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e Basic equations you need to know in geodynamics
 Fundamentals of fluid dynamics

* \ectors and tensors

* Conservation laws and constitutive law

* 1D examples

 Dynamic similarity
 Fundamentals of mantle convection

* Boussinesq approximation

* Rayleigh number and Nusselt number

e Stability analysis of mantle convection



Examples: Post-glacial rebound

Initial: h(t=0) = ho cos(2r/L.x)
Assumption: L >> ho

6-15 Elevated beach terraces on Ostergransholm, Eastern Gotland,
Sweden. The contempory uplift rate is about 2 mm yr='. (Photographer
and copyright holder, Ame Philip, Visby, Sweden; courtesy IGCP Project
Ecostratigraphy.)

Coastline photo from Turcotte & Schubert, 2002)



Example: Ductile structures
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Example: Ductile structures

http://www.geosci.usyd.edu.au/users/prey/Teaching/Geol-1002/HTML.Lect4/LargeFold.jpg




Example: Ductile structures
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* Heat is converted into
motion via density
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* Drifting continents * Spreading centres
* Subduction zones * Post glacial rebound

* Hotspots * Heat budget



Thermal convection

http://dreamtigers.wordpress.com/201 1/05/1 | /plate-tectonic-metaphor-illustrations-cmu/

Variations in temperature cause
small changes in the fluid
density

convection decouple on transition zone

density) material to sink

Buoyancy forces cause cold o
(compressed, i.e. higher

single-layer ? role of transition zone??
convection

http://www.see.leeds.ac.uk/structure/dynamicearth/convection/models.htm

http://asapscience.tumblr.com/post/504 | 9005208/the-earths-center-is-out-of-sync-we-all-know



carly experiments

¥ (X

Convection = flow
driven by internal
forces (buoyancy)

In the Earth, density
variations are

3

pressure, Viscous fluid “convection”

temperature and | o | _
. Figure 1.11. Early experiment on mantle convection by David Griggs (1939), showing styles of deformation
com pOS |t|On of a brittle crustal layer overlying a viscous mantle. The cellular flow was driven mechanically by rotating
cylinders.

Convection drives large-scale dynamics within in the Earth’s mantle



Modern experiments




Fundamentals of
fluid dynamics



Frames of reference

DT 5
— = rgV4T ——  Material derivative
Dt Dt

Stationary frame (Eulerian)

DT oT oT convective rate of change due to transport

o = 5 + Voo of material to a different position (x) with

| respect to a fixed coordinate system
local rate of change due to DT 0T
. — = Fv - VI
temporal variations at a Dt ot
position x

Moving frame (Lagrangian)

DT 9T coordinate system is transported with the
Dr = o7 material, thus only the local rate of change
remains



Conservation of mass

e (General continuity equation:

6’,0| B

* |[ncompressible fluid

-or many geological material (such as the Earth’s crust and mantle),
over long time-spans, one may assume an incompressible condition
(e.g. the density of each material point does not change with time)

@:O — V-v=0
Dt

Valid assumption when pressure and temperature changes are not
very large and no phase transtormations (e.g. no large volume
changes) occur within the medium



original shape —:—> : . . . .
7 ° ! , Tensile strain - or - direct strain
:- -l- - ECCCB? Eyy
deformed shape
' Shear strain
o . Cry
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y . '—  Volumetric strain (dilatation)

E : €xa T Eyy




INQ
ean
Physical m

SOr: &

e
A

ce ,
faorma/
rection -

L dir %

g




Strain-rate tensor

* Time rate of change of the strain tensor

€Exxs Eyys Exy  [1/9]
xr = (z,y) position
v = (vy,vy) velocity
- Ovg . Oyy .1 (0v,  Ov,
— Oy = Ox

‘0 = W=y T3

_1 8?]2' | 62}3'
= 2 &Ij | &vz

* A deviatoric tensor has a mean (average) of zero, e.g.

