Mantle-lithosphere interactions:
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Tectonics

Set of “rigid” plates
drifting over a convecting
VISCOUS mantle

Heat released from the
core and internal
radiogenic elements

The mantle cools over
time by thermo-chemical
convection and
conduction

Plate tectonics Is the
most efficient way to
remove heat from the
Earth’s interior
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Convection and continents

170 Ma Jurassc 220 Ma Late Trassic

Breakup of Pangaea (Windley, 1995)



Plate boundary classification

continental / oceanic convergent boundary

—— continental rift boundary / oceanic spreading ridge
~—— continetal / oceanic transform fault
4+ subduction zone
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Spreading center

* Divergent boundary

* Accretionary plate
boundary

* Oceanic plate creation



Bathymetry
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* Topographic highs in
the ocean

e High heat tflow
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Volcanic line

Trench N\

Trenches

* Convergent plate
boundary

* Oceanic plate
destruction

Wadks-Benmoll
SBEMC 7ONA

-

Figure 2.21. Schematic of (&) oceanic lithosphere subducting beneath oceanic lithosphere and the creation of
= volcanic island arc, and (b) oceanic lithasphere subducting beneath continental hithosphere and creation of 2
volcanic chain on the continent. After Tarbuck and Lutgens (1988).



Trenches

~— continental | oceanic convergent boundary i
— continental rift boundary ! aceanic spreading ridge| _—

—— continetal | oceanic transform fault
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Trenches

e Seismicity
* \olcanism

Ocean trench

(converTence) \\ A ‘

il L;trh’os

* Shallow earthquakes

* Deep earthquakes
(mainly thrust faulting)

http://www.earth.northwestern.edu/people/seth/107/Ptdev/Image80.gif
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Figure 2.20. Double Benioff zone marking subduction 2 the Japan arc. Circles are foci of eanthguakes recarded
in 1975 and 1976. VF - volcanic froet, TA - Jupan Trench axis. After Hasegawa et al. (1978b). Reérawn from

Bolt

(1593).



Transtorm faults

Shearing (or slip) —_—
boundary S | N

Fracture Tmm Fracture Figure 2.13. Segments of an ocean ridge offset by
I

Fault is 90 degrees to o T [ e i
ridge axis (e.g. — ||

parallel to the

spreading direction)

' '
S Fracture Zone —e

May posses vertical "
offsets ‘

Physical origin is ﬁ
poorly understood -

Figure 2.14. Sketch of a ridge-ridge transform fault showing exaggerated differential vertical subsidence across
the fault.




Transtorm faults
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Driving forces of plate tectonics

e Driving forces
* ridge push
e slab pull

* Resisting forces Trench friction Ridge push

-

e [rench
friction

ﬁ

. Basal drag Basal drag

e Suction in the Slab pull
mantle



Ridge push

Ridge push or
‘gravitational sliding”

Plate moves from ridge,
continuing to cool and
thus thickens

Cooling causes density
iIncrease and
subsidence w.r.t the
ridge axis

Relative elevation
difference creates
horizontal buoyancy
force pointing outwards
from ridge axis

Volcanics and nonmarine sediments

Rift valley

Faulted valleys

—

Carbonate platform

Continental slope

: Continental rise
Continental shelf

Vertical distances not to scale



Which force dominants?

TRENCH SUCTION \




Avallable dat
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GPS velocities
Plate geometries

Estimates on
trench, ridge,
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Looking for correlations
The Forsyth & Uyeda 1975 study

“On the relative importance of the driving
forces of plate motion”

Donald Forsyth and Seiya Uyeda,

Geophys. J. R. astr. Soc. (1975), 43, 163—200



Methodology

* Forces

* Act on bottom surface of plates

e Act along plate boundaries (ridge, trench, transtform)
* Plate inertia negligible

* implies dynamic equilibrium

 Implies net torque equal zero on each plate

e Determine size of forces which minimizes net torque on
each plate via an inversion



Methodology

Fre

Oceanic plate

Continental picte

Fsa

FiG. 1. Possible forces acting on the lithospheric plates. The forces and abbrevia-

tions are defined in the text.



Assumptions

 Mantle drag proportional to surface area and relative
velocity

* Ridge push proportional to length of the ridge. Ridge
push is independent of plate velocity

e Slab pull is a function of density of slab and slab volume
(length of trench). Slab pull is independent of plate
velocity.



Mantle drag”?

Expect correlation
between plate area
and velocity
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Mantle drag”?

e Expect correlation
between plate area
and velocity
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* Plates with larger
continental areas
do appear to move
slower
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Friction along transform faults®

e Expect transform
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Ridge push?

e Expect plates with
more effective
length (e.qg. length
not cancelled by
another ridge) to
move faster

“Top plates”
Antarctic, Africa,
Cocos, Nazca

Correlation does not
appear to be very
strong
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Slab-pull?

e Expect plates with
more larger length
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Correlation summar

328 Constraints from Seismology, Geoid Topography, Geochemistry, and Petrology
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Figure 1 Color shading of the covariance matrix for selected plate geometry characteristics from Forsyth and Uyeda (1975)
(see table 1 of Forsyth and Uyeda). The percentage of subduction zone, ridge, and transform fault boundary are the effective
percentages (as defined by Forsyth and Uyeda), where the effects of boundaries that occur on opposing sides of the plate are
assumed to cancel out and are not included in the percentage of length of that type along the boundary. Green is strong
positive cormrelation, red is strong negative correlation.




