Surface-wave tomography: Europe

Lapo Boschi ETH Zürich (with Bill Fry)

Tomography results are non-unique

over-regularized

under-regularized

Tomography results are non-unique

Correlation between two Vs models, as a function of depth and harmonic degree

ngrand vs. s20rts, $\langle r_{20} \rangle = 0.66$, $\langle r_8 \rangle = 0.78$

Becker and Boschi, 2002-present

surface-wave tomography

surface-wave tomography

surface-wave tomography

Ekström & Dziewonski, 1998

Vsv at 150 km: Anisotropic models from Harvard database

Vsv at 150 km: Anisotropic models from Harvard database

Vsv at 150 km: Anisotropic models from Harvard database

improvement in database

₽

180.

checkerboard test (SV)

checkerboard test (SH)

new model, global view

new model, global view

new model, continental-scale view

Voigt

Comparison with body-wave tomography

Piromallo & Morelli 2005

Sensitivity kernels (Fréchet derivatives, partial derivatives, banana-doughnuts...)

We assume a function K exists such that phase anomaly is linearly related to phase velocity perturbations:

 $\frac{\delta \phi}{\phi} = \int_{\Omega} K(\theta, \varphi) \frac{\delta v}{v}(\theta, \varphi) d\Omega$

Phase velocity perturbations (unknown):

$$rac{\delta\phi}{\phi} = \int_{\Omega} K(heta, arphi) rac{\delta v}{v}(heta, arphi) d\Omega$$

Sensitivity kernel (can be calculated):

$$\frac{\delta\phi}{\phi} = \int_{\Omega} K(\theta,\varphi) \frac{\delta v}{v} (\theta,\varphi) d\Omega$$

Peter, Tape, Boschi, Woodhouse, 2007

Sensitivity kernels: how they look like

Love waves, 150 s period. Source and receiver on the equator, 90° apart. Reference model is PREM.

"benchmark" test: long spatial wavelength anomalies

maps-2percentL9M5/L0150.jwkb.3.lsgr-0.-10.0

L 9 - M 5 checkerboard

maps-2percentL9M5/L0150.born.3.lsqr-0.-10.0

Peter, Boschi & Woodhouse, 2008

"benchmark" test: shorter spatial wavelength anomalies

L 13 - M 7 checkerboard

maps-2percentL13M7/L0150.jwkb.3.lsqr-0.-10.0

maps-2percentL13M7/L0150.born.3.lsqr-0.-10.0

2

Peter, Boschi & Woodhouse, 2008

Ray and adjoint-method modeling of European upper mantle SV velocity

Peter, Fry, Boschi, Deschamps, Ekström, Giardini 2008

RAY

<u>RI50</u>

RYTOV

model complexity

European tomography: state of the art

BEK04, SV, 150 km

hmid et al.: 2008, 150 km

eter et al., 2008, 150 km

-5

SV: 150 km

this study, SV, 100 km

this study

this study, SV, 300 km

this study, SV.

-5

-2 % w/r/t PREM

% w/r/t PREM

O

-5

10

-10

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -10 km/s

% w/r/t PREM

10

-10

% w/r/t PREM

10

Rayleigh 75s and thermal thickness of lithosphere

identifying temperature and density distributions

150 km depth

collaboration with F. Cammarano

contribution from ambient noise data

contribution from body-wave data

Amaru, Kissling and others 2008

contribution from surface-wave overtone data

collaboration with J. Trampert

Thank you

additional slides

ray and adjoint-method modeling of European upper mantle SV velocity

Peter, Fry, Boschi, Deschamps, Ekström, Giardini 2008

Correlation between two Vs models, as a function of depth and harmonic degree

ngrand vs. s20rts, $\langle r_{20} \rangle = 0.66$, $\langle r_8 \rangle = 0.78$

Becker and Boschi, 2002-present

Next Up Previous

Next: 6. Summary of average Up: Becker & Boschi: Comparison Previous: 4. Radial correlation

5. Cross-model correlation plot matrix

The following matrix makes all combinations of cross-model correlation plots available. Click on the icons to bring up the corresponding correlation plot.

	pmean	nwe97p	KHUUP	bup 20	bupoo	0010110	smean	granu	ngranu	520115	Saw24010	5010110	504110	<u>820a</u>	<u>\$50201</u>	<u>r um</u>	<u>11190u</u>	stbood
<u>pmean</u>	-																	
<u>hwe97p</u>	<u>plot</u>	- 1				6 1		1	ä 🎆 -		- <mark>1</mark> .	ā 🚺			1			
<u>kh00p</u>	<u>plot</u>	<u>plot</u>		-									- 1					
<u>bdp98</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>															
<u>bdp00</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	-							ê 🚺	- 100		-75	-		
<u>pb10118</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>													10
<u>smean</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	- 1									1.00		
grand	<u>plot</u>	<u>plot</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	-			- 1					PROFILE		
<u>ngrand</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	plot	<u>plot</u>	<u>plot</u>	plot	-		1							
s20rts	<u>plot</u>	-																
saw24b16	<u>plot</u>	<u>plot</u>	plot	<u>plot</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	-	ē 🚺						
<u>sb10l18</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	-					- 100	
<u>sb4l18</u>	plot	<u>plot</u>	<u>plot</u>	-			10000											
<u>s20a</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	-		Karm											
<u>s362d1</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	plot	<u>plot</u>				
<u>rum</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	plot	-	-	•										
<u>lrr98d</u>	<u>plot</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	plot	<u>plot</u>	<u>plot</u>	plot	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	<u>plot</u>	plot	<u>plot</u>	1-1	
stb00d	plot	plot	plot	plot	plot	plot	plot	-										

(C) Thorsten Becker, Harvard Geodynamics, Cambridge MA, USA, 2002-01-14

Becker and Boschi, 2002-present

contribution from surface-wave overtone data

collaboration with J. Trampert

Radial coherence of tomographic images

RYTOV

8

2.5

2.5

LI 50

RYTOV

Ray and adjoint-method modeling of European upper mantle SV velocity

Peter, Fry, Boschi, Deschamps, Ekström, Giardini 2008

Vp, Vsv at 150 km depth

Lithospheric thickness?

comparison w/ work of Perez, Artemieva

checkerboard test (SV)

isolines represent crustal thickness (crustal model: EuCRUST-07, Tesauro, 2008) correlation with crustal properties

0.2 normalized image roughness

normalized image roughness

checkerboard test

-0.500

contribution from ambient noise data

Tomography of the Alpine Region from Observations of Seismic Ambient Noise

Figure 1. Map showing the location of broadband recorders used for this study.

Stehly, Fry, Campillo, Shapiro, Boschi, Giardini 2009