Coupling between tectonics, climate and surface processes Mechanisms and effects Guy Simpson - University of Geneva

11th international workshop on modeling of mantle convection and lithosphere dynamics (Braunwald, 2009)

FRENCH ALPS 2004

Precipitation patterns and topography

Images: C. Duncan

Topographic elevation

Mean annual precipitation

Impact of uplift and climate change on erosion and sediment fluxes

Sedimentation rates over last 25 My Molnar et al. (2001)

Weathering climate change

The chemical weathering that accompanies erosion plays a major role in regulating climate by buffering carbon dioxide levels in the atmosphere

Erosion and isostatic uplift

Erosion and isostatic uplift of plateau-margin peaks

Kirby et al (2002)

Quaternary erosion and isostatic uplift of Alps

Champagnac et al. (2007)

Mass redistribution and the modification of gravitational stresses

$$\rightarrow \begin{array}{c} \rho_{air} \\ \hline \\ \rho_{rock} \\ \hline \\ \rho_{base} \end{array}$$

Mass redistribution and the modification of gravitational stresses

Deformation of density surfaces creates restoring forces that inhibit deformation

Mass redistribution and the modification of gravitational stresses

Surface mass redistribution facilitates deformation by counteracting restoring forces

The importance of rheology.....

Compressive tectonic setting, elastic plastic material

Erosion-amplified folding

Active folds in Junggar basin

Image: Karl Mueller

Interaction between folding and river incision

Numerical results from an elastic-plastic thin plate model

Erosional thermo-mechanical coupling

(tectonic aneurysm)

Koons (1990), Zeitler et al. (2001)

Tectonic aneurysm and the Himalayan syntaxes

Namche Barwa (eastern) syntaxis

Photo: Brian Zurek

Erosion and growth of the Namche Barwa syntaxis

Effects of coupling between tectonics, and surface processes

Insight from numerical models

Modeling challenges.....

- 1. Elasto-visco-plastic deformation
 - Strain localisation
 - Large deformation
 - Stress memory (due to elasticity)
- 2. Large amounts of erosion and sedimentation
 - Tracking of stratigraphy and exhumation paths
- 3. Three dimensional + time

Governing equations

$$\frac{\partial \sigma_{ij}}{\partial x_i} + \rho g_i = f$$

Quasi-static force balance

$$\frac{\partial u_i}{\partial x_i} + \frac{\partial P}{\partial t} \frac{1}{K} = 0$$

Mass balance (weakly compressible)

Simpson (2006a)

Rheology

$$\sigma_{ii} = 3K\varepsilon_{ii}$$
$$\frac{\partial \tilde{\varepsilon}_{ij}}{\partial t} = \frac{\hat{\sigma}_{ij}}{2G} + \frac{\tilde{\sigma}_{ij}}{2\mu}$$

Volumetric: Elastic

Deviatoric: Maxwell viscoelasticity

$$F = \tau^* + \sigma^* \sin \phi - c \cos \phi$$

Non-associated Mohr-Coulomb

Other effects.....

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(\kappa \frac{\partial h}{\partial x} \right)$$

Surface mass redistribution

$$\frac{\partial^2}{\partial x^2} \left(D \frac{\partial^2 w}{\partial x^2} \right) + \Delta \rho g w = q$$

Flexure (on base of model)

$$D = \frac{ET_e^3}{12(1-v^2)}$$

Numerical method

Galerkin Finite Element Method
9-node quadrilaterals (for u-v) + 4-pressure nodes
Lagrangian marker particles store history variables

Initial model setup and boundary conditions

erosion and deposition

Does the emergence of orogens above sea level influence their tectonic evolution?

Simpson (2006)

How could emergence potentially influence deformation?

Change in water loadsChange in efficiency of surface processes

Subaerial fold-thrust belt

Submarine fold-thrust belt

Effects due to water loads

50% convergence

Water-loads included

Emergence-related change in rate of surface processes

10 % convergence	water-air interface	
20 % convergence		
30 % convergence		fully-subaqueus deformation
40 % convergence		increase in efficiency of surface processes
50 % convergence		deformation
60 % convergence	5 km	

Orogen-scale mass balance

Flysch-molasse transition: N Alpine Foreland Basin

SHALLOW MARINE AND CONTINENTAL (MOLASSE)

Singlairata

DEEP MARINE (FLYSCH)

How are accretionary prisms influenced by the hinterland sediment supply ?

Stori and McClay (1995)

Accretionary prisms and hinterland sediment supply

Classic accretionary prism model

Accretionary prism fed by a hinterland sediment supply

Nankai accretionary prism

Prism response to sediment flux variations

Erosional impact at orogen-scale

Beaumont et al (2000)

Orography and orogensis

Willett (1999)

Erosional impact on deep structure

Pysklywec (2006)

Conclusions

•Tectonics-climate and surface processes are part of a dynamic system which displays a range of positive and negative feedback loops

•Surface mass redistribution impacts on tectonics via three independent mechanisms:

- 1. Isostacy
- 2. Modification of gravitational stresses coupled with deformation
- 3. Erosional thermo-mechanical coupling

•Surface mass redistribution has an important influence on deformation of the lithosphere at a range of time and spatial scales

•Generally, erosion localises deformation whereas sedimentation inhibits deformation