Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Preconditioning variable viscosity Stokes flow problems associated with a stabilised finite element discretisation

Dave A. May
Department of Earth Sciences, Geophysical Fluid Dynamics, ETH Zürich, Switzerland

Eidgenössische Technische Hochschule Zürich

Outline

- Motivation
- The stabilised Q1-Q1 element
- Errors
- Preconditioning
- Summary

Motivation

Convection in the mantle

Lithospheric deformation

Stokes Flow

- Incompressible Stokes flow with general constitutive tensor.
$\left.\begin{array}{ll}\text { Momentum } & \tau_{i j, j}-p_{, i}+f_{i}=0, \\ \text { Mass } & -u_{i, i}=0,\end{array}\right\}$ in Ω
subject to
i) the boundary conditions

$$
\begin{aligned}
u_{i} & =g_{i}, & & \text { on } \Gamma_{g_{i}} \\
\sigma_{i j} n_{j} & =h_{i}, & & \text { on } \Gamma_{h_{i}},
\end{aligned}
$$

ii) the pressure constraint

$$
\int_{\Omega} p d V=p_{s}, \quad \text { for some constant } p_{s}
$$

Constitutive

$$
\tau_{i j}=\Lambda_{i j k l} \dot{\epsilon}_{k l}
$$

Strain rate

$$
\dot{\epsilon}_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right),
$$

We formulate the problem entirely in terms of velocity u, and pressure p.

Stokes Flow + Finite Elements

- Variational problem

$$
A(\boldsymbol{v}, \boldsymbol{u})+B(\boldsymbol{v}, p)+B(\boldsymbol{u}, q)=F(\boldsymbol{v})
$$

$$
\begin{aligned}
& A(\boldsymbol{v}, \boldsymbol{u}):=\int_{\Omega} 2 \eta \sum_{i . j=1}^{d} \dot{\epsilon}_{i j}(\boldsymbol{u}) \dot{\epsilon}_{i j}(\boldsymbol{v}) d V \\
& B(\boldsymbol{v}, p):=-\int_{\Omega} p \nabla \cdot \boldsymbol{v} d V
\end{aligned} \quad\left(\begin{array}{ll}
K & G \\
G^{T} & 0
\end{array}\right)\binom{u}{p}=\binom{f}{h}
$$

Stability issues

Q1-Q1 stabilised

- Stabilised formulation

$$
\begin{aligned}
& A(\boldsymbol{v}, \boldsymbol{u})+B(\boldsymbol{v}, p)+B(\boldsymbol{u}, q)-C(p, q)=F(\boldsymbol{v}), \\
& C(p, q):=\int_{\Omega} \frac{1}{\eta}\left(p-\Pi_{0} p\right)\left(q-\Pi_{0} q\right) d V
\end{aligned}
$$

Here, Pl is L2 projection operator which maps C0 functions onto the space of constant functions.

$$
\begin{aligned}
\left.\Pi_{0} p^{h}\right|_{\square} & =\frac{1}{\left\|J^{e}\right\|} \int_{\square} p^{h} d V, \quad \forall K \in \mathcal{T}_{h} \\
\left.\Pi_{0} p^{h}\right|_{\square} & =\frac{1}{4}\left(p_{1}^{e}+p_{2}^{e}+p_{3}^{e}+p_{4}^{e}\right) .
\end{aligned}
$$

$C\left(p^{h}, q^{h}\right)=\left.\left.\sum_{\square \in \mathcal{T}_{h}} \frac{1}{\bar{\eta}^{e}} \int_{\square}\left(p^{h}-\Pi_{0} p^{h}\right)\right|_{\square}\left(q^{h}-\Pi_{0} q^{h}\right)\right|_{\square} d V$.

$$
\bar{\eta}^{e}=\int_{\Omega} \eta(\boldsymbol{x}) d V / \int_{\Omega} 1 d V
$$

