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ETH Zürich

July 6, 2014

1 Literature & general information

The following script is largely based on lecture notes from Guy Simpson (now at
University of Geneva) and Boris Kaus (now at Johannes Gutenberg University
Mainz), who taught a similar course at ETH in the past. The emphasis in the
lecture is to write Finite Element codes from scratch. All codes are written
in MATLAB, and we expect you to be familiar with MATLAB. It is also ad-
vantageous if you already followed classes on programming the finite difference
method (e.g. 651-4241-00L, Numerical Modelling I & II: Theory & applica-
tions by Gerya and Tackley). We will mostly use lecture notes. In addition, we
recommend the following textbooks:

• The Finite Element Method using MATLAB. Kwon and Bang (1997).

• The Finite Element Method, Hughes (2000).

• The Finite Element Method, vol. 1, Zienkiewicz and Taylor (2000).

• Programming the Finite Element Method, Smith and Griths (1998).

• Computational Techniques for Fluid Dynamics, vol. 1, Fletcher (2000).

• Finite Elements and Fast Iterative Solvers, Elman, Silvester & Wathan
(2005).

For a brief and more general background on finite elements and computational
geodynamics, you can have a look at

• Numerical Geodynamics: An introduction to computational methods with
focus on solid Earth applications of continuum mechanics. Lecture notes,
University of Southern California, Becker and Kaus (2010). Available on
www.gfd.ethz.ch/˜kaus/Teaching.html

• Computational Geodyamics. Ismail-Zadeh and Tackley (2010).
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Figure 1: Overview of the computational solution technique.

2 Introduction

The purpose of this course is to learn how to solve differential equations with the
Finite Element Method (FEM). For the most part we assume that the equations
governing the processes of interest are known and given. We will focus on the
practical problem of how one goes from the equation to its solution. Although
there are a variety of numerical techniques that one can use to obtain numerical
solutions we will focus here solely on FEM.

The process of obtaining a computational solution consists of two stages
shown schematically in Figure 1. The first stage converts the continuous par-
tial differential equation and auxiliary (boundary and initial) conditions into a
discrete system of algebraic equations. This first stage is called discretisation.
The second stage involves solving the system of algebraic equations to obtain an
approximate solution to the original differential equation. The solution is ap-
proximate since errors are introduced by the replacement of continuous differen-
tial terms in the governing partial differential equation by algebraic expressions
connecting nodal values on a finite grid. Errors are also introduced during the
solution stage but these tend to be small in comparison to discretisation errors
unless the method is unstable.

To convert the governing partial differential equation to a system of algebraic
equations (or ordinary differential equations) a number of choices are available.
The most common are the finite difference, finite element, finite volume and
spectral methods. In principle, the solution does not depend on the method
chosen. Each method has its own advantages and disadvantages. The best ap-
proach is to choose the method which best suits the problem being investigated.
This course will only deal with the finite element method, which is widely used
in practice and is extremely powerful. The technique is slightly harder to learn
than, for example, the finite difference technique. However, as you will see, the
effort invested in initially learning FEM pays of later in the wide range of prob-
lems that the method is capable of solving. The FEM is especially well suited
(though not restricted) to solving mechanical problems and problems which in-
volve complex shapes. Another advantage of programming in the finite element
method is that the main structure of the code remains the same even for very
different physical problems. Thus, once you learn this basic structure, you can
modify it to solve a variety of problems with minimal effort.

3 The Finite Element Method

The finite element method is a technique for solving partial differential equa-
tions. Usually, only the spatial derivatives are discretized with the finite element
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method whereas finite differences are used to discretize time derivatives. Spatial
discretization is carried out locally over small regions of simple but arbitrary
shaped elements (the finite elements). This discretization process results in ma-
trix equations relating the loads (input) at specified points in the element (called
nodes) to the displacements (output) at these same points. In order to solve
equations over larger regions, one sums node-by-node the matrix equations for
the smaller sub-regions (elements) resulting in a global matrix equation. This
system of equations can then be solved simultaneously by standard linear al-
gebra techniques to yield nodal displacements. This last step completes the
numerical solution of the differential equation.

