
Introduction to Finite Element

Modelling in Geosciences:

Code Verification

D. A. May & M. Frehner
ETH Zürich

July 10, 2014

1 Overview

The purpose of this session is to learn how to determine if your implementation
of the finite element method (i.e. your Matlab code) is “working correctly”. By
“working correctly” we mean that your FE code is solving the partial differential
equations (PDE’s) accurately, and most importantly that the numerical errors
associated with the discrete solution of the PDE decrease at the expected rate
when the grid is refined.

2 Basics

Suppose we had a smooth, infinitely differentiable function f(x), then we can
locally approximate the function via an infinite Taylor series expansion

f(x+ h) = f(x) + h
∂f

∂x
+
h2

2

∂2f

∂x2
+
h3

6

∂3f

∂x3
+ . . .

=

N∑
i=0

hn

n!

∂nf

∂xn
,

(1)

where h is a small perturbation. The more terms N we include, the more
accurate the expansion is. For example, consider the truncated Taylor series
expansion

f(x+ h) = f(x) + h
∂f

∂x
+
h2

2

∂2f

∂x2
+
h3

6

∂3f

∂x3
, (2)

where all terms with powers ≥ 4 have been neglected. We will use the notation
O(hk) to indicate the order of accuracy of discrete solutions. We can express
the approximation error in Eqn. (2) which results from dropping the terms with
order hα, α ≥ 4 via

f(x+ h) = f(x) + h
∂f

∂x
+
h2

2

∂2f

∂x2
+
h3

6

∂3f

∂x3
+O(h4), (3)

which indicates that the truncated Taylor series is fourth order accurate.

1

Code Verification

3 Errors

Consider the PDE
∇2u = f, (4)

where we denote by u, the exact solution. If we apply the FE method to the
above we obtain the following matrix problem

Lhuh = Fh. (5)

Here Lh is the discrete Laplacian and Fh is the discrete right hand side of
the PDE. We denote by uh the solution of the discrete problem. Note that in
general, uh will only ever by an approximate solution to the PDE. Accordingly,
we can define the discretisation error e, as

e = u− uh. (6)

The superscript h notation is frequently used to indicate that the discrete solu-
tion is a function of the grid resolution h. In the above, e is function of space.
In practice, it is more convenient to quantify the error via a single number, i.e.
via some measure of the global discretisation error. Possible choices for global
error measure include the L1 measure

E(Ω)L1
=

∫
Ω

∣∣u− uh∣∣ dV (7)

and the L2 measure

E(Ω)L2 =

√∫
Ω

|u− uh|2 dV . (8)

3.1 Sources of errors

We consider that there are two main sources of error in the FE implementations
discussed in this course. These can be classified as discretisation errors or
numerical errors. Errors associated with discretisation related to the size of the
element used h, and the order of the polynomial used p. For example, the first
exercise used ten (h = 10/10, 1D linear elements (p = 1). Numerical errors
relate to round-off (i.e. due to finite precision arithmetic) and the accuracy of
the solver used to obtain uh in Eqn. (5). In all the examples we considered in
this course, the solver employed by Matlab is an exact LU factorisation - which
for the purpose of this class we will regard as having zero numerical error.

3.2 Expectations

The FE method benefits from having a very solid and rigorous mathematical
background. This mathematical foundation provides many results regarding the
errors we can expect from finite element calculations. We will not derive the
errors estimates for the discretisation errors here, but rather state them and
leave the interested reader to discover the world of finite element analysis in
their own time.

In the following error estimates the coefficients Ci are constants which are
independent of the grid resolution h, and the polynomial order of the basis

2

3.2 Expectations Code Verification

function p. Note that a linear element implies p = 1, quadratic implies p = 2,
cubic implies p = 3, etc. Each error estimate is associated with a different
constant Ci. In general, the constants Ci cannot be derived analytically as they
are problem dependent (e.g. there depend on the domain geometry, boundary
conditions, coefficients in the PDE), thus if desired, they must be computed from
numerical experiments. In practical computations we are usually less interested
in the specific value of Ci and are primarily concerned with only the order of
accuracy of the method.