Conclusions of Ueyda

* Plate velocity is a function of the total area of the
continental lithosphere and the percentage of the plate
boundary which is connected to a subducting plate

* |n other words,
e continental plates are slow (due to increased drag)

* and oceanic plates that are attached to subduction
zones are fast

e These results imply that slab pull is the primary driving
force of plate motion



Importance of subduction

a Tectonic-scale subduction system

e Subduction provides the main
force driving plate motion and
flow in the Earth’s mantle

* With respect to the evolution X
. . Regional-scale subduction system
of slabs, we interested in Guimsens gy ] Mk S
understanding; —

* the role of rheology

* the role of slab geometry

e nature of flow field
associlated with subduction

(Billen, Annuv. Rev. EPS, 2008)



Subduction processes:
Observations



urface data

~— continental / oceanic convergent boundary
— continental rift boundary / oceanic spreading ridge|

e Jrench location
* Active seismicity
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Surface data

 Geometry (length, curvatu

* Velocity (advance, retreat)

re)

(Schellart et al, Nature, 2007)
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Volumetric models / data

Tonga arc

Vanuatu,
3 Tonga wrench

Scale document down

Lau basin

410km

660km

a\gms 1600km
2641km

410km

660km

Austtalia
plate

o 410km

660km

1600km

- (Van der Hilst, Nature, 1995)
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Slab interfaces

Volcances Japan
A NE Japan Pacific ocean trench

Japan

DEPTH(km)

(Zhao et al, Nature, 1992)



Slab geometry diversity
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‘Slab detachment” —
Break-off? gaps? tears”



Seismic gap
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Fig. 1. Map of the [zu-Bonin-Manana region with the major features of the area, hypocenters of events with magnitudes of 5.0 and greater from
the NEIC catalogue, and location of the cross sections used in Fig. 4.
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Seismic gaps... tears?
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Fig. 1. Map of the [zu-Bonin-Marniana region with the major features of the arca, hypocenters of events with magnitudes of 5.0 and greater from
the NEIC catalogue, and location of the cross sections used in Fig. 4.
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Subduction processes:
Laboratory experiments



L aboratory experiments

* No over-riding plate

Free trailing edge ... 4.

Trench..
Lateral
slab edge .«
AN
PPer mantle mode ( m)
De
moat Bate)
//’ -\'
.4 x Hinge
Box width (60 cm)— 5 Slab tip
e@e\
"‘o‘ Qe(:)Q
“\\ -e““
o
00@

No ridge push

Driven solely by “slab
oull” (imposed
perturbation)

* Viscous rheology

e “slab” — silicone

* "mantle” — glucose



Free—subducticn

Experiment 23 Ngp/ny = 66

slab retreat

“Upper mantle”
models: scaled

tank depth ~720
Km

Vary the viscosity
contrast between
the slab and
mantle

Experiment 25 Nge/ny = 1375

slab retreat then ac



Shallow mantle models

Movie upper mantle experiment 23 (side-view perspective)
Nsp / N = 66
W.P. Schellart, Geochemistry Geophysics Geosystems [2008]

Movie upper mantle experiment 22 (side-view perspective)

Nep [ Ny = 709
W.P. Schellart, Geochemistry Geophysics Geosystems [2008]

Movie upper mantle experiment 25 (side-view perspective)
Nsp [ My = 1375
W.P. Schellart, Geochemisitry Geophysics Geosystems [2008]




Deep mantle models

A Exp. 10 ngp/ny, =59

 “Upper-lower
mantle” models:
scaled tank depth

12000 s nr .
14400 s
16800 s

18000 s 4
19200 s -

Experiment 10
Ngp/My =59

Experiment 7
rlsp/ T]M =1 348

Experiment 8 o JAN
nSPI’]M= 253 375s ¥ b - —



Flow field

Strong poloidal
mantle flow

s

No slab tip
_ poloidal mantle
flow

Strong toroidal
~ flow arounad
slab edges
within the
mantle

~Symmetry plane



Flow field

Strong toroidal
flow around slab
edges within the
mantle

|

Movie upper mantle experiment 19

(bottom-view perspective)

Nep | My = 217

W.P. Schellart
Geochemistry Geophysics Geosystems [2008]




Subduction regimes
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Subduction processes:
Insights from numerical
experiments



Slab curvature

Aot TN e Curvature of ocean arcs
2 previously attributed to
spherical nature of Earth

e Curvature can arise from

e feedback between
migrating lithosphere and
mantle flow (lower bound)

* internal heterogeneities
(upper bound)

