The dynamics of magma in a convecting mantle (a biased survey)

Richard F. Katz

Department of Earth Sciences, University of Oxford with M. Spiegelman, P. Kelemen, B. Holtzman, C. Manning, M.G. Worster

Range of length-scales for mantle dynamics

Gerald Schubert Donald L. Turcotte Peter Olson

Range of length-scales for mantle dynamics

Planetary scale Very long!

Mantle Convection in the Earth and Planets

Gerald Schubert Donald L. Turcotte Peter Olson

Range of length-scales for mantle dynamics

Planetary scale Very long!

Mantle Convection in the Earth and Planets

Gerald Schubert Donald L. Turcotte Peter Olson

Grain scale ~I-10 mm

Seismic tomography of plate boundaries

Seismic tomography of plate boundaries

Bathymetric asymmetry at mid-ocean ridges

Carbotte, Small & Donnelly, Nature 2004

Bathymetric asymmetry at mid-ocean ridges

Depth (m)

Bathymetric asymmetry at mid-ocean ridges

Depth (m)

Distribution of volcanoes in subduction zones

MORB geochemistry: trace elements

Melt inclusions

Whole rocks

MORB geochemistry: trace elements

MORB geochemistry: isotopes

Elliott & Spiegelman, Treatise on Geochemistry 2003

MORB geochemistry: isotopes

Elliott & Spiegelman, Treatise on Geochemistry 2003

MORB geochemistry: isotopes

Geology of ophiolites

Harzburgite (OPX + Olivine)

meters

50

Dunite (Olivine)

Oman ophiolite

Braun & Kelemen, G-cubed 2002

A continuum approach to magma dynamics

Mantle convection [Stokes eqn]

Magmatic flow [Darcy's law]

Phase transitions [Multi-component thermodynamics]

A continuum approach to magma dynamics

Mantle convection [Stokes eqn]

3

2

Magmatic flow [Darcy's law] Phase transitions [Multi-component thermodynamics]

An introduction to magma dynamics

I. Mechanics

- I.I. Conservation equations
- I.2. Solitary waves & the compaction length
- I.3. Shear-band instabilities
- 2. Thermochemistry
 - 2.1. Conservation equations
 - 2.2. ID, one-component upwelling columns
 - 2.3. Reactive infiltration instability
- 3. Putting it together: tectonic-scale models
 3.1. Problems and solutions
 3.2 Molt focusing at mid ocean ridges
 - 3.2. Melt focusing at mid-ocean ridges
 - 3.3. Active convection at mid-ocean ridges

- D.P. McKenzie, J. Petrology 1984
- A. Fowler, Geophys. Astrophys. Fluid Dyn. 1985
- D.R. Scott & D.J. Stevenson, GRL 1986
- D. Bercovici, Y. Ricard & G. Schubert, JGR 2001
- etc

- D.P. McKenzie, J. Petrology 1984
- A. Fowler, Geophys. Astrophys. Fluid Dyn. 1985
- D.R. Scott & D.J. Stevenson, GRL 1986
- D. Bercovici, Y. Ricard & G. Schubert, JGR 2001

• etc

- D.P. McKenzie, J. Petrology 1984
- A. Fowler, Geophys. Astrophys. Fluid Dyn. 1985
- D.R. Scott & D.J. Stevenson, GRL 1986
- D. Bercovici, Y. Ricard & G. Schubert, JGR 2001

$$\begin{aligned} \frac{\partial \phi}{\partial t} + \nabla \cdot \phi \mathbf{v}_f &= \frac{\Gamma}{\rho_f} \\ \frac{\partial (1 - \phi)}{\partial t} + \nabla \cdot (1 - \phi) \mathbf{v}_m &= -\frac{\Gamma}{\rho_m} \end{aligned}$$

$$\begin{aligned} \frac{\partial \phi}{\partial t} + \nabla \cdot \phi \mathbf{v}_f &= \frac{\Gamma}{\rho_f} \\ \frac{\partial (1 - \phi)}{\partial t} + \nabla \cdot (1 - \phi) \mathbf{v}_m &= -\frac{\Gamma}{\rho_m} \end{aligned}$$

$$\phi(\mathbf{v}_{f} - \mathbf{v}_{m}) = -\frac{K}{\mu} \left[\nabla P_{f} - \rho_{f} \mathbf{g} \right]$$