STEADY STATE DIFFUSION (1D,2D,3D)

In the exercise considered in previous lessons, we used linear-1D (bilinear-2D,
trilinear-3D) elements to solve the steady diffusion equation. In this case, the
polynomial order of the shape function p, was p = 1. Using this element, the
errors expected are given by∫

Ω

∣∣T − Th∣∣ dV ≤ C1h,

in the L1 norm and [∫
Ω

∣∣T − Th∣∣2 dV]1/2

≤ C2h
2,

in the L2 norm. In general, for a shape function of order polynomial p, we
expect the following: ∫

Ω

∣∣T − Th∣∣ dV ≤ C3h
p, (9)[∫

Ω

∣∣T − Th∣∣2 dV]1/2

≤ C4h
p+1. (10)

ELASTICITY (2D)∫
Ω

∣∣u− uh∣∣+
∣∣v − vh∣∣ dV ≤ C5h

p (11)[∫
Ω

∣∣u− uh∣∣2 +
∣∣v − vh∣∣2 dV]1/2

≤ C6h
p+1 (12)

STOKES FLOW - MIXED METHOD (2D)

For convenience we will define the error of each velocity component as

eu = u− uh, ev = v − vh,

then the expected errors for pressure are given by[∫
Ω

∣∣p− ph∣∣2 dV]1/2

≤ C7h
q+1 (13)

and for the velocity we have[∫
Ω

|eu|2 + |ev|2 dV
]1/2

≤ C8h
p+1. (14)

3

Code Verification

[∫
Ω

∣∣∣∣∂eu∂x
∣∣∣∣2 +

∣∣∣∣∂eu∂y
∣∣∣∣2 +

∣∣∣∣∂ev∂x
∣∣∣∣2 +

∣∣∣∣∂ev∂y
∣∣∣∣2 dV

]1/2

≤ C9h
p (15)

Note that for the mixed method (used when solving Stokes flow), the pressure
basis function usually employs a different order polynomial to the velocity basis,
which here we denote via q.

Caveats

The mathematical analysis performed to obtain the above error estimates re-
quired numerous assumptions to be made. The assumptions include: homoge-
nous material properties (diffusivity, viscosity, density, etc.); that the model
domain Ω can be completely resolved by the element with zero discretisation
error (i.e. the domain Ω is a rectangle and a structured grid of quadrilateral ele-
ments was used to discretise it); there is zero error associated with the boundary
conditions; there is zero error associated with the matrix solver.

Thus, we emphasize very strongly, that the results above are by no means
completely universal. Whilst some of the assumptions can be relaxed and the
error estimates above will remain valid - however, violating these assumptions
can sometimes result in completely different (usually lower) error estimates.

4 Measuring the Order of Accuracy

To keep the discussion general, let’s assume that the problem of interest can be
described by the abstract PDE

Lu = f,

which is valid over the domain of interest Ω. For this problem, we will consider
that u is subject to the following Dirichlet boundary condition

u(x) = g(x) for x ∈ ∂Ω,

where the boundary of Ω is denoted by ∂Ω and g(x) is a prescribed function (i.e.
it’s known). Furthermore we will assume that given f , g and the differential
operator L, we have (by some means) obtained a function u which satisfies the
boundary and the PDE above, i.e. we have a solution to the problem of interest.

The procedure to measure the order of accuracy of the discretisation error
can be summarised as follows:

1. Define a mesh on your domain Ωh, with a mesh resolution of h;

2. Discretise the differential operator L and f , and solve for uh;

3. Compute a global error measure, say E(Ωh)L2
for example;

4. Generate a new mesh, Ωh/2 by sub-dividing all the elements within the
original mesh Ωh;

5. Repeat the steps above.

4

4.1 Asymptotics Code Verification

If the sequence above is repeated for say 4-8 different meshes, each with suc-
cessively higher resolution, the results of E (the error measured in some norm)
versus h should be plotted on a log10− log10 graph. If the meshes used in the
study are suitably fine and resolve the analytic solution well, then the plotted
data in log-log space should lie along a straight line. Performing a linear regres-
sion should result in a correlation coefficient very close of 1.0. The gradient of
the this log-log plot will define the order of accuracy of our numerical solution.

