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Unstructured FEM 



What method to use? 

Finite Difference Method 

Finite Element Method 

Finite Volume Method 

Spectral Method 

Meshfree Method 

Boundary Element Method 



Complex geometry – natural examples 

CT scan of 
migmatitic garnet 
amphibolite by 
Micheal Brown 

Inclusions in Sandane shear zone (Norway) 

Photo: Stefan Schmalholz 



Complex geometry – mesh generation 

Triangle by JR Shewchuk  T3D by D Rypl  

2D  3D  



Unstructured finite element method (FEM) 
Approximation space 

Is it easy? YES!  

Derivatives 

Mapping 

Weighted residual method 

Integration by parts 



Unstructured FEM – matrix computation 

for iel = 1:nel
ECOORD_X = GCOORD(:,ELEM2NODE(:,iel)); 
ED = D(Phases(iel)); 
K_elem(:) = 0; 
for ip=1:nip 

dNdui = dNdu{ip};
J = ECOORD_X*dNdui; 
detJ = det(J); 
invJ = inv(J); 
dNdX = dNdui*invJ; 
K_elem = K_elem +  IP_w(ip)*detJ*ED*(dNdX*dNdX');

end 
K_all(:,iel) = K_elem(:); 

end 



Large deformation – unstructured FEM 

Particles settling under gravity Rigid inclusions in simple shear 



Adaptive unstructured FEM  

Layers Anisotropic host 



Adaptive unstructured FEM - accuracy 

mesh adaptation:  
a posteriori error analysis 
& anisotropy structure 



Complexity on geodynamic scale 

Gerya et al., Lithos, 2008 

Deubelbeiss & Kaus, PEPI, 2008 

What about the accuracy? 
Could unstructured FEM method become a standard 
numerical tool for 2D and 3D geodynamic simulations? 



Unstructured FEM delivers accurate results 
Matrix computation can be efficient in 2D & 3D  



Direct solvers 



Gaussian elimination 

Carl Friedrich Gauss 

Sergei Medvedev performing Gaussian elimination at PGP 

  0 sec 



Gaussian elimination 

 35 sec 

Carl Friedrich Gauss 

Sergei Medvedev performing Gaussian elimination at PGP 



Gaussian elimination 

 68 sec 

Carl Friedrich Gauss 

Sergei Medvedev performing Gaussian elimination at PGP 



Gaussian elimination 

135 sec 

Carl Friedrich Gauss 

Sergei Medvedev performing Gaussian elimination at PGP 



Gaussian elimination 

200 sec 

Carl Friedrich Gauss 

Sergei Medvedev performing Gaussian elimination at PGP 



Gaussian elimination 

250 sec 

Carl Friedrich Gauss 

Sergei Medvedev performing Gaussian elimination at PGP 



Gaussian elimination 

310 sec 

Carl Friedrich Gauss 

Sergei Medvedev performing Gaussian elimination at PGP 



Dense matrix format 

Storage 

Operation count  

Efficiency     ~4 GFlops/CPU 
   (~0.1   Flops/Sergei) 

Direct solvers 

100 Mdofs: PBytes storage 
     10^15 s ~ 100 Ma 



Sparse  matrix storage 

Sparse matrix format 

Matrix format  Ti, Tj, Tx 
         (Ai, Aj, Ax) 

Matrix storage 

100 Mdofs(3D):  50 GB 

  1 Mdofs(2D): 100 MB 

IRREGULAR 
STRUCTURE 



Sparse direct solvers 

Cholesky factorization (U=L’) 

•  Positive definite systems (thermal, elastic, bc!) 

•  Symbolic factorization (fill-in, op count) 

•  Reordering A(perm,perm) 

•  Factor storage (super-linear) 

•  3D: nnz_L ~ nnod^1.4 (40GB@1Mnod) 
•  2D: nnz_L ~ nnod^1.1 (1.3GB@1Mnod)  

Fill-in reducing reordering LU decomposition 



Operation count: scaling in 2D and 3D 

1.8 M nodes - 11216 sec [3h] 
    13 GFlops 

Scaling 
2D: op_count ~ nnod^1.5 
3D: op_count ~ nnod^2 

Efficiency  
BLAS3  -  2 GFlops/CPU 
Parallelization  - difficult 

1 min 

1 Mnod 



Sparse direct solvers are great ... 
  for positive definite problems in 2D 



The Stokes problem 



Incompressible Stokes problem 

Sir George Gabriel Stokes  

... and after FEM discretization 



Indefinite systems – direct solvers 

Discrete Stokes equations – indefinite! 

Possible solvers: 
1) unsymmetric sparse direct solvers 
2) restore positive-definiteness 
3) minres, gmres 



Penalty method 
Penalty method 

Velocity Schur complement 

Eliminate pressure ... 