2

1 1 . L,
§(éazaz + éyy) =0 5 (Z 6kk> =0 Qekk =0

k=1



Stress tensor

0;; Stress [Pa]

p pressure [Pa]

1
p=—0kk = _§(0m + 0oy +0..), for k=1,2,3

Tij deviatoric stress [Pa]

0ij = Tij — POij

| Stress = deviatoric stress - pressure

== — ———— — - —— e



Constitutive law for a fluid

Viscous stress

Tz’j — 277 E’LJ __, deviatoric
N

e strain rate [1/s]

deviatoric _ _
stress [Pa] viscosity [Pa s]

Incompressible

Tij — 277 62] — strain rate

Expanded form (2D) o o OV,
P %”;

, ((%33 8’0Z>
Trz — 277 €Cxz = 1]

0z ox



Conservation of momentum

e (3eneral eqguation: ov; L0 Ovi \ _ 00y |
. | P ot k@xk N 0x ; P

Dimensional considerations:
- plate velocity ~ 1 cm/year, 0O /Ot ~ 10719

—

changes occur on 1 Myr timescale
_density ~ 3000 kg/m3, g = 10 m/s2  — pg ~ 10°

« Mom. balance for a creeping fluid: 0 — 80733'
“Stokes flow” Ox ]

Py

* Primitive equations (v,p) obtained by
* inserting relationship for deviatoric stress and pressure
* Inserting constitutive law
e replacing strain-rates by velocity gradients



1D shear tflow (Couette)

z
z=-h
«—
Vx=-Vx0
> X
With:

* Ignore body forces Vx =5 cm/year
* Steady state Vx() H ~100 km
 Constant viscosity Ozz = 1] h n~102Pa s
1D velocity field o, ~ 150 MPa

* Pressure gradient is zero



Conduit

4-10 km conduit
“+— radius

(100-200 m)

Magma
! Chamber

Magma-Gas
Separation

' X Descending

Degassed
Magma

~| Volatile
°|Saturation |
Level |

Ascending
Non-Degasse
Magma

lower
pressure

lgnore body forces
Steady state
1D velocity field: VAx)

Pressure gradient is
constant

Viscosity Is constant




Dynamic similarity

 Perform an infinite number of experiments to understand
the dynamics

e Or... find a more compact representation of the equations

e Non-dimensional numbers
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Figure 8.1 Two geometrically similar ships.



Flow regimes

EERTIEN -
L 95 SR N A

(c) Re = 60

-5

(d) Re = 1000
Fig. 5-6. Flow over a cylinder at different Reynolds numbers.



~Flow regimes - Issue of scale

Karman vortex sheet caused by wind
flowing around the Juan Fernandez
Islands of the Chilean coast
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Permits meaningful models to be

Schellart (2008)
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Reynolds number of the mantle

) o = t = —t p'zip
' h U h pU?
phU . . . -
Re = T — ratio of inertial forces to viscous forces
pDu, /D] Dul/ DY

Characteristic values for the mantle
o0~ ? kg/m3

U~?m/s

h~7?km

n ~ 107 Pas

Re ~ 7?7



Fundamentals of
mantle convection

(buoyancy driven incompressible Stokes flow)



Boussinesg approximation

e Thermal variations In a fluild lead to small amounts of
expansion / contraction.

 Expansion results in lowering of density, e.g. resulting in a
buoyancy force —> leading to fluid motion

/  perturbation

p=po+p - 0 < po

l

Reference density

p' = —pocx, (T — 7;0)

Reference temperature
corresponding to ref. density

Cvoefficient of thermal expansivity [1/K]



Mantle convection egns.

Compact form:

~Vp+ V- (Vo +Vo') =p (1 —a(T —Tp)) gé-
V-v=0
DT

pCp—r =V (BVT) + pQ

Constant viscosity and constant conductivity:

—Vp +nV2 = py (1 — (T — Tp)) gé.
V.-v=0
DT Q

T kAT 4+ =
pt "Vt



Non-dimensional form

(1) Dimensional form:
—Vp+nV?v = py (1 — (T — Tp)) gé.
V-v=0
DT

—— = rV?T
Dt "

(2) Perturbation from
background state:

—Vp + nVv = —ppaT ge,
V.-v=0
DT

2
= T
Dy KV

(3) Scaling:
x' =x/h
t'=t/(h*/k)
T' — T/AT
v' =v/(k/h)

p' = p/(nK/h*)

(4) Non-dimensional form:
V' + V%0 = —RaT'e,
V' -v' =0
DT’

Dt/
apogATh?

nK
Rayleigh number

— v/ZT/

—> Ra =



Rayleigh number (Ra)

Describes the relationship between buoyancy and
viscosity within a fluid

The Rayleigh number gives a sense of the “vigour” of
convection

For small temperature ditference (small Ra): conduction Is
the dominant mode of heat transfer

For larger Ra: convection becomes the dominant mode

The transition between conduction and convection IS
referred to as the “critical Rayleigh number (Rac)”

Where does this transition occur?