4 The Finite Element Method in 1D

The various steps involved in performing the finite element method are best
illustrated with a simple example. Consider the partial differential equation

∂T

∂t
=

∂

∂x

(
κ(x)

∂T

∂x

)
+ s(x), (1)

which governs transient heat conduction in one dimension with a source term
s(x). The dependent variable in this equation is the temperature T (x, t), the
independent variables are time t and distance x, and κ(x) is the thermal diffu-
sivity. We are interested in computing the temperature function T (x, t) which
satisfies Equation (1) (i.e., the solution) over the domain Ω = [xA, xB ] subject
to either i) Dirichlet boundary conditions of the form

T (xA, t) = TA

T (xB , t) = TB ,
(2)

where TA, TB are prescribed temperatures, or ii) Neumann boundary conditions
of the form

κ
∂T

∂x

∣∣∣
x=xA,t

= qA

κ
∂T

∂x

∣∣∣
x=xB ,t

= qB ,

(3)

where qA, qB are prescribed fluxes or iii) some mixture of Dirichlet and Neumann
conditions. We also require an initial condition

T (x, t = 0) = T0(x). (4)

The first step of the finite element method involves choosing an element-type
which defines where and how the discretization is carried out. The simplest
element for one dimensional problems is a 2-node element (Figure 2a). As
we will see, one can use more nodes per element which will have the effect of
increasing accuracy but also increasing the amount of equations and thus the
cost of numerical solution.

The second step of the finite element method involves approximating the
continuous variable T in terms of nodal variables Ti using simple functions
Ni(x) called shape functions. If one focuses on one element (which contains 2
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nodes), and one assumes that temperature varies linearly between two nodes,
one can write

T (x) ≈ N1(x)T1 +N2(x)T2, (5)

or, using matrix notation

T (x) ≈
[
N1(x) N2(x)

] [T1

T2

]
= NT. (6)

In these equations, T is the continuous variable which we are approximating
within any given element in terms of the temperatures at the two nodes T1 and
T2. Since we made the choice that temperature varies linearly between two
nodes, we have to use the following shape functions,

N1(x) = 1 − x

L
, N2(x) =

x

L
, (7)

where L is the length of the element and x is the spatial variable which varies
from 0 at node 1 to L at node 2 (Figure 2b). Note the following important
properties of the shape functions

• N1 = 1 at node 1 while N1 = 0 at node 2.

• N2 = 0 at node 1 while N2 = 1 at node 2.

• N1(x) +N2(x) = 1 (over the entire element).

• The functions are only local (i.e., they only connect adjacent nodes).

Note that the shape functions are simply interpolating functions (i.e., they
are used to interpolate the solution over a finite element). Also, as will become
clear in the following lectures, the choice of the shape functions is directly related
to the choice of an element type. For example in one-dimension, variation in a 2-
node element cannot be uniquely described by a function with an order greater
than linear (two parameter model), variation in a 3-node element cannot be
uniquely described by a function with an order greater than quadratic (three
parameter model), etc.

The next step of the finite element method is to substitute our approxima-
tion for the continuous variable into the governing differential equation. Thus,
substituting Equation (6) into Equation (1) leads to

∂

∂t

([
N1(x) N2(x)

] [T1

T2

])
− ∂

∂x

(
κ(x)

∂

∂x

([
N1(x) N2(x)

] [T1

T2

]))
−s(x) = R,

(8)
where R (the residual) is a measure of the error introduced during discretization.
Note that the original partial differential equation has now been replaced by an
equation in the discretized (nodal) variables T1 and T2. Thus, we now have one
equation for two unknowns, which obviously cannot be solved. The problem
now reduces to finding values for T1 and T2 such that the residual is minimized
(ideally R is zero as in the original equation). However to do so, we have to
generate a system of equations where the number of equations equals the number
of unknowns.

In the finite element method, the unknown coefficients Ti are determined
by requiring that the integral of the weighted residual is zero on an element
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L

node 1 node 2
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Figure 2: a) a 2-node, one dimensional finite element with b) linear shape
functions, and c) a small one dimensional mesh consisting of four elements and
a total of five nodes. See text for discussion.
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basis. To achieve this step practically, one must multiply (or “weight”) the
residual in Equation (8) by a set of weighting functions (each in turn), integrate
over the element volume and equate to zero. Many methods (e.g., collocation,
subdomain, least squares and Galerkin) can be used to achieve this process, the
difference between which depends on the choice of the weighting functions. In
this course we will only consider the Galerkin method. In the Galerkin method,
the weighting functions are chosen to be identical to the shape functions N . By
carrying out the steps just described one obtains

∫ L

0

[
N1

N2

]
∂

∂t

([
N1 N2

] [T1

T2

])
dx

−
∫ L

0

[
N1

N2

]
∂

∂x

(
κ(x)

∂

∂x

([
N1 N2

] [T1

T2

]))
dx−

∫ L

0

[
N1

N2

]
s(x) dx =

[
0
0

]
.