$$\mathbf{\nabla} P_{f} = \mathbf{\nabla} \cdot \left[\eta (\mathbf{\nabla} \mathbf{v}_{m} + \mathbf{\nabla} \mathbf{v}_{m}^{T}) \right] + \mathbf{\nabla} (\zeta - 2\eta/3) \mathbf{\nabla} \cdot \mathbf{v}_{m} + \overline{\rho} \mathbf{g}$$

$$\frac{\partial \phi}{\partial t} + \nabla \cdot \phi \nabla f = \frac{\Gamma}{\rho_f}$$
Conservation
of mass

$$\frac{\partial (1-\phi)}{\partial t} + \nabla \cdot (1-\phi) \nabla f = -\frac{\Gamma}{\rho_m}$$

$$\phi(\mathbf{v}_f - \mathbf{v}_m) = -\frac{K}{\mu} \left[\nabla P_f - \rho_f \mathbf{g} \right]$$

$$\nabla P_f = \nabla \cdot \left[\eta (\nabla \mathbf{v}_m + \nabla \mathbf{v}_m^T) \right] + \nabla (\zeta - 2\eta/3) \nabla \cdot \mathbf{v}_m + \overline{\rho} \mathbf{g}$$

$$\frac{\partial \phi}{\partial t} + \nabla \cdot \phi \mathbf{v}_{f} = \frac{\Gamma}{\rho_{f}}$$

$$\frac{\partial (1 - \phi)}{\partial t} + \nabla \cdot (1 - \phi) \mathbf{v}_{m} = -\frac{\Gamma}{\rho_{m}}$$

$$\phi(\mathbf{v}_{f} - \mathbf{v}_{m}) = -\frac{K}{\rho_{f}} [\nabla P_{f} - \rho_{f} \mathbf{g}]$$
Conservation of momentum

of momentum

$$\boldsymbol{\nabla} P_f = \boldsymbol{\nabla} \cdot \left[\eta (\boldsymbol{\nabla} \mathbf{v}_m + \boldsymbol{\nabla} \mathbf{v}_m^T) \right] + \boldsymbol{\nabla} (\zeta - 2\eta/3) \boldsymbol{\nabla} \cdot \mathbf{v}_m + \overline{\rho} \mathbf{g}$$

$$\frac{\partial \phi}{\partial t} + \nabla \cdot \phi \mathbf{v}_f = \frac{\Gamma}{\rho_f}$$
Conservation
of mass

$$\frac{\partial (1-\phi)}{\partial t} + \nabla \cdot (1-\phi) \mathbf{v}_m = -\frac{\Gamma}{\rho_m}$$

$$\phi(\mathbf{v}_{f} - \mathbf{v}_{m}) = -\frac{\widetilde{K}}{\mu} [\nabla P_{f} - \rho_{f} \mathbf{g}]$$

$$\mathbf{\nabla} P_{f} = \nabla \cdot [\eta \nabla \mathbf{v}_{m} + \nabla \mathbf{v}_{m}^{T}] + \nabla (\zeta + 2\eta/3) \nabla \cdot \mathbf{v}_{m} + \overline{\rho} \mathbf{g}$$

$$\begin{aligned} \frac{\partial \phi}{\partial t} + \nabla \cdot \phi \mathbf{v}_f &= \frac{\Gamma}{\rho_f} \\ \frac{\partial (1 - \phi)}{\partial t} + \nabla \cdot (1 - \phi) \mathbf{v}_m &= -\frac{\Gamma}{\rho_m} \end{aligned}$$

$$\phi(\mathbf{v}_{f} - \mathbf{v}_{m}) = -\frac{K}{\mu} \left[\nabla P_{f} - \rho_{f} \mathbf{g} \right]$$

$$\mathbf{\nabla} P_{f} = \nabla \cdot \left[\eta (\nabla \mathbf{v}_{m} + \nabla \mathbf{v}_{m}^{T}) \right] + \nabla (\zeta - 2\eta/3) \nabla \cdot \mathbf{v}_{m} + \overline{\rho} \mathbf{g}$$

1.1 Mechanics: compaction & viscosity

Matrix stress (McKenzie '84):

$$\sigma_{ij}^m = -P_f \delta_{ij} + \zeta \delta_{ij} \frac{\partial v_k^m}{\partial x_k} + \eta \left(\frac{\partial v_i^m}{\partial x_j} + \frac{\partial v_j^m}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial v_k^m}{\partial x_k} \right),$$