Stability analysis

Model definition: y=0

T=To

Cold

Figure 7.1. Sketch of a plane fluid layer heated l y
from below for the problem of the onset of thermal
convection.

y=Db

Boussinesq Fluid

P, K, 1, o

T=T4

Hot

Procedure:

1 = Tconductive + T/ — TO + Tl

2TxT

T (z,y) = f(y)sin (T

* For small velocity and 71, we can linearise the system

)

* Energy equation expressed in terms of 71 and Vz

* “Small” terms are neglected

* Solve via separation of variables

A2 b2

- Racr
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Below Ra critical,
no convection occurs



Critical Rayleigh number

e More than one definition exists...

Table 7.1. Values of the Minimum Critical Rayleigh Number and Associated Dimensionless
Horizontal Wavelength for the Onset of Convection in Plane Fluid Layers with Different Surface
Boundary Conditions and Modes of Heating

Surface Boundary Conditions and Mode of Heating Ra., (min) Any
Both boundaries shear stress free and isothermal,

no internal heating. H* = 0. 657.5 242 =2.828
Both boundaries fixed and isothermal. H* = 0. 1,707.8 2.016
Shear stress free upper boundary, fixed lower boundary,

both boundaries isothermal. H* = 0. 1,100.7 2.344
Both boundaries shear stress free, upper boundary

isothermal, lower boundary specified heat flux. H* = 0. 384.7 3.57
Both boundaries fixed, upper boundary isothermal, lower

boundary specified heat flux. H* = 0. 1,295.8 2.46

Upper boundary shear stress free and isothermal, lower
boundary fixed and heat flux prescribed. H* = 0. 816.7 2.84




Numerical experiments

—V'p +V"?v' = —RaT’e,
Vi-v' =0

=S

Figure 9.1. The structure of steady-state, two-dimensional, Rayleigh—-Bénard convection at infinite Prandtl
number, with streamlines of the motion (solid contours), hot thermal boundary layer and rising plume (light
shading), and cold thermal boundary layer and sinking plume (dark shading).




Numerical experiments

Temperature

Figure 9.2. Contours of temperature for steady, two-dimensional, Rayleigh—-Bénard convection in aspect ratio
one cells heated from below (Jarvis, 1984), showing the development of thermal boundary layers with increasing
Rayleigh number. Numbers indicate the ratio Ra/Ra,,, with Ra., = 779.27.



Nusselt number (Nu)

The Nusselt number (Nu) is a ratio of convective heat transfer to
conductive heat transfer

e Nuis a non-dimensional number

In the context of mantle dynamics, it's defined using horizontally
averaged heat fluxes over the upper/lower boundaries

]
S

z=H} ﬁ\
L
Ny — {surf. _ l/ a_T I g
f {cond. L 0 0z Y — H

0

(assumes constant conductivity, k)

T=
T=

z=0
X

» X
=L

* Nu provides a measure of the efficiency of heat loss through the
surface via advection



Nu-RHa scaling laws

Problem dependence
(iso-viscous: moderate Ra)
Nu = cRa”
c=0.27, B=0.3185

(iso-viscous: high Ra)

A Ratchiff 1996 (tetrahedral)

O Ratchff 1996 (cubic) .
O Iwase 1996 A P
100 | —®— our study /',/.'-' ! -
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Rayleigh number

Fig. 5 Summary of the relationship between Ra and Nu for spherical
shell with infinite Pr fluid. Our data (red points) suggests Nu ~

Fukao et al. (2008)

Ra™ for wide range of Ra.

(variable viscosity)
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Fig. 2. Nusselt—Rayleigh number relationship for a fluid with
rheological properties as used by Booker (1976) and a fixed
viscosity ratio of 127. Upper and lower boundary are rigid.
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Fig. 7. Nusselt number versus Rayleigh number calculated with
the viscosity at the mean of top and bottom temperature for
variable viscosity convection with free boundaries. The num-
bers attached to the curves indicate the viscosity ratio

Christensen (1984)



Temperature -
1.000

TMe:0.000000 « -« .t Lt K

https://youtu.be/t1TUH9Qjy28I




summary

* |[ntroduced the fundamental equations which describe the
long-time evolution of the mantle

e conservation of momentum for highly viscous fluids
* Incompressibility

e dynamic similarity

* Boussinesq approximation

* important non-dimensional numbers for mantle
convection: Rayleigh number (Ra) and Nusselt number
(Nu)