To understand this result, recall that the error one a given mesh domain Ωh

is assumed to vary with h according to

E(Ωh) ≈ Chk, (16)

where C is a constant independent of h. C is considered a function of the model
problem, i.e. it relates to the shape of the domain used, the choice of boundary
conditions and material properties used in the PDE. On a finer mesh, Ωh/r, we
have

E(Ωh/r) ≈ C
(
h

r

)k
, (17)

where r is a refinement factor. For simplicity in the steps 1-5 above we consid-
ered a refinement factor of r = 2. Combining Eqns. (16) & (17) we have

E(Ω1)

E(Ω2)
= rk (18)

and now taking the log10 of both sides yields an expression of the order of
accuracy k:

k = log10

(
E(Ω1)

E(Ω2)

)
. [log10(r)]

−1
. (19)

Note that we are most interested in the behaviour of the error in the asymp-
totic limit, h→ 0. If your initial mesh was too coarse and failed to resolve the
analytic solution, the computed errors may not lie along a straight line. In this
case, one should consider only using the errors associated with the finest meshes
considered.

4.1 Asymptotics

Measuring the order of accuracy k of a method only provides information con-
cerning how the error changes (ideally descreases) as the mesh resolution h is
decreased. For example, if a method is second order accurate O(h2) (in some
norm), ie. k = 2, then we can expect that the error (measure in the appropriate
norm) obtained on a grid with resolution h, will reduce be a factor of four if
we solve then solve on grid with resolution h/2. The order of accuracy tells us
nothing about the absolute value of the error. Another way of stating this, is the
order of accuracy gives us information about the slope of the log(E) − log(h)
graph, but doesn’t provide us with the offset, i.e. the constant C in Eqn. (16)
is unknown.

In the asymptotic limit of h→ 0, then a fourth order method will always be
more accurate than a second order method. However, in practice we are often far
from this asymptotic limit, thus the question of which method is better cannot
be answered with only knowing the order of accuracy. This point is illustrated

5

Code Verification

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
log10(h)

−20

−15

−10

−5

0

5

10

lo
g

10
(E

2
)

Discretisation error

Method A : k = 2.0

Method B : k = 6.0

Figure 1: Discretisation errors for two methods with an order of accuracy of 6
(Method B) and 2 (Method A). Note the cross over point at h ≈ 1/56

in Fig. 1. Pure analysis may provide upper bounds on what the constant C
might be (under quite strict assumptions), but for all practical purposes the
constant C must be determined via numerical experiments.

5 Analytic and Manufactured Solutions

In all the previous sections it was taken for granted that we also had an analytic
solution u which we could use to measure the error within our numerical solution,
uh. The classical approach to obtain an analytic solution is as follows. Given
the PDE of interest, Lu = f :

1. Choose a simple domain Ω (i.e. a box/cube);

2. Define the right hand side f ;

3. Select your Dirichlet or Neumann boundary conditions;

4. Use all your skills and find a function u which satisfies the PDE and the
boundary conditions chosen.

In general, analytic solutions for multi-dimensional problems can be difficult to
obtain. The complexity of the obtaining analytic solutions continues to increase
if we wish to consider coefficients (i.e. diffusivity, viscosity) which vary as a func-
tion of space, or if we were to consider a domain which was no longer naturally

6

Code Verification

defined in the chosen coordinate system (i.e. a rectangle/cube in x, y, z). Up to
this point, we have only consider linear problems. The problem is compounded
if one seeks an analytic solutions for non-linear problems. Frequently researchers
have to resort to using analytic solutions for 1D, homogenous coefficient prob-
lems to verify their numerical model (e.g. Poiseuille flow). Using the solution
from 1D Poiseuille flow is hardly appropriate to verify a code designed to solve
3D, variable viscosity Stokes flow. An alternative approach must be employed
- this approach is called the Method of Manufactured Solutions (MMS).

The basic idea to constructed manufactured solutions is completely general
and extremely versatile. The concepts can be applied to arbitrarily complex
PDE’s (linear, non-linear, time dependent) and to arbitrarily complex domains
and boundary conditions. The basic process of manufacturing a solution are
described below. Given the PDE, Lu = f :

1. Choose the solution uMS ;

2. Define any coefficients within L;

3. Compute fMS = LuMS and define the result to be your right hand side,
i.e. f = fMS ;

4. Given any domain Ω, evaluate uMS or ∂uMS/∂n to define any Dirichlet
or Neumann boundary conditions respectively.

The procedure only requires to choose a function for the solution, and then apply
the action of the differential operator L. Whilst the algebra involved may be
somewhat tedious to define the right hand side function f , we are only required
to perform differentiation. The action of differentiation is easy (compared to
integration) and can be readily performed by symbolic algebra packages such as
Maple, Matlab (using the symbolic toolbox) Mathematica and sympy (symbolic
python).

