Subduction Zone & Slab Processes

11th International Workshop on Modeling of Mantle Convection & Lithospheric Dynamics *Braunwald, Switzerland*

Magali Billen Department of Geology U.C. Davis

Regional View of the SZ

R Billen MI. 2008. Annu. Rev. Earth Planet. Sci. 36:325–56.

- How did we get to this picture?
- What are we still missing?

More Questions than Answers

- Some slabs appear to subduct into the deep lower mantle, while others get stuck in the transition zone and mid-mantle: why is it that, so far, only physical models with an unrealistically large clapeyron slope for the 660-km phase change and weak slabs can trap slabs in the mid-mantle?
- Rheological constraints predict that slabs should deform plastically at high effective viscosities: why are physical models with weak or moderately-strong slabs successful?
- Geological observations of surface deformation call for long-term coupling between overriding and subducting plates: why are models without an overriding plate successful?
- Rheological and seismological constraints predict that the upper mantle deforms by dislocation creep (non-Newtonian rheology): why are Newtonian models of slab dynamics successful?
- Tomographic images of slabs in the deep mantle imply significant thickening of slabs (5-10 x): why are most physically-modelled slabs so thin 1.5-2.0 x)?

Why so many Questions?

TONGA

NEW HEBRIDES

We know something is missing, but we still match observations.

The Dynamical System Thermo-Mineralogical-Chemical mechanical Petrological Transport time **Driving Forces Resisting Forces Spatial &** Temporal Variations Density Rheology

• Non-linear interactions & dynamic feed-backs.

Outline

- Historical Perspective
 - Pre-Plate Tectonics
 - Since Plate Tectonics
 - An *Unprecendented* Time for Subduction Models
- The Dynamical System
 - Thermo-mechanical: driving & resisting forces.
 - Mineralogical-petrological: linking to fluids.
 - Chemical Transport the importance of time.
- Conclusions
 - Transforming a kinematic theory of plate tectonics to a dynamic theory.

Pre - Plate Tectonics

• Subduction into the mantle was one of the last pieces of the plate tectonics puzzle.

Plate Tectonics: in the SZ

- Early analytic models capture major processes.
 - Force balance on slab.
 - Slab thermal structure.

Kinematic Slab - Dynamic Wedge

1970s

1980s

1990s → 2000s

- Slab & mantle wedge thermal/min./pet. structure.
- Fluid transport
- Seismic anisotropy.

Arc curvature, slab dip, subduction velocity.

- Tovish & Schubert, 1978

1970s

- Hager 1984 **1980s**

Geoid & dynamic topo. - Hager 1984

1990s → 2000s

- e.g., DeMets, 1990

Plate tectonic reconsts.

Connecting kinematics to dynamics.

Instantaneous (quasi) Dynamic

185°

Stress-state in slab - Vassiliou, 1984

1980s

180

2D, Overriding plate root geometry & slab suction

- Driscoll et al., 2009

3D, Slab strength effect toroidal & poloidal flow - Piromallo et al., 2006

3D, Temp-dep, low viscosity wedge - Billen & Gurnis, 2001

2000s

- Rheologic Structure:
 - mantle, slab, plate boundaries, wedge, crust...

1990s

U.

175°

- Surface deformation:
 - topography, geoid, stress-state.

Fully Dynamic (t-dependent)

2D, Temp-dep, - Gurnis & Hager 1988

2D, Phase trans. (mech) - Christensen & Yuen, 1984

1980s

2D, Subduction initiation - Toth & Gurnis, 1998

2D, Trench migration

- Olbertz et al., 1997
- Griffiths et al., 1995

2D, Phase trans. (T-dep. viscosity) - King, 1991

- 2D, wedge rheology - Arcay et al., 2008
- 3D, Slab width effects - Stegman, 2006
- 2D, Slab detachment - Gerva & Yuen, 2004
- 3D, Trench migration - Funiciello et al., 2003
- 2D, Comp., grain-sizedep. slab visc - Cizkova et al., 2002

2D, Oceanic plateaus - van Hunen et al 2000

2000s

Buoyancy forces: phase transition, slab, crust...

1990s

- Rheologic structure: mantle, slab, wedge...
- Geometry: 2-D, 3-D, slab edges, interactions...

Fully Dynamic (t-dependent)

2D, Temp-dep, - Gurnis & Hager 1988

2D, Phase trans. (mech) - Christensen & Yuen, 1984

1980s

2D, Trench migration - Olbertz et al., 1997

- Griffiths et al., 1995

2D, Phase trans. (T-dep. viscosity) - King, 1991 3D, Slab-edge flow & slab depth
Honda, 2009
2D, Slab Buckling LM.
Behounkova & Cizkova 2008
2D, Double-slab sub.
Mishin et al., 2008
2D, 1-sided subduction
Gerya et al., 2008
2D, Flat slabs & LVC
Manea & Gurnis, 2007
2D, wedge rheology
2D, subgration
German at an and a subduction
German at a subduction
German

2000s

• Buoyancy forces: phase transition, slab, crust...