Stress profile




Slab curvature

Evolution and diversity of subduction zones

controlled by slab width

W. P. Schellart, J. Freeman’, D. R. Stegman?, L. Moresi* & D. May’

Subducting slabs provide the main driving force for plate motion
and flow in the Earth’s mantle' % and geodynamic, seismicand geo-
chemical studies offer insight into slab dynamics and subduction-
induced flow® '*. Most previous geodynamic studies treat subduc-
tion zones as either infinite in trench-parallel extent™** (that is,
two-dimensional) or finite in width but fixed in space™*. Sub-
duction zones and their associated slabs are, however, limited in
lateral extent (250-7,400 km) and their three-dimensional geo-
metry evolves over time. Here we show that slab width controls
two first-order features of plate tectonics—the curvature of sub-
duction zones and their tendency to retreat backwards with time.
Using three-dimensional numerical simulations of free subduction,
we show that trench migration rate is inversely related to slab width
and depends on proximity to a lateral slab edge. These results

are consistent with retreat velocities observed globally, with max-
imum velocities (6-16 cmyr™") only observed close to slab edges
(<21,200 km), whereas far from edges (>2,000 km) retreat veloci-
ties are always slow (<<2.0 cmyr’l). Models with narrow slabs
(=1,500 km) retreat fast and develop a curved geometry, concave
towards the mantle wedge side. Models with slabs intermediate in
width (~2,000-3,000 km) are sublinear and retreat more slowly.
Models with wide slabs (=4,000km) are nearly stationary in the
centre and develop a convex geometry, whereas trench retreat
increases towards concave-shaped edges. Additionally, we identify
periods (5-10Myr) of slow trench advance at the centre of wide
slabs. Such wide-slab behaviour may explain mountain building
in the central Andes, as being a consequence of its tectonic setting,
far from slab edges.

(Schellart et al, Nature, 2007)
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Slab curvature

5 MONASH University Schellart et al.(2007)
Slab width = 600 km .

(Schellart et al, Nature, 2007)

5 MONASH University Schellart et al.(2007)
Slab width = 6000 km e




Subduction style

One-sided subduction

eeeeeeee t ating shorten g dvancing

eV

Two-sided subduction

symmetri asymmetri
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Subduction style

0 No Wedge Hydration + Weak Plates => Two-Sided Subduction km
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1200 ¢/

800 1000 1100 1200
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Subduction style

Wedge Hydration + Strong Plates => One-Sided Subduction
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Subduction style

Free surface

Free slip
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Seismic anisotropy

e Shear wave splitting in
anisotropic material

* Polarized shear wave
(/> enters, two waves exit at
— . .
A=Y different s_peeds and with a
phase shift

Lg{ * Delay and phase shift can
be used to infer the nature
of the effective anisotropic
constitutive tensor




Sources of seismic anisotropy

« SPO (shape preferred
orientation)

e Due to material
Inhomogeneity, e.g.
layering, aligned faults /
cracks, aligned melt / fluid

lenses
* CPO / I—PO (CryStal / |att|Ce Olivine
preferred orientation) I
+ Olivine crystal is highly %
anisotropic

464
520_4
866 1

)

« Under dry conditions,
olivine aligns with its fast s
axis in the direction of flow



Anisotropy observations

<+—p SKS fast direct;on - ? Unknown SKS fast direction
Fault set orientation ? Unknown fault set orientation
---------- Earthquake elongated cluster




Trench parallel tlow?

log 10(viscosity)

1.42

0.868

.0.319




Trench parallel tlow?

Distance (km)
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Trench parallel tlow?

Jadamec & Billen, Nature 465, 338—341 (2010)

a)
log, ) Pas
2 D M
b Rt 2 T

Figure 3: 3D mantle flow field and viscosity structure for slaby, s model with composite rheology (o, = 500
MPa; PBSZ viscosity is 10 Pa-s). (a) Isosurface and cross sections through composite viscosity show the
strong slab and the low viscosity regions in the mantle wedge and beneath slab, Low viscosity regions
correlate with high strain-rates.  (b) Isosurface of viscosity with oblique, cross section, and radial slice
through welocity field. Cross section BB' shows poloidal flow and along-strike flow. Map view slice shows
counter-clockwise toroidal flow and an upward component of flow east of the slab edge.

Figure 4: Velocity and ISA orientations at 100 km depth. (a) Velocity field shows a trench-parallel component
of flow near the slab nose for slabgyys with composite viscosity (o = 500 MPa; PBSZ viscosity is 10%° Pa-s).
(b) The Newtonian viscosity has a damping effect on the toroidal component of flow. (¢) There is no toroidal
flow above the slab nose for slabggas. (d—f) ISA orientations colored by the lag parameter (I1). Superimposed
are SKS fast-axis directions back-projected along the ray path to 100 km depth®. ISA orientation provides
a good estimate of LPO for Il < 1.0.
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On-going research topics

Origin of seismic anisotropy near trenches
Mechanisms required to initiate subduction
Role of fluid and melt migration in subduction processes

Factors which lead to the development of slab break-off,
tears, gaps

Topographic signature associated with slab detachment

How the evolution of the landscape (erosion, deposition)
iInfluence styles of subduction

Physical origin and rheology of transform faults

Ultimate fate of subducted slabs



