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Questions 1 and 2 will be corrected directly during the class. Only questions 3 and 4 should be done as a
homework

We assume an equilibrium situation in a convecting domain heated from below and cooled from above.
The surface temperature is Ts, the bottom temperature is Tb, and the boundary conditions are free slip. The
Arrhenius viscosity η depends on temperature:

ηA(T ) = η0 exp

(
E

RT
− E

RTi

)
(1)

where T is the temperature, η0 is a reference viscosity, E is an activation energy, R is the Boltzmann constant
(8.314) and Ti is the internal temperature.

The Frank-Kamenetskii approximation
The Frank-Kamenetskii approximation is used to define a viscosity similar to the Arrhenius definition in the
internal region but lower in the lithosphere (see figure 1). In the Frank-Kamenetskii approximation, in the
internal region, the viscosity becomes:

ηFK(T ) ' η0 exp (θ(Ti − T )) (2)

derivation of the Frank-Kamenetskii parameter
The Frank-Kamenetskii parameter θ represents the temperature dependence of the viscosity in the internal
region.

- Question 1
In the internal region, one can consider that ηFK(T ) = ηA(T ). Using

1

x
− 1 ' 1− x, x→ 1, (3)

derive the Frank-Kamenetskii parameter as a function of E, R and Ti.

- Question 2
When the viscosity is homogeneous (does not depend on temperature), the integral of the mechanical work in
the whole domain is equal to the heat flow. Mechanical work is defined by the contraction of the deviatoric
stress and strain rate tensors:

Ψ = τ : ε̇ (4)

where the contraction of the tensors is the sum of all components. By simplicity, we will consider here only the
average:

Ψ = τ ε̇. (5)
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Figure 1: Red: Frank-Kamenetskii approximation. Black: Arrhenius. For similar equilibrium temperature
profiles, the viscosity profiles are similar, except in the lithosphere.

Following dimensional analysis, we assume that the lithosphere thickness δ is related to the surface velocity v:

δ =

(
κh

v

)1/2

(6)

where κ is the thermal diffusivity, and h the thickness of the mantle.

Using the assumption mechanical work = surface heat flow in a cubic domain (in which the deformation
is homogeneously distributed), find the lithosphere thickness as a function of the Rayleigh number. Note that
dimensionaly: [

αgh

Cp

]
= 1 (7)

and
k = κρCp. (8)

Reminder, the internal Rayleigh number is given by:

Rai =
αρg∆Th3

κηi
(9)

- Question 3
Give the internal velocity as a function of the Rayleigh number.

- Question 4
We now consider the stagnant lid regime situation. The mantle deforms only below a frozen lithosphere. At the
equilibrium, the internal temperature is very close to the core temperature. The temperature contrast inside
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the deforming domain is now ∆Trh (where rh stands for “rheological”). In such case, in the internal region,
the viscosity can be considered homogeneous. Therefore, the scaling laws previously derived still apply. The
deforming boundary layers inside the deforming domain are a thickness δrh (they correspond to the lithosphere
in the isoviscous case)

Using the continuity of heat flux at the base of the lithosphere:

δrh
∆Trh

=
δ

∆T
(10)

where δ is the lithosphere thickness (the stagnant lid thickness).
We define a dimensionless Frank-Kamenetskii parameter p:

p = θ∆T (11)

The rheological temperature scale in the deforming domain is defined by dimensional analysis:

∆Trh =
∆T

p
(12)

Find the lithosphere thickness as a function of the dimensionless Frank-Kamenetskii parameter and the
internal Rayleigh number.

3