(9)

Note that in this example where the shape functions are linear, double dif-
ferentiation of these functions would cause them to vanish (obviously not very
desirable). This difficulty is resolved by applying Green’s theorem (integration
by parts). In one dimension, applied over the volume Ω = [xA, xB ] this yields∫

Ω

Ni
∂

∂x

(
κ(x)

∂Nj
∂x

)
dx = −

∫
Ω

κ(x)
∂Ni
∂x

∂Nj
∂x

dx+ κ(x)Ni
∂Nj
∂x

∣∣∣∣xB

xA

. (10)

We note that the final term in the above expression which is evaluated at the
end points of the domain corresponds to a discrete flux. By invoking Green’s
theorem, we have implicitly introduced the Neumann boundary condition (see
Equation (3)) into our discretisation. We will assume that κ(x) and s(x) are
constant over each element volume [xA, xB ] and the constant values are denoted
by κ̄ and s̄ respectively. Note that this choices does not preclude using a spa-
tially dependent value for κ or s over the entire model domain, it only places a
restriction on how these coefficients may vary within an element. Under these
assumptions and using Equation (10), we can write Equation (9) as


∫ L

0

N1N1 dx

∫ L

0

N1N2 dx∫ L

0

N2N1 dx

∫ L

0

N2N2 dx

 ∂

∂t

[
T1

T2

]

+ κ̄


∫ L

0

∂N1

∂x

∂N1

∂x
dx

∫ L

0

∂N1

∂x

∂N2

∂x
dx∫ L

0

∂N2

∂x

∂N1

∂x
dx

∫ L

0

∂N2

∂x

∂N2

∂x
dx

[T1

T2

]

− s̄


∫ L

0

N1 dx∫ L

0

N2 dx

−

N1qA

∣∣∣
xA

N2qB

∣∣∣
xB

 =

[
0
0

]
. (11)

Note that one now has two equations for the two unknowns T1 and T2 as desired.
On evaluating the integrals (using N defined in Equation (7)), Equation (11)
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becomes[
L
3

L
6

L
6

L
3

]
∂

∂t

[
T1

T2

]
+ κ̄

[
1
L − 1

L

− 1
L

1
L

] [
T1

T2

]
− s̄

[
L
2

L
2

]
−

[
N1qA

∣∣
xA

N2qB
∣∣
xB

]
=

[
0
0

]
, (12)

which can be simplified using matrix notation to

MM

(
∂T

∂t

)
+ KMT = F, (13)

where

MM =


L

3

L

6
L

6

L

3

 , (14)

KM = κ̄


1

L
− 1

L

− 1

L

1

L

 , (15)

F = s̄


L

2
L

2

+

N1qA

∣∣∣
xA

N2qB

∣∣∣
xB

 , (16)

and

T =

[
T1

T2

]
. (17)

The next step we perform is the discretization of the time derivative, which
is usually achieved using a finite difference approximation. Assuming an implicit
time discretization, one can rewrite Equation (13) as

MM

(
Tn+1 −Tn

∆t

)
+ KMTn+1 = F, (18)

where Tn+1 is the future temperature at the nodes (i.e., the unknowns) and Tn

is the vector of old (i.e., known) temperatures. Rearranging, one can write this
as (

1

∆t
MM + KM

)
Tn+1 =

1

∆t
MMTn + F, (19)

or more compactly as
KLTn+1 = KRTn + F, (20)

where

KL =


L

3∆t
+
κ̄

L

L

6∆t
− κ̄

L
L

6∆t
− κ̄

L

L

3∆t
+
κ̄

L

 (21)

and

KR =


L

3∆t

L

6∆t
L

6∆t

L

3∆t

 (22)
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and the F vector is

F = s̄L


1

2
1

2

 .
In Equation (20), everything appearing on the right hand side is known (and

it combines to form a vector). The matrix KL is referred to as the element
stiffness matrix whereas T is the unknown element vector (and the subscript
n + 1 has been dropped for clarity). For the purposes of following discussions
we introduce the following notation:

KL =

[
KL11 KL12

KL21 KL22

]
.

