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• Basic equations you need to know in geodynamics 
• Fundamentals of fluid dynamics 
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• Dynamic similarity 

• Fundamentals of mantle convection 
• Boussinesq approximation 
• Rayleigh number and Nusselt number 
• Stability analysis of mantle convection



Examples: Post-glacial rebound

Coastline photo from Turcotte & Schubert, 2002)

Initial: h(t=0) = h0 cos(2π/Lx) 
Assumption: L >> h0



Example: Ductile structures
http://www.sjsresource.com.au/images/Photo%20Galleries/Structural%20Geology/Folds/multilayer

%20behaviour%20Folding,%20Ticino%203.jpg

O(1) m



Example: Ductile structures

O(100) m

http://www.geosci.usyd.edu.au/users/prey/Teaching/Geol-1002/HTML.Lect4/LargeFold.jpg



Example: Ductile structures

O(1000) km

http://en.wikipedia.org/wiki/Fold_mountain#mediaviewer/File:Zagros_1992.jpg



A convecting Earth
Plate tectonics provides a 
framework to understand global 
seismicity, volcanism and mountain 
building processes.

Plate motion and the interaction of 
these plates underpin this theory

* Earth has a heat source 
coming from the core!
!
* Heat is converted into 
motion via density 
variations

* Drifting continents 
* Subduction zones 
* Hotspots

* Spreading centres 
* Post glacial rebound 
* Heat budget



Thermal convection

Variations in temperature cause 
small changes in the fluid 
density

Buoyancy forces cause cold 
(compressed, i.e. higher 
density) material to sink

http://dreamtigers.wordpress.com/2011/05/11/plate-tectonic-metaphor-illustrations-cmu/

ht
tp
://
w
w
w
.s
ee
.le
ed
s.
ac
.u
k/
st
ru
ct
ur
e/
dy
na
m
ic
ea
rt
h/
co
nv
ec
tio
n/
m
od
el
s.
ht
m

ht
tp
://
as
ap
sc
ie
nc
e.
tu
m
bl
r.c
om
/p
os
t/
50
41
90
05
20
8/
th
e-
ea
rt
hs
-c
en
te
r-
is
-o
ut
-o
f-s
yn
c-
w
e-
al
l-k
no
w



Early experiments

Brittle material

Viscous fluid “convection”

Convection = flow 
driven by internal 
forces (buoyancy)

In the Earth, density 
variations are 
attributed to 
pressure, 
temperature and 
composition

Convection drives large-scale dynamics within in the Earth’s mantle



Modern experiments



Fundamentals of 
fluid dynamics



Frames of reference
DT

Dt
= r2T
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Material derivative

Stationary frame (Eulerian)

Moving frame (Lagrangian)

convective rate of change due to transport 
of material to a different position (x) with 
respect to a fixed coordinate system

local rate of change due to 
temporal variations at a 
position x

coordinate system is transported with the 
material, thus only the local rate of change 
remains
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Conservation of mass
• General continuity equation: 

!

!

• Incompressible fluid
For many geological material (such as the Earth’s crust and mantle), 
over long time-spans, one may assume an incompressible condition 
(e.g. the density of each material point does not change with time)

Valid assumption when pressure and temperature changes are not 
very large and no phase transformations (e.g. no large volume 
changes) occur within the medium

r · v = 0

@⇢

@t
+r · (⇢v) = 0

D⇢

Dt
= 0



Strain

Tensile strain - or - direct strain

Shear strain

Volumetric strain (dilatation)
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Tensor: Physical meaning

⌧xx

⌧yy

⌧yx

⌧xy
⌧ij

direction face 
normal 
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Strain-rate tensor
• Time rate of change of the strain tensor 

!

!

!

!

!

!

• A deviatoric tensor has a mean (average) of zero, e.g.
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Stress tensor

stress [Pa]

pressure [Pa]

deviatoric stress [Pa]

p = ��
kk

= �1

3

(�
xx

+ �
yy

+ �
zz

), for k = 1, 2, 3

stress = deviatoric stress - pressure

�ij = ⌧ij � p�ij

�ij = ⌧ij � p�ij

�ij = ⌧ij � p�ij

�ij = ⌧ij � p�ij



Constitutive law for a fluid
• Viscous stress 

!

!

!
• Incompressible 

!

• Expanded form (2D)

deviatoric!
stress [Pa] viscosity [Pa s]

deviatoric!
strain rate [1/s]
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Conservation of momentum
• General equation: 

!

!

!

!

• Mom. balance for a creeping fluid: 
!

• Primitive equations (v,p) obtained by 
• inserting relationship for deviatoric stress and pressure 
• inserting constitutive law 
• replacing strain-rates by velocity gradients
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Dimensional considerations: 
 - plate velocity ~ 1 cm/year,  
   changes occur on 1 Myr timescale   
 - density ~ 3000 kg/m3, g = 10 m/s2 ⇢g ⇠ 104

⇢@v/@t ⇠ 10�19

“Stokes flow”



1D shear flow (Couette)

• Ignore body forces 
• Steady state 
• Constant viscosity 
• 1D velocity field 
• Pressure gradient is zero

�
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With: 

Vx = 5 cm/year 

H ~100 km 

η ~ 1022 Pa s 

σxz ~ 150 MPa 
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1D pipe flow (Poiseuille)

• Ignore body forces 
• Steady state 
• 1D velocity field: Vz(x) 
• Pressure gradient is 

constant 
• Viscosity is constant



Dynamic similarity
• Perform an infinite number of experiments to understand 

the dynamics 
• or… find a more compact representation of the equations 
• Non-dimensional numbers



Flow regimescHAP.5l BOUNDARY LAYER FLOW AND FLOW IN PIPES AND DUCTS

(b) Re :

(d) Re: l00O

Fig. $6. Flow over a cylinder at different Reynolds numbers.

flow may seem strange but is a very important phenomenon. Such periodic shedding gives rise to a
periodic force on the object, and if coupling occurs with the mechanical system of the object itself a
self-sustained oscillation may result. Resonance conditions may cause catastrophic effects.