Q1-Q1 stabilised

$$
\begin{array}{rlr}
\boldsymbol{C}^{e} & =\frac{1}{\bar{\eta}^{e}} \int_{\square}\left(I-\Pi_{0}\right)\left(I-\Pi_{0}\right)\left\|J_{e}\right\| d V & \boldsymbol{q}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^{T} \\
& =\frac{1}{\bar{\eta}^{e}}\left(\boldsymbol{M}^{e}-\boldsymbol{q} \boldsymbol{q}^{T}\left\|J_{e}\right\|\right) \quad\left(\begin{array}{cc}
K & G \\
G^{T} & C
\end{array}\right)\binom{u}{p}=\binom{f}{h}, ~
\end{array}
$$

- Benefits

Parameter free
No macro elements
Simple mesh structure can be used
Data structure re-use
Low order and stable!

- Used by

Rhea:
Burstedde et. al., 2008
Underworld: Moresi et. al., 2008

- No systematic studies for variable viscosity

Errors

- Is the discretisation appropriate for variable viscosity flow?
- Q1-P0 examined by Moresi et. al., 1996
- Dohrmann \& Bochev error estimates

$$
\begin{array}{cc}
\left(e_{u}^{h}\right)_{L_{2}}=\sqrt{\sum_{i=1}^{d} \int_{\Omega}\left(u_{i}^{h}-u_{i}\right)^{2} d V} & \left(e_{p}^{h}\right)_{L_{2}}=\sqrt{\int_{\Omega}\left(p^{h}-p\right)^{2} d V} \\
\left(e_{u}^{h}\right)_{L_{2}}=O\left(h^{2}\right) & \left(e_{p}^{h}\right)_{L_{2}}=O(h)
\end{array}
$$

Exponentially varying viscosity: $\exp (y)$

$\Delta \eta$	u	p
10^{2}	1.99	1.49
10^{4}	1.97	1.37
10^{8}	1.91	1.24

(Revenaugh \& Parsons, 1987)

Step function viscosity: $\operatorname{step}(x)$

$\Delta \eta$	u	p
10^{2}	1.91	0.49
10^{4}	2.00	0.49
10^{8}	2.00	0.78

(Zhong, 1996)

Finding 1

- Optimal convergence rates for velocity and pressure were obtained for viscosity structures which are continuous.
- For discontinuous viscosity structures, optimal convergence rates were obtained for velocity but sub-optimal convergence rates were obtained for pressure.

Iterative methods for Stokes flow

The ideal approach should be optimal in the sense that the convergence rate of method will be bounded independently of

- the discretisation parameters (Example; grid resolution)
- the constitutive parameters (Example; smoothly varying vs. discontinuous viscosity
- the constitutive behaviour (Example; isotropic vs. anisotropic)
- the solution is obtained in $O(n)$ time... ie. multigrid

These are a challenging set of requirements

Preconditioners...

- The number of iterations required for convergence is related to the distribution of eigenvalues.
- Preconditioning is the process of "improving" the distribution of eigenvalues, such that the number of iterations is reduced => accelerator

$$
\begin{aligned}
& A x=b \\
& A P^{-1} P x=b \longrightarrow A P^{-1} y=b \\
& x=P^{-1} y
\end{aligned}
$$

i) $P^{-1} \approx A^{-1}$
ii) should be cheap to construct the preconditioner, P^{-1}
iii) should be cheap to apply the preconditioner, P^{-1}

Schur Complement Reduction

- Decouple u and p
- Solve the Schur complement system
solve for $p: \quad\left(G^{T} K^{-1} G-C\right) p=G^{T} K^{-1} f-h$,
solve for $u: \quad K u=f-G p$.
where $S=G^{T} K^{-1} G-C$ is the Schur complement.
- Represent S as a matrix-free object. To compute $y=S x$ we
compute: $\quad f^{*}=G x$,
solve for $u^{*}: \quad K u^{*}=f^{*}$,
compute: $\quad y=G^{T} u^{*}-C x$.
- Outer Krylov iterations performed on $\mathrm{Sp}_{\mathrm{p}}=\mathrm{h}$,, inner iterations performed on $\mathrm{Ky}=\mathrm{x}$.
- Need preconditioners for S and K.