It is important to emphasize that the function chosen for u does not have to
be physically meaningful. It is not important whether u “looks” like a solution
you would typically obtain from your application. The purpose of manufac-
turing solutions is solely to ascertain that what is implemented in your code is
producing discrete solutions of the quality expected by that particular numerical
method.

There are some caveats to the method of manufactured solutions which
should be mentioned. The function chosen for u and the coefficients in the
operator L, must be smooth and differentiable. Care should also be exercised
that the constructed function fMS is “well behaved”, in the sense that it doesn’t
contain any singularities. This is easily confirmed by simply plotting the func-
tion. Furthermore, fMS should be able to be resolved on the grid sequence you
use when computing the order of accuracy. The coefficients should be chosen
so that are physically reasonable, e.g. coefficients representing viscosity should
not be negative.

7

5.1 Example: A linear PDE Code Verification

5.1 Example: A linear PDE

The linear differential operator associated with the 1D diffusion equation, with
a spatially variable coefficient is given by

Lu :=
∂

∂x

(
κ(x)

∂

∂x

)
T. (20)

First I choose the coefficient for the diffusivity to be

κ(x) = (4 tanh(10x) + 6) exp(0.8x), (21)

and the temperature to be

TMS(x) = 8 sin(x)x4 + 20. (22)

Using sympy (see mms-linear-Diffusion1D.py), I obtain the following right
hand side

fMS =
∂

∂x

(
κ(x)

∂

∂x

)
TMS

= [6 + 4 tanh(10x)][−8x4 sin(x) + 64x3 cos(x) + 96x2 sin(x)] exp(0.8x)

+ [40− 40(tanh(10x)2)][8x4 cos(x) + 32x3 sin(x)] exp(0.8x)

+ 0.8[6 + 4 tanh(10x)][8x4 cos(x) + 32x3 sin(x)] exp(0.8x)

(23)

The manufactured functions κ(x) and uMS , together with fMS are shown in
Fig. 2. This example is demonstrated in the script
ML FEM 1D DiffusionVariableCoeff MMS.m and the order of accuracy is de-
termined using the resulting output. The output is processed in the script
ML FEM OrderOfAccuracy.m.

6 Exercises

1. Verify your 2D steady state, diffusion code which uses Q1 (bilinear) el-
ements. Choose a smooth, differentiable function for uMS for the tem-
perature. Use (i) a mesh of uniform quadrilateral elements, (ii) constant
thermal diffusivity κ = 13.4 and (iii) use the manufactured solution to
specify Dirichlet boundary conditions everywhere. Use the global error
measure in Eqn. (10). Follow the programming style in the example
script ML FEM 1D DiffusionVariableCoeff MMS.m. One important dif-
ference to note is that the example script uses 1-point Gauss quadrature
to evaluate the error. In this example, you should use the 2 × 2 Gauss
quadrature rule to evaluate Eqn. (10). Follow steps 1-5 in Section 4 and
measure the order of accuracy of your FE solution by modify the script
ML FEM OrderOfAccuracy.m. Deform the grid so that the elements are no
longer uniform quadrilaterals and measure the order of accuracy. Does
the order of accuracy change?

2. Verify your 2D elasticity which uses Q2 (biquadratic) elements. Choose a
function for the displacement solution (uMS , vMS) and use (i) a mesh of

8

Code Verification

−1.0 −0.5 0.0 0.5 1.0
x

0

5

10

15

20

25

30

u
M
S
,κ

M
S

κ(x)

uMS

−500

0

500

1000

1500

2000

2500

3000

f M
S

Manufactured solution

fMS

Figure 2: Manufactured solution for the 1D diffusion equation with a spatially
variable diffusivity.

uniform quadrilateral elements, (ii) constant elastic parameters and (iii)
use the manufactured solution to specify Dirichlet boundary conditions for
both the displacement degrees of freedom (u, v). Use the error defined in
Eqn. (12). Evaluate this integral using the 3 × 3 Gauss quadrature rule.
Compute the order of accuracy of your FE solution. As an additional
test, make the elasticity coefficients vary in space and see if the order of
accuracy changes. Note that you will have to re-compute fMS .

9