The actual position of separation is diffrcult to compute analytically because of the interaction of
the wake and potential flow region. The wake itself changes the potential flow pattern upstream and the
corresponding pressure gradient along the surface. The separation point depends on the pressure gra-
dient along the surface and the turbulence level in the boundary layer. The location of the separation
point moves toward the rear (or trailing) edge as the turbulence level increases. The level of turbulence
in the boundary layer is affected by the roughness of the surface and the level of turbulence in the free
stream outside the boundary layer. Later we will discuss the effect of separation and the boundary layer
on drag. In many flows one finds that the boundary layer is so small over the entire body that a
solution neglecting viscosity completely (i.e. a potential flow solution) gives accurate results for the
pressure distribution. Such is the case for flow over streamlined airfoils, for example. However, if the
body is blunt in the rear and the wake becomes appreciable because of boundary layer thickening or
separation, the potential flow solution is incorrect except over the front portion of the body where the
boundary is thin.

5.2 EXTERNAL FLOWS--SOUNDARY LAYERS

Flow Over a Flat Plate

The flow over a flat plate is characteristic of external flows in general. This flow is shown in Fig. 5-1.
The boundary layer thickness is zero at the leading edge and increases with distance along the plate
surface. The early portion of the boundary layer is laminar but may be followed by a transition region

101

(a)Re<l



Flow regimes - Issue of scale
Karman vortex sheet caused by wind 
flowing around the Juan Fernandez 
Islands of the Chilean coast

O(cm) O(km)



Schellart (2008)

Permits meaningful models to be 
developed

Kincaid (2013)



Reynolds number of the mantle
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ratio of inertial forces to viscous forces

Mantle values: 

ρ ∼ ? kg/m3  

U ~ ? m/s 

h ~ ? km 

η  ~ 10? Pas 

Re ~ ? 

Characteristic values for the mantle



Fundamentals of 
mantle convection

(buoyancy driven incompressible Stokes flow)



Boussinesq approximation
• Thermal variations in a fluid lead to small amounts of 

expansion / contraction. 
• Expansion results in lowering of density, e.g. resulting in a 

buoyancy force —> leading to fluid motion

⇢ = ⇢0 + ⇢0 ⇢0 ⌧ ⇢0

⇢0 = �⇢0↵v (T � T0)

coefficient of thermal expansivity [1/K]

Reference temperature 
corresponding to ref. density 

Reference density

perturbation



Mantle convection eqns.
Compact form:

Constant viscosity and constant conductivity:
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Non-dimensional form
(1) Dimensional form:

�rp+ ⌘r2v = �⇢0↵Tgêz
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(2) Perturbation from 
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(3) Scaling:
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Rayleigh number
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Rayleigh number (Ra)
• Describes the relationship between buoyancy and 

viscosity within a fluid 
• The Rayleigh number gives a sense of the “vigour” of 

convection 
• For small temperature difference (small Ra): conduction is 

the dominant mode of heat transfer 
• For larger Ra: convection becomes the dominant mode 
• The transition between conduction and convection is 

referred to as the “critical Rayleigh number (Racr)” 
• Where does this transition occur?



Stability analysis

Below Ra critical, !
no convection occurs

657.5

Model definition:

Procedure:

T = T
conductive

+ T 0 = T
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+ T
1

T1(x, y) = f(y) sin
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* For small velocity and T1, we can linearise the system 
* Energy equation expressed in terms of T1 and Vz 
* “Small” terms are neglected 
* Solve via separation of variables



Critical Rayleigh number
• More than one definition exists…



Numerical experiments

Ra =
↵⇢0g�Th3
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r0 · v0 = 0

DT 0

Dt0
= r02T 0



Numerical experiments



Nusselt number (Nu)
• The Nusselt number (Nu) is a ratio of convective heat transfer to 

conductive heat transfer 
• Nu is a non-dimensional number 
• In the context of mantle dynamics, it’s defined using horizontally 

averaged heat fluxes over the upper/lower boundaries 

!

!

!

!

!

• Nu provides a measure of the efficiency of heat loss through the 
surface via advection
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Nu-Ra scaling laws

Nu = cRa�

c = 0.27, � = 0.3185

Christensen (1984)

Problem dependence
(iso-viscous: moderate Ra)

(iso-viscous: high Ra)

(variable viscosity)

Fukao et al. (2008)



https://youtu.be/t1UH9Qjy28I



Summary
• Introduced the fundamental equations which describe the 

long-time evolution of the mantle 
• conservation of momentum for highly viscous fluids 
• incompressibility 
• dynamic similarity 
• Boussinesq approximation 
• important non-dimensional numbers for mantle 

convection: Rayleigh number (Ra) and Nusselt number 
(Nu)