Fully Coupled

- Treat the Stokes problem as single coupled system

$$
\left(\begin{array}{ll}
K & G \\
G^{T} & C
\end{array}\right)\binom{u}{p}=\binom{f}{h} \quad \longrightarrow \mathcal{A} x=b, \quad \mathcal{A} \in \mathbb{R}^{(m+n) \times(m+n)}
$$

- Apply any suitable Krylov method to $\mathcal{A} x=b$
- We require preconditioner for \mathcal{A}.
- Block diagonal or block upper triangular

$$
\hat{\mathcal{A}}_{d}=\left(\begin{array}{cc}
\hat{K} & 0 \\
0 & -\hat{S}
\end{array}\right), \quad \hat{\mathcal{A}}_{u}=\left(\begin{array}{cc}
\hat{K} & G \\
0 & -\hat{S}
\end{array}\right) .
$$

Elman, Silvester (I994)
Rusten, Winther (1992)
Silvester, Wathan (1994)

Murphy, Golub (2000)

Both options require preconditioners for K and S

Swiss Federal Institute of Technology Zurich

K: Velocity Component Decomposition (VCD)

- Billinear form of the deviatoric stress tensor gradient

$$
a(\boldsymbol{u}, \boldsymbol{v})=\int_{\Omega} 2 \eta \epsilon_{i j}(\boldsymbol{u}) \epsilon_{i j}(\boldsymbol{v}) d V
$$

- Discrete operator

$$
\boldsymbol{K}=\left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right)
$$

- A spectrally equivalent billinear form is

$$
\hat{a}(\boldsymbol{u}, \boldsymbol{v})=\int_{\Omega} \eta\left(\nabla u_{k}\right) \cdot\left(\nabla v_{k}\right) d V
$$

[Axelsson, Padiy, "On a robust and scalable linear elasticity solver based on a saddle point formulation"]
with discrete operator given by

$$
\hat{\boldsymbol{K}}=\left(\begin{array}{cc}
K_{11} & 0 \\
0 & K_{22}
\end{array}\right)
$$

K: Velocity Component Decomposition (VCD)

- Block Gauss-Seidel

$$
\begin{aligned}
& A x=b \\
& x^{k+1}=(D+L)^{-1}\left(b-U x^{k}\right) \\
& A=D+L+U
\end{aligned}
$$

- Discrete counterpart of the stress gradient is given by

$$
\begin{aligned}
& \left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right)\binom{u}{v}=\binom{f_{x}}{f_{y}} \\
& D=\operatorname{diag}\left[K_{11}, K_{22}\right]
\end{aligned}
$$

Mijalkovic \& Mihajlovic, 2000
Mihajlovic \& Mijalkovic, 2002

- Treat each velocity component as scalar, variable coefficient diffusion problem.
- Each scalar problem permits effective multigrid preconditioning.

Each $K_{i i}^{-1}$ given by CG, with $\frac{\left\|r_{k}\right\|}{\left\|r_{0}\right\|}<10^{-2}$, preconditioned via ML.
ML: http://software.sandia.gov/Trilinos

Results: $\exp (y)+\operatorname{step}(x)$

$\xrightarrow{\longrightarrow}$| | |
| :--- | :--- |
| y | $\eta=\eta_{0} \exp (2 B y)$ |
| | |

$$
\begin{gathered}
\exp (y) \\
\eta=10^{6} \exp (\theta y)
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{step}(\mathbf{x}) \\
\eta= \begin{cases}1 & x<\frac{1}{2} \\
\Delta \eta & x \geq \frac{1}{2}\end{cases}
\end{gathered}
$$

elements	$\Delta \eta$
$M \times N$	$10^{2} \quad 10$
100^{2}	55
$200{ }^{2}$	$5 \quad 5$
300^{2}	55

Additional test problems

ridge

- discontinuous / continuous viscosity - outflow boundaries

diapir
- discontinuous viscosity
- free surface

layer

- discontinuous viscosity - compressional bc's
- free surface - deformed elements