1990s

- Rheologic structure: mantle, slab, wedge...
- Geometry: 2-D, 3-D, slab edges, interactions...

Fully Dynamic (t-dependent)

2D, Temp-dep, - Gurnis & Hager 1988

2D, Phase trans. (mech) - Christensen & Yuen, 1984

1980s

2D, Meta-stable olivine, - Schmeling, 1999

2D, Subduction initiation - Toth & Gurnis, 1998

2D, Trench migration

- Olbertz et al., 1997 - Griffiths et al., 1995

2D, Phase trans. (T-dep. viscosity) - King, 1991 2D, Compressibility - Lee & King, 2009

2D, Ridge-trench int. - Burkett & Andrews, 2009

2D, Coupled/uncoupled continental collision

- Faccenda et al., 2009

3D. Slab-edge flow & slab depth 2D4 Srab Buckling LM. 2D5 dboublesstatk subtkova 2008 2D4 isksided subduction 2D5 dFjat slabs, & UVC - Manea & Gurnis, 2007

2D, wedge rheology 3D, Stab evidth affects 2D, Stab erachment 3D, Green of migration4 - Funciello et al., 2003 2D, Gomphic nam-size-dep. slab visc 2U, Gomphic nam-size-dep. slab visc - van Hunen et al 2000

1990s

2000s

- Buoyancy forces: phase transition, slab, crust...
- Rheologic structure: mantle, slab, wedge...
- Geometry: 2-D, 3-D, slab edges, interactions...

A Multi-variate System

- Geometrical Variables
 - 2D vs. 3D
 - Over-riding plate
 - Interaction w/ other plate boundaries.
- Mineral-/Petro-logical
 - Compositional variation
 - Density
 - Rheology

- Physical Properties
 - Rheology
 - Thermal parameters (α,κ)
 - Compressibility
- Coupled Systems
 - Solid phase changes
 - Hydration/dehydration
 - Melting

Link to Observations & Time Evolution Transform a kinematic theory to a <u>dynamic theory.</u>

An Unprecedented Time

- Access to new & more complete observations on kinematics & geometry
 - plate tectonic reconstructions, seismic observations on slab shape, seismic anisotropy constraints on flow patterns.
- Advances in numerical & analogue methods
 - CPU-speed, RAM, parallel processing, better solvers; imaging techniques, materials...
- Ability to link dynamics to observations/ data/ processes from other disciplines
 - petrology, geochemistry (origins, process/transport times), geology-structures, thermo-barometry.

Thermo-Mechanical

Conservation Equations

- Conservation of Mass:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \vec{v} = 0$$

– Conservation of Momentum:

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + (\vec{v}\cdot\nabla)\vec{v}\right) = \nabla\cdot\vec{\sigma} - g\rho\vec{z}$$

– Conservation of Energy:

$$\frac{\partial C_p T}{\partial t} + \vec{v} \cdot \nabla C_p T = \frac{1}{\rho} \nabla \cdot k \nabla T + H$$

Thermo-Mechanical

Common simplifications.

– Conservation of Mass (incompressible; $\delta \rho = 0$):

 $\nabla\cdot\vec{v}=0$

- Compressibility: minor effects in shallow mantle (Lee & King, 2009). - Boussinesq Approximation ($\delta \rho << \rho$):

$$\rho = \rho_o (1 - \alpha (T - T_o))$$

- Constituitive Equation (incompressible):

$$\sigma_{ij} = \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) - p \delta_{ij}$$

Thermo-Mechanical

- Simple Equations. Complexity comes from:
 - Geometry, material properties & variation in materials.
- Conservation of Mass (incompressible; $\delta \rho = 0$):

$$\nabla \cdot \vec{v} = 0$$

- Conservation of Momentum:

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + (\vec{v}\cdot\nabla)\vec{v}\right) = \eta\nabla^2\vec{v} - \nabla p - g\rho\vec{z}$$

– Conservation of Energy (constant C_p , κ ; H = 0):

$$\rho\left(\frac{\partial T}{\partial t} + \vec{v}\cdot\nabla T\right) = \kappa\nabla^2 T + \frac{H}{C_p}$$

A <u>Dynamic</u> Slab

Driving forces vs. resisting forces...

Material Properties: Density

- Previous, recent, models on
 - phase transitions, meta-stable olivine
 - mantle wedge dynamics
 - oceanic plateau subduction

Lack of recent models evaluating

Local density variation in 3D (linked to composition).

Laboratory experiments: large temperature, strain-rate & grain-size dependence.

• Viscous flow law (for each mechanism):

$$\eta = \left(\frac{d^p}{Ae^{(a\phi)}C_{OH}^r}\right)^{\frac{1}{n}} \dot{\epsilon}_{II}^{\frac{1-n}{n}} \exp\left[\frac{E+P_{lc}V}{nRT_t}\right]$$

where,

$$T_t = T + T_{ad}.$$

 P_{lc} is the lithostatic pressure, including a compressibility gradient.

For dislocation (ds) creep p = 0, n = 3.5. For diffusion (df) creep p = 3, n = 1.