Matrix dynamic pressure:

$$P_m = -\frac{1}{3} \operatorname{Tr}(\sigma_{ij}^m) = P_f - \zeta \frac{\partial v_k^m}{\partial x_k}$$

Rearrange to give:

$$\left(\begin{array}{c} P_f - P_m = \zeta oldsymbol{
abla} \cdot oldsymbol{v}_m \end{array}
ight)$$
 see also:
Bercovici & Ricard *GJI* '03

1.1 Mechanics: compaction & viscosity

Matrix stress (McKenzie '84):

$$\sigma_{ij}^m = -P_f \delta_{ij} + \zeta \delta_{ij} \frac{\partial v_k^m}{\partial x_k} + \eta \left(\frac{\partial v_i^m}{\partial x_j} + \frac{\partial v_j^m}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial v_k^m}{\partial x_k} \right),$$

Matrix dynamic pressure:

$$P_m = -\frac{1}{3} \operatorname{Tr}(\sigma_{ij}^m) = P_f - \zeta \frac{\partial v_k^m}{\partial x_k}$$

Rearrange to give:

$$\left(\begin{array}{c} P_f - P_m = \zeta {f
abla} \cdot {f v}_m \end{array}
ight)$$
 see also:
Bercovici & Ricard *GJI* '03

Viscosities:

$$\eta = \eta_0 \exp\left(\frac{E^*}{RT}\right) \exp(-\alpha\phi) \qquad (\text{e.g. Karato \& Wu '93)}$$

$$\zeta = \zeta_0 \exp\left(\frac{E^*}{RT}\right) \phi^{-1} \qquad (\text{Batchelor '67, Šrámek et al '07,} Hewitt & Fowler '08, Simpson '08)}$$

Solitary waves

 $K = K_0 \phi^n$ (permeability law)

non-dimensional, ID, no melting, ϕ_0 is background porosity

$$\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial z} (1 - \phi_0 \phi) W \quad \text{(mass)}$$

$$\frac{\partial^2 W}{\partial z^2} - \frac{W}{\phi^n} - \frac{1 - \phi_0 \phi}{1 - \phi_0} = 0 \quad \text{(momentum)}$$
or, assuming: $\phi_0 \ll 1, \quad n = 3$

$$\phi_t = [\phi^3(\phi_{zt} - 1)]_z \qquad \begin{array}{l} \text{(non-linear wave} \\ \text{equation)} \end{array}$$

e.g. Barcilon & Richter, JFM 1986

1.2

Solitary waves

 $K = K_0 \phi^n$ (permeability law)

non-dimensional, ID, no melting, ϕ_0 is background porosity

$$\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial z} (1 - \phi_0 \phi) W \qquad \text{(mass)}$$
$$\frac{\partial^2 W}{\partial z^2} - \frac{W}{\phi^n} - \frac{1 - \phi_0 \phi}{1 - \phi_0} = 0 \qquad \text{(momentum)}$$

or, assuming: $\phi_0 \ll 1$, n = 3 $\phi_t = [\phi^3(\phi_{zt} - 1)]_z$ (non-linear wave equation)

e.g. Barcilon & Richter, JFM 1986

1.2

1.2

Solitary waves

 $K = K_0 \phi^n$ (permeability law)

non-dimensional, ID, no melting, ϕ_0 is background porosity

 $\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial z} (1 - \phi_0 \phi) W \qquad \text{(mass)}$ $\frac{\partial^2 W}{\partial z^2} - \frac{W}{\phi^n} - \frac{1 - \phi_0 \phi}{1 - \phi_0} = 0 \qquad \text{(momentum)}$

or, assuming: $\phi_0 \ll 1$, n = 3 $\phi_t = [\phi^3(\phi_{zt} - 1)]_z$ (non-linear wave equation)

e.g. Barcilon & Richter, JFM 1986

Solitary waves in 3D

The compaction length

e.g. Spiegelman, JFM 1993b

1.2

Shear/porosity bands

1.3

Laboratory experiment by Holtzman et. al., G-cubed 2003

Olivine + chromite (4:1) + 4 vol% MQRB, const. strain rate, $\gamma = 3.4$

Shear/porosity bands

1.3

Stevenson, *GRL* '89; Spiegelman, *G*^3 '03; Katz et al, *Nature* '07 [& others]

Linear stability analysis

Shear/porosity bands

1.3

Stevenson, *GRL* '89; Spiegelman, *G*^3 '03; Katz et al, *Nature* '07 [& others]