Linear velocity 
Constant pressure 

Inclusion benchmark in 2D 

positive-definite system 



Mixed FEM 

mixed u/p formulation: Crouzeix-Raviart 7-node triangle 



Pressure Schur complement 

Eliminate velocity dofs 

Pressure Schur complement S (positive-definite) 

Matrix S cannot be formed explicitly (prohibitively costly) 

Augmented Lagrangian 



MILlion A MINute (MILAMIN) 

Richardson iterations 

Dabrowski, M., M. Krotkiewski, and D. W. Schmid (2008), MILAMIN: MATLAB-based finite 
element method solver for large problems, G^3., 9 

Implementation 

Iteration scheme 



Stokes problem in 2D – no headaches and no tears 



Non-linear iterations 



Elasto-plastic benchmark – Galin’s solution 

Yarushina V.M., Dabrowski M., Podladchikov Y.Y., An analytical benchmark with combined 
pressure and shear loading for elastoplastic numerical models. (to be submitted) 



Results 

Second invariant of deviatoric stress 

Galin’s solution 
Numerical  



Picard vs Newton-Raphson 

Picard: 100 iterations N-R: 7 iterations 



Picard vs Newton-Raphson 



Picard vs Newton-Raphson 



Newton-Raphson iterations rock 



Iterative solvers 



Iterative solvers 

Successive approximations to the solution rather than one-shot direct approach 

minimization over the chain of subspaces: n=1,..,m<ndofs 

Krylov Space 

This space is intimately tied 
to the inverse of the matrix. 

Lanczos Algorithm 

Short recurrence to generate  
a sequence of orthogonal vectors 
in Krylov spaces for symmetric A 

The Conjugate Gradient method The Minimum Residual method 



Sparse matrix – vector multiplication 

  Sparse Matrix – Vector multiplication 
    - low FLOP to byte ratio 
    - memory bounded algorithm 

M. Krotkiewski and M. Dabrowski, Massively parallel unstructured sparse matrix - vector 
product for multi-core CPUs, Parallel Computing, submitted 

  Unstructured mesh             Irregular sparse pattern of A 



SpMV– optimizing memory bandwidth 
•  cache hit ratio (Reverse Cuthill-McKee renumbering) 
•  decrease storage overhead (blocking and symmetric storage)  
•  improved memory bandwidth (prefetching, interleaved sparse storage) 



Sequential and parallel performence 

30% of peak performance  

ParMETIS – graph partitioning 
No hybrid programming 

No explicit overlapping of computation and communication 
Parallel costs are mostly affected by the per-core work imbalances 



Parallel SpMV 

ACHIEVEMENTS  
•  5 TeraFLOPs (~20% of peak performance) 
•  Scalable up to 5400 CPUs of Cray XT4 (entire cluster) 
•  800 million unknowns, 500 million elements 

BRUTE FORCE ITERATIVE METHODS  
Light preconditioners 
100 million dofs – 1 iteration – 1000 CPUs – 0.03s (15-node tetrahedra) 

MATRIX-FREE (element matrices only)  
Avoiding memory bandwidth problems 
More operations (up to 12x) 
Cost of redundant computations may not be hidden 
Existing implementations (~20% of peak performance) 



SpMV for unstructured FEM can be very efficient  



Solvers – 3D benchmark 



Ellipsoidal inclusion benchmark 

Ellipsoidal inclusion - constant flux 

Ellipsoidal inclusion 



Ellipsoidal inclusion benchmark 

Ellipsoidal inclusion - constant flux 

Ellipsoidal inclusion 



Analytical results vs direct solver 

Flux Flux error 

0.5 Mnodes, a/h = 0.03  Cholesky: 10^12 operations 
1 CPU – 10 min 



Condition number 

Relative error 

Condition number 

Cholesky factorization 



PCG – relative residual 

Storage 
~ndofs 

Operation count 
nnzA ~ 8 x ndofs 
4 million x 2 operations x 1000 it 
8 G operations 

10 sec 
Cholesky: 1 T operations (10 min) 

Condition number 
Increase in number of iterations 

Stopping criteria 
Rounding-off errors 



When to stop? 
Single inclusion Many inclusions 



Rounding-off errors 

Lanczos method 



Seven Deadly Sins of Numerical Computing  

•  Algorithmic Idolatry 

•  Using an Inappropriate Model 

•  Temptation From Ill-Conditioning 

•  Ruination by Rounding 

•  Numerical Philistinism 

•  Central Differencing Singular Perturbations 

•  Uncritical Use of Non-orthogonal Mappings  

by BJ McCartin PRECONDITIONERS 
improve spectral properties 

increased convergence rate 
less iterations - less rounding 

stopping criteria, error 



Iterative solvers are necessary in 3D 
Don’t get tempted from ill-conditioning!  



Applications in 3D 



3D Folding 

Evolution of large amplitude 3D fold patterns: a FEM study, Schmid, D. W.; Dabrowski, M.; Krotkiewski, M.;  
Physics of the Earth and Planetary Interiors, Volume 171, Issue 1-4, p. 400-408. 

30 million dofs 
2 million elements 
512 CPUs 
500s / time step 
MINRES solver 



3D Folding 

Top-view 
Color-coded elevation 
Viscosity ratio 200 
Constriction (up to 40%) 



Folding – pure shear vs superposition 
Superposed Constriction 



Porous convection 

150 million elements 

1 time step on 1024 CPUs ~10s 

Data size ~5GB / time step 

Iso-surface of temperature 

2D cut through the domain 



3D Porous convection - patterns 

Ra=100 Ra=200 Ra=1000 



Thank you! 