 \bullet Dislocation (ds) & diffusion (df) creep accommodate total strain-rate:

$$\dot{\epsilon} = \dot{\epsilon}_{df} + \dot{\epsilon}_{ds} \tag{2}$$

• For deformation at constant stress, the effective viscosity is:

$$\eta_{ef} = \frac{\eta_{df} \eta_{ds}}{\eta_{df} + \eta_{ds}} \tag{3}$$

For a background upper mantle viscosity of $\eta_o = 10^{20}$ Pas (at 250 km): – Transition strain-rate ($\dot{\epsilon}_{df} = \dot{\epsilon}_{ds}$): $\dot{\epsilon}_t = 10^{-15}$ s⁻¹ for $C_{OH} = 300$ ppm-H/Si & d = 10 mm.

Dislocation creep decreases viscosity where the strain-rate is more than the transition value.

• Plastic yield stress, σ_y , limits the stress (and viscosity). If,

 $\sigma_y > \eta_{df} \dot{\epsilon}_{II}$

then,

$$\eta_y = \sigma_y / \dot{\epsilon}_{II}$$

• Composite viscosity:

 $\eta_{comp} = \min(\eta_{ef}, \eta_y)$

- Non-deforming regions remain highly viscous.
- Yielding concentrates deformation.

Rheology: Examples

- Subduction initiation
- Long term subduction
- 3D instantaneous flow
 - Margarete Jadamec (PhD 2009)
- Ridge-trench interaction
 - Erin Burkett (PhD, exp. 2010)

1.2D Subduction Initiation

Newtonian

Composity Viscosity

• Strain-rate weakening can counteract temperature-dependent strengthening.

2. 2D Long Term Subduction

2. 2D Long Term Subduction

2. 2D Long Term Subduction

- High yield stress allows slab to:
 - Better support own weight; Transfer stress along slab
 - But depends on lower mantle viscosity

3. 3D Flow at a Slab Edge

- Strain-rate weakened region provides little viscous support for upper-mantle slab.
 - Slab is steepening (transient state of UM slabs?)
 - Strong coupling between toroidal and poloidal flow.

3. 3D Flow at a Slab Edge

- Newtonian vs non-Newtonian flow:
 - Similar pattern, but stronger toroidal component.
 - Flow rate is 10-80 times faster.
 - Decouples surface plates from mantle flow (transient?)

4. Ridge-Trench Interaction

• High yield stress & non-Newtonian viscosity leads to plate-like motion of young lithosphere.

4. Ridge-Trench Interaction

• Yielding within slab leads to slab detachment before ridge subduction.

• Young plates have insufficient slab-pull to drive subduction in Newtonian mantle.

Mineralogical-Petrological

Fully-coupled mantlewedge dynamics & petrology

- Baker-Hebert et al., 2009

Fluid transport, melting

- Cagniocle et al., 2007

Composite crust-mantle density & rheology in wedge

- Gerya & Yuen, 2003

Min./pet. implications

- Davies & Stevenson, 1992

1990s → 2000s

 Need coupled solid & fluid flow, density & rheology, detailed tracking of composition & phase.

Coupled Solid-Fluid-Min.

- Composition evolves including fluid & melt content.
 Affects density (T, X) & rheology.
- Fluids move according to Darcy flow

– Limits region of water effect on rheology.

- Expect compositional variation in the transition zone due to shallow mantle processes.
 - Density variations (Fe content, major ele. depletion)
 - Rheological variations (OH, grain growth & pinning)

Mid-mantle Seismic Reflectors

- Slab region: Shallow & deep 410 km (?), 520- km reflector, paired 660-km reflectors
- Non-slab region: Hint of structure on 520-km reflector, 410 & 660 are confusing?

Mineralogical-Petrological

Laboratory data & dynamical models

 Can see non-olivine component in slabs

Mineralogical-Petrological

- Other variations can be interpreted in terms of surface tectonics & shallow mantle processes.
 - Fertile upwelling (return flow from subduction)
 - Depleted downwelling below back-arc spreading.

The Dynamical System

Chemistry Transport

b Along-Arc Flow Wedge corner A B A A A

- Fast Rates:
 - > 16 cm of trenchparallel flow
 - 2 x as fast as sub. plate rate.
 - Implies even faster poloidal flow.
 - Decoupling of surface plate & mantle flow.
- Constraint on solid flow velocity
 - Constraint on magnitude of viscosity.

- 3D model of Alaska (non-Newtonian) leads to decoupling & fast mantle flow rates, but...
 - Don't get strong component of along-strike flow (different geometry?)

- Modeling of subduction dynamics is benefiting from,
 - Access to new & more complete observations.
 - Advances in numerical & analogue methods.
 - *Ability* to link dynamics to other disciplines.
- New models are beginning to show how multiprocesses are linked.
- New results will challenge our standard view of mantle-plate coupling (flow patterns, flow rates).

Using multiple observations to understand dynamics is key to determining what processes are important for a dynamic theory of plate tectonics.