1.3 Shear/porosity bands Full numerical solution $n = 6, \ \gamma = 2.8$ porosity $O(\delta)$ 0.055 0.01 0.10 perturbation vorticity -3.03.0 0.0

Shear/porosity bands

1.3

1.3 Shear/porosity bands with buoyancy

S.L. Butler, PEPI 2009

Shear/porosity bands

Melt-pocket alignment & anisotropic viscosity:

- Takei & Holtzman I, II, & III, JGR '09 (in press)
- Hier-Majumder, JGR '09 (in review)

1.3

Homogenization for viscosity tensor based on grain contiguity

Shear/porosity bands

Melt-pocket alignment & anisotropic viscosity:

- Takei & Holtzman I, II, & III, JGR '09 (in press)
- Hier-Majumder, JGR '09 (in review)

1.3

Mechanics - Summary

- Solitary waves serve as a benchmark for numerical codes.
- Role of solitary waves in the mantle?
- Shear/porosity banding in lab experiments = direct observations of magma dynamics.
- Role of shear/porosity banding in the mantle?

Mechanics - Summary

- Solitary waves serve as a benchmark for numerical codes.
- Role of solitary waves in the mantle?
- Shear/porosity banding in lab experiments = direct observations of magma dynamics.
- Role of shear/porosity banding in the mantle?

To model melting and solidification we need to consider the thermodynamics of the magma/mantle system!

2.1 Thermochemistry: conservation eqns

2.1 Thermochemistry: conservation eqns

$$\begin{array}{ll} \mbox{(e.g. McKenzie '84, Šrámek et al '07, Hewitt & Fowler '08)} & Conservation \\ \hline D_{\mathbf{V}_m} \\ \hline Dt \\ \hline Dt \\ \hline (1 - \phi) \rho_m e_m \end{bmatrix} + \frac{D_{\mathbf{V}_f}}{Dt} [\phi \rho_f e_f] = \mathbf{\nabla} \cdot k \mathbf{\nabla} T + \Psi \\ \hline \text{internal energy} \\ \hline diffusion \\ \hline \text{viscous} \\ \hline \text{diffusion} \\ \hline \text{diffusion} \\ \hline \text{viscous} \\ \hline \text{dissipation} \\ \end{array}$$

- ^{2.2} One-component upwelling columns
 - •Fixed mantle upwelling rate into melting zone.
 - •Only vertical segregation of melt.
 - •Conservation of mass, momentum, energy.

Hewitt & Fowler '08, (see also: Šrámek et al '07)

•Fixed mantle upwelling rate into melting zone. •Only vertical segregation of melt. •Conservation of mass, momentum, energy. 0 "Viscogravitational regime" - freezing with no -10segregation -20(km) Darcy regime" - buoyancy balances viscous drag -30 N -40"Viscogravitational regime" - melting but no segregation -500.5 2.0 1.5 1.0 W_{0} -601400 1500 1300 $T(\mathbf{K})$ Hewitt & Fowler '08, (see also: Šrámek et al '07)

One-component upwelling columns

2.2

2.3

Melting reaction: Melt + Pyroxene + Spinel » Olivine + Melt

Olivine: (Mg,Fe)SiO₂

Pyroxene: (Mg,Fe)Si₂O₆

Magmatic flow

Aharonov et al, GRL 1995; Spiegelman, JGR '01

- Ignore energy conservation.
- Ignore large-scale matrix shear.
- Disequilibrium melting

2.3

• Explicit melting rate (linear kinetics):

$$\Gamma = RA(\phi, c^s) \left[c_{eq}^f - c^f \right]$$

Aharonov et al, GRL 1995; Spiegelman, JGR '01

- Ignore energy conservation.
- Ignore large-scale matrix shear.
- Disequilibrium melting

2.3

• Explicit melting rate (linear kinetics):

$$\Gamma = RA(\phi, c^s) \left[c_{eq}^f - c^f \right]$$

Aharonov et al, GRL 1995; Spiegelman, JGR '01

Reactive infiltration instability

2.3

porosity (vol. frac.)

Reactive infiltration instability

2.3

solid conc. (wt. frac.)

Reactive infiltration instability

Aharonov et al, GRL 1995; Spiegelman, JGR '01

2.3

2.3

Chemical consequences

Hydrous reactive melting

- Reactive melting in a subduction zone above the slab?
- T-dependent rock solubility.

