(\tau)$$

$$C(t) = \int_{0}^{\infty} \Phi(\tau, t) \,\mathrm{d}\tau$$

Subduction probability for constant production and triangular distribution

$$\Phi = c \qquad \alpha(\tau, t=0) \approx C_0(1-\tau/\tau_m)$$

Alternative age distributions for constant production rates I

Subduction probability

Age distribution

Alternative age distributions for constant production rates II

Subduction probability

Age distribution

Alternative age distributions for constant production rates III

Subduction probability

Age distribution

Time-variable seafloor production – Synthetic example

- Slab-pull (sqrt(age)) probability
- Production rate variable at 10% amplitude with 25 Myr period

Time-variable production – Best-fit variability for present day age

- Single harmonic production variation at 6% amplitude and 60 Myr period
- Misfit $\chi^2 = 3$ compared to $\chi^2 = 4.8$ for steady triangular
- For two harmonics: $\chi^2 = 1.9$
- Broad trends are captured by 1-D model, details will depend on ridge jumps, continents etc.

Reconstructed age distributions

Geologically inferred seafloor production rate variations

~20% variability

Gaffin (1987); Muller et al. (2008)

Best-fit spreading rate variations

Becker et al. (2009)

Variations in heat flow over 60 Ma

Based on integration over seafloor ages from Xu et al. (2006) using a modified halfspace cooling law

 Significant decrease in heat flow and relative sealevel

Harrison (1980); Loyd et al. (2007)

Variations in heat flow over 120 Ma

Harrison (1980); Loyd et al. (2007); Becker et al. (2009)

Variations in heat flow over 120 Ma

Based on integration over seafloor ages from Muller et al. (2008)

- Decrease in heat flow confirmed
- Indication of 130/270 Myr periodicity

Harrison (1980); Loyd et al. (2007); Becker et al. (2009)

Conclusions from seafloor age modeling

- Slab-pull subduction probability and variable seafloor production rate work as well as, or better than, the triangular, constant scenario (cf. Demicco, 2004)
- Slab-pull plus bending might provide good parametrization of oceanic plate system
- Heat flow has decreased by ~0.25%/Ma over Cenozoic (cf. Harrison, 1980; Loyd et al., 2007)
- Indication of ~60 Myr and ~270 Myr periodicity in seafloor production
- Plate tectonics is not about to shut down

Context for heat flow variations: Parameterized convection models Can use volume and time-averaged equation for mantle temperature *T* to gain some insight

 $Q_{convec} \propto Ra(T,\eta)^{\beta}$

Oľ

 $Q \propto \frac{T_i^{\beta+1}}{\eta (T_i)^{\beta}}$

- Ingredients:
 - Assumptions about radiogenic heating, Urey ratio $\gamma(0)$ for present day
 - Scaling relationship between Rayleigh number ($f(T, viscosity \eta)$) and heat flux
 - Assumes traditionally that boundary layer analysis for isochemical convective system holds, $\beta \sim 1/3$

The thermal catastrophe for $\beta = 1/3$

 Bound on temperatures, assuming – mantle was never more than 30% hotter

2

time [Ga]

2.5

temperature T / T(t = 0)1.2 1.1Computation backward in time 0.9 **Fixed present-day** mantle temp 0.5 1.5 0 16 present-day

1.3

binding in the second state of the second sta

3.5

4

3

Christensen (1985)

4.5

Chemical boundary layers and bending

- Viscous dissipation in slab bending of importance for plate velocities (Conrad & Hager, 1999a; Becker et al., 1999; Buffett, 2006)
 − β ↓ (Conrad & Hager, 1999b)
- Fractionation (melting column f(T)) at ridges affects density and viscosity (via volatiles) (i.e. thermo-chemical boundary layers, e.g. Lee et al., 2005)
 - β ↓↓ (Korenaga, 2003)

time [Ma]

Loyd et al. (2007)

time [Ma]

temperature T / T(t = 0)

Episodic heat flow

 Fluctuations in heat flow are, of course, expected from geodynamical models

+/- 0.1%/Ma for mobile lid (e.g. Moresi & Solomatov, 1999), more for dramatic reorganizations (e.g. Stein et al., 2004; Zhong et al., 2007)

Dearth of "realistic" models with continents and viscoplastic rheology (not much longer)

heat flux, but the phase is off compared to what we infer for the Cenozoic

temperature T/T(t = 0)

time [Ma]

Loyd et al. (2007)

Context of heat flow variability

- Recent decrease in heat flow much larger than secular cooling, indicating periodic fluctuations
- Change in heat flow since 120 Ma such that Urey ratio at present may be an over-, rather than an underestimate
- Thermo-chemical scaling of heat transport may be required to avoid thermal catastrophe in Archean

Constraints from dynamical plume models

log10(viscosity)
2.00

1.17 0.346 -0.481

-1.31

Constraints on internal heating

Plate tectonics and heating mode

cf. van Heck & Tackley (2008) Nakagawa et al. (2009) Yoshida (2008)

What is imaged in tomography?

 $\delta V_{\rm S} = \Delta V_{\rm S} / V_{\rm S} [\%]$

Evaluating the hotspot catalog

- 1. Azores
- 2. Balleny
- 3. Bowie
- 4. Cameroon
- 5. Canary
- 6. Cape Verde
- 7. Caroline
- 8. Cobb
- 9. Comores
- 10. Darfur
- 11. East Africa
- 12. East Australia
- Easter
- 14. Eifel
- 15. Fernando
- Galapagos
- 17. Guadelupe
- 18. Hawaii
- 19. Hoggar
- 20. Iceland
- 21. Jan Mayen
- 22. Juan Fernandez

- Circle radius scales with log(buoyancy flux) Criteria for hotspot selection – Two out of four:
 - Recent volcanism
 - Swell or topography distinct
 - Volcanic chain
 - Flood basalt

Steinberger (2000)

- 23. Kerguelen 24. Lord Howe
- 24. Loru nowe 25. Louisville
- 25. Louisville 26. Macdonald
- 26. Macdonald
- 27. Marion
- 28. Marquesas
- 29. Meteor
- 30. New England
- 31. Pitcairn
- 32. Raton
- Reunion
- 34. St. Helena
- 35. Samoa
- 36. San Felix
- 37. Socorro
- 38. Tahiti
- 39. Tasmanid
- 40. Tibesti
- 41. Trìndade
- 42. Tristan
- 43. Vema
- 44. Yellowstone

S tomographic models; 12 likely deep plumes advection vs. no advection

Boschi et al. (2008)

1.0

- Many hotspots connected to deep plumes
- Plumes rise from within the large, low velocity provinces
- Free base motion preferred, no chemical pinning
- Conduit length correlates with OIB endmember EM1

Boschi et al. (2008); Konter et al. (in prep)

0.0

Conclusions

- Some hotspots caused by deep plumes
- Correlations with tomography are statistically highly significant when conduit advection is taken into account
- Most deep plumes are on top of the Africa and South Pacific large low velocity zones
- Freely advected plume sources are preferred over fixed sources, no pinning on piles required
- Further exploration of petrological and geochemical data will help tighten plume constraints on heat flux