Swiss Federal Institute of Technology Zurich

Results: ridge

$T=T_{0}+\operatorname{erfc}\left(\frac{y-1}{2 \sqrt{\kappa\left(x-x_{r}\right) U_{0}}}\right)$
$\eta=\eta_{0} \exp (\theta T)$

Results: diapir

Swiss Federal Institute of Technology Zurich

Results: layer

Swiss Federal Institute of Technology Zurich

Results: $\exp (y)$
 (optimal)

$$
\begin{aligned}
& \eta=10^{6} \exp (\theta y) \\
& \theta=13.8, \Delta \eta=10^{6}
\end{aligned}
$$

$\begin{array}{ll}y & \\ \uparrow & \eta=\eta_{0} \exp (2 B y)\end{array}$
$M \times N$ unknowns outer its. avg. inner its. CPU time (sec)

200^{2}	80,802	4	3	1.9
284^{2}	161,450	4	3	4.3
400^{2}	321,602	4	3	9.3
566^{2}	642,978	4	3	19.0
800^{2}	$1,283,202$	4	3	37.0
1134^{2}	$2,576,450$	4	3	59.6
1602^{2}	$5,139,218$	4	3	116.7

Results: step(x)

(optimal)

$$
\eta_{0}=1
$$

$$
\eta= \begin{cases}1 & x<\frac{1}{2} \\ 10^{6} & x \geq \frac{1}{2}\end{cases}
$$

$M \times N$	unknowns	its.	avg. inner its.	CPU time (sec)
200^{2}	80,802	5	3	1.91
284^{2}	161,450	5	4	6.00
400^{2}	321,602	5	4	11.55
566^{2}	642,978	5	4	27.38
800^{2}	$1,283,202$	5	4	50.46

Finding 2

- Block Gauss-Siedel based preconditioner is robust
- Mild dependence on dimension of viscosity structure
- Approach is optimal and maintains robustness, exhibiting $O(n)$ solution times when used in conjunction with ML
- Parallel efficiency not explored here. Others have demonstrated scalability with ML.

Arbenz et. al., 2008
Burstedde et. al., 2008
Thomas Geenan (in yesterdays poster session)

Schur complement (S): ???

- Based on previous ideas...

Scaled BFBt for stabilised systems (compressible)

- Scaled mass matrix

$$
\hat{s}_{i j}=-\frac{1}{\bar{\eta}^{e}} \int_{\square} M_{i} M_{j}\left\|J_{e}\right\| d V
$$

i) For constant viscosity, the scaled mass matrix is spectrally equivalent to S.
ii) There is a proof that the same result holds for variable viscosity.

Thanks Thomas :)
For continuous pressure elements, if the scaled mass matrix is spectrally equivalent to S, then the diagonal of the scaled mass matrix is also spectrally equivalent to S (Elman, 2005).

We examine these ideas numerically.

Results: ridge

Results: diapir

Swiss Federal Institute of Technology Zurich

Results: layer

Finding 3

- The diagonal of the scaled mass matrix is a surprisingly robust preconditioner, with little dependence on the viscosity contrast.
- The number of iterations required to solve the pressure Schur complement was ≈ 20 for all viscosity structures (ridge, diapir, layer).

Preconditioning strategies

- Putting it all together

$$
\left(\begin{array}{ll}
K & G \\
G^{T} & C
\end{array}\right)\left(\begin{array}{ll}
X & X \\
X & X
\end{array}\right)^{-1}
$$

- Schur complement reduction versus fully coupled approaches?
- Combinations of the two maybe the answer, but the optimal setup seems to be problem dependent.

Summary

- Stabilised Q1-Q1 discretisation is a robust element for studying Stokes flow with large variations in viscosity (smooth or discontinuous).
- Optimal error estimates are preserved for continuous viscosities.
- Velocity component decomposition (VCD) preconditioner is shown to be optimal \& robust for variable viscosity Stokes flow.
- The simple diagonal mass matrix preconditioner is a robust and opimal choice for preconditioning the Schur complement when using Q1-Q1 stabilised elements.

Thank-you.... Questions???