Thus, for example, the term KL11 has the value L
3∆t + κ̄

L . Similar notation is
assumed for KR.

Remember that so far we have only carried out discretization for a single
element, whereas we generally want to divide the solution domain into many
elements so as to obtain an accurate solution. Accordingly, let us consider a
small one-dimensional mesh, consisting of four elements (once you get the idea
you can easily consider more elements). This situation is depicted in Figure
2c. Now, instead of having just two unknowns, we have five, related to the five
nodes in the mesh. One now generates a global matrix equation by summing
node-by-node the matrix equation derived for a single element (i.e., equation
17). Thus, for example, note that whereas node 1 contains a contribution only
from element 1, node 2 has contributions from both elements 1 and 2 (Figure
2c). Performing this process (using the notation introduced above and assuming
that each element matrix is the same) leads to


KL11 KL12 0 0 0
KL21 KL22 +KL11 KL12 0 0

0 KL21 KL22 +KL11 KL12 0
0 0 KL21 KL22 +KL11 KL12

0 0 0 KL21 KL22



T1

T2

T3

T4

T5


n+1

=


KR11 KR12 0 0 0
KR21 KR22 +KR11 KR12 0 0

0 KR21 KR22 +KR11 KR12 0
0 0 KR21 KR22 +KR11 KR12

0 0 0 KR21 KR22



T1

T2

T3

T4

T5


n

+ sL


1
2
1
1
1
1
2

 , (23)

which, using matrix notation, becomes

KLGT
n+1 = KRGT

n + FG, (24)
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where the subscript G indicates that the matrices and vectors refer to the entire
“global” or assembled problem and not simply to a single element. Note that
the matrices KLG and KRG are symmetric which is an important (though
not a necessary) property when it comes to solving the system of equations.
Finally, note that most non-zero terms are clustered near the main diagonal
(called diagonal dominance) which also helps when the equations are solved.
Equation (24) can also be written in the form

KLGT
n+1 = b, (25)

which is the classic form for a system of linear equations. In this last expression,
KLG is referred to as the stiffness (or coefficient) matrix (and is known), b is
referred to as the “right hand side vector” or “load vector” and Tn+1 is the
unknown “solution vector” or “reaction vector”.

The final step before one can solve the linear system of equations represented
by Equation (25) is to impose boundary conditions. There are several possible
choices; fixed temperature, fixed temperature gradient, or some combination of
the two. Fixed temperature boundaries may be implemented by performing the
following steps: (1) zeroing the entries in the relevant equation (2) placing a 1 on
the diagonal entry of the stiffness matrix and (3) setting the value at the correct
position of the right hand side vector equal to the desired value. Alternatively,
if one wishes to implement zero-flux boundary conditions one does not have to
do anything explicitly (i.e., it is the default boundary condition created when
one ignored the boundary terms in Equation (10)). Non-zero-flux boundary
conditions are slightly more complex and will be considered in a future session.

You are now ready to compute the solution to Equation (25). The basic steps
that need to be incorporated into a computer program can be summarized as
follows:

1. Define all physical (e.g., diffusivity, source term, length of spatial domain)
and numerical (e.g., number of elements and nodes) parameters.

2. Define the spatial coordinate x and the time domain where you want to
obtain the solution

3. Within an element loop, define the element matrices MM and KM and
the element load vector F (see Equations (14) to (16)). Use these to
compute KL and KR (see Equations (21) & (22)). Sum these matrices
node-by-node to form the global matrices KLG and KRG and the global
vector FG (see Equations (23)). If the element properties do not depend
on time these global matrices only need to be calculated once and can be
saved for later use.

4. Within a time loop, perform the operations on the right hand side of
Equation (25) (i.e., firstly multiply KRG with the old temperature vector
Tn and then add the resulting vector to FG) to form the right-hand-side
vector b.

5. Apply boundary conditions.

6. Solve Equation (25) for the new temperature, and then continue to the
next time step.

9



Intro. to FE Modelling in Geosciences

5 Exercises

1. Read the text above and try to understand it.

2. We solved the system for second order derivatives. Can we employ linear
shape functions if we want to solve, for example, the bending equation
for a thin plate, which has fourth order derivatives? If no, which shape
functions should be employed?
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