2.3

• Solve conservation of energy for T.

Katz et al, in prep. 2009

Thermochemistry - Summary

2

- Reactive flow produces channelized melt flux via the Reactive Infiltration Instability.
- Predictions for trace elements & U-series in MORB.
- Consequences of channelized flow in arcs?
- Embedded in large-scale mantle flow. Interaction with shear instability? [SW]

Thermochemistry - Summary

2

- Reactive flow produces channelized melt flux via the Reactive Infiltration Instability.
- Predictions for trace elements & U-series in MORB.
- Consequences of channelized flow in arcs?
- Embedded in large-scale mantle flow. Interaction with shear instability? [SW]

How to couple melting and magmatic flow with tectonic-scale mantle dynamics?

Melt focusing by sublithospheric flow

sublithospheric flow

WIDTH (km)

^{3.1} Putting it together: problems & solns

- Expect zero porosity within the domain. Bulk viscosity is singular.
 Use pressure decomposition to reformulate.
- Expect melting and freezing. Treat these in a thermodynamically consistent way.
 Use Enthalpy Method to model thermochem.
- Melting is usually hydrous.
 Extend Enthalpy Method to 3-component system?

3.1 Putting it together: zero porosity compaction viscosity: $\xi = \zeta - 2\eta/3$ compaction viscosity for small porosity: $\xi \approx \frac{1}{\phi}$ singularity! Pressure decomposition: $P_f = \rho g z + \mathcal{P} + P$ Fluid pressure $f_{\text{Lithostatic}}$ $f_{\text{Compaction}}$

3.1 Putting it together: Enthalpy method Assume: $d\mathcal{H} = c_P dT + \rho^{-1}(1 - \alpha T)dP$ thermodynamic eq $C = \phi C_f + (1 - \phi)C_m$ two components Define: $T = T e^{\alpha g z/c_P}$ potential temperature

Katz, JPet 2008

3.1 Putting it together: Enthalpy method Assume: $d\mathcal{H} = c_P dT + \rho^{-1}(1 - \alpha T)dP$ thermodynamic eq $C = \phi C_f + (1 - \phi)C_m$ two components Define: $T = T e^{\alpha g z/c_P}$ potential temperature

Katz, JPet 2008

3.1 Putting it together: Enthalpy method

3.1 Putting it together: Enthalpy method

3.2 Melt focusing at mid-ocean ridges

$$\eta = \eta_0 \exp\left(\frac{E^*}{RT}\right) \exp(-\alpha\phi)$$
$$\zeta = \zeta_0 \exp\left(\frac{E^*}{RT}\right) \phi^{-1}$$

$$\mathbf{v}_m(x, z=0) = (U_0, 0)$$

Ridge axis boundary: reflection*

Bottom/right boundary: inflow/outflow

Melt outflow: dike under axis to base of the lithosphere.

3.2 Melt focusing at mid-ocean ridges $U_0 = 4 \text{ cm/yr}, K_0 = 10^{-7} \text{ m}^2, \eta_0 = 1e19, \zeta_0 = 5e19 \text{ Pa-s, etc}$

Log₁₀Porosity

Melt focusing at mid-ocean ridges

Melt focusing at mid-ocean ridges

3.2 Melt focusing at mid-ocean ridges

Katz, JPet 2008

3.2 Local convection due to porosity

Hernlund et al, JGR 2008

3.2 Local convection due to porosity

Hernlund et al, JGR 2008

Putting it together - summary

- Tectonic scale models generate insight into coupled magma/mantle processes.
- Investigate large-scale processes such as local convection and magmatic focusing.
- Need to incorporate more physics (e.g. reactive channelization) and chemistry (e.g. trace elements, U-series).
- Mantle heterogeneity, hydrous melting, subduction, plumes, 3D...

Talk summary

- Early (exciting) days for magma dynamics.
- Interesting problems in fundamental fluid mechanics, geodynamics, thermodynamics.
- Haven't addressed: anisotropy, capillarity, melting with volatile elements, etc.
- Model testing via geochemistry & seismology.
- Challenging computations, much room for improvement.

Supplementary slides

1.2

Solitary waves

Movie of shear band formation

Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle

Peter B. Kelemen,¹ J. A. Whitehead,² Einat Aharonov,³ and Kelsey A. Jordahl⁴ Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle

Peter B. Kelemen,¹ J. A. Whitehead,² Einat Aharonov,³ and Kelsey A. Jordahl⁴ Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

