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1 Overview

One of the strengths of the finite element method is the relative ease with which
it is possible to extend your code from one dimension to two (or three) dimen-
sions. To demonstrate the finite element method in two-dimensions, we once
again use the example of the diffusion equation. Remember that the diffusion
equation is derived by combining a statement for the conservation of energy

ρcp
∂T

∂t
= −∇Tq + s = −

[
∂
∂x

∂
∂y

] [
qx
qy

]
+ s, (1)

with a general anisotropic constitutive relationship

q =

[
qx
qy

]
= −

[
kxx kxy
kyx kyy

] [ ∂
∂x

∂
∂y

]
T = −D∇T, (2)

to yield

ρcp
∂T

∂t
= ∇T (D∇T ) + s. (3)

This equation governs transient heat conduction in two-dimensions with a source
term s(x, y). The dependent variable in this equation is the temperature T , the
independent variables are time t and distance x, and kij(x, y) are the compo-
nents of the thermal conductivity tensor, ρ(x, y) is density and cp(x, y) heat
capacity. If the thermal conductivity is isotropic and constant in space, Equa-
tion (3) in 2D reduces to

∂T

∂t
= κ

(
∂2T

∂x2
+
∂2T

∂y2

)
+ s, (4)

where κ = k/(ρcp) is the thermal diffusivity. For the isotropic case, we have
that

D =

[
κ 0
0 κ

]
. (5)

Nevertheless, as we will see, it is more natural and general to leave the equation
in the form shown in Equation (3). In fact one of the benefits of the finite
element method is that introducing an anisotropic diffusivity tensor does not
introduce any additional complexity to the discretisation procedure.
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2 Derivation of the element matrices

As in our one dimensional example, the first step of the finite element method is
to choose an element type. We choose here one of the simplest two-dimensional
elements which is the 4-node quadrilateral (see Figure 1) element. The four
shape functions Ni(x, y) which go together with this type of element are poly-
nomials of the form

Ni(x, y) = ai + bix+ ciy + dixy,

where ai, bi, ci, di are coefficients which relate to each node i. This element ap-
pears to be linear, but due to the presence of the cross term xy the quadrilateral
basis functions in 2D are referred to as bilinear. For the moment we shall simply
refer to the shape functions using the following notation

N(x, y) =
[
N1(x, y) N2(x, y) N3(x, y) N4(x, y)

]
, (6)

and we note that the shape functions are expressed in terms of the global coor-
dinate system (i.e., they are a function of x and y). The second step of the finite
element method involves approximating the continuous variable T in Equation
(3) in terms of nodal variables Ti using the shape functions just defined, i.e.,

T (x, y) ≈
[
N1(x, y) N2(x, y) N3(x, y) N4(x, y)

] 
T1

T2

T3

T4


= NT.

(7)

Substituting this approximation for T into Equation (3) yields the following
equation

ρcp
∂

∂t
(NT) = ∇T (D∇N)T + s. (8)

Multiplying this equation by the weighting functions (the shape functions) and
integrating over the element volume Ωe leads to
ˆˆ

Ωe

ρcpN
T ∂

∂t
(NT) dxdy =

ˆˆ
Ωe

NT∇T (D∇N)T dxdy +

ˆˆ
Ωe

NT s dxdy.

(9)
Integration by parts over the domain Ωe and denoting the element boundaries
lying on the domain boundary via Γe gives[ˆˆ

Ωe

ρcpN
TN dxdy

](
∂T

∂t

)
+

[ˆˆ
Ωe

∇(N)T (D∇N) dxdy

]
T

=

ˆˆ
Ωe

NT s dxdy +

˛
Γe

q̂Tn dS,

(10)

where q̂ is an applied flux and n is the outward point normal to the boundary ∂Ω.
Recall that the boundary integral term corresponds to the Neumann boundary
condition. This equation can be simplified to

MM

(
∂T

∂t

)
+ KMT = F, (11)
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2 DERIVATION OF THE ELEMENT MATRICES From 1D to 2D

where

MM =

ˆˆ
Ωe

ρcpN
TN dxdy, (12)

KM =

ˆˆ
Ωe

(∇N)TD∇N dxdy (13)

and

F =

ˆˆ
Ωe

NT s dxdy +

˛
Γe

q̂Tn dS. (14)

Note that we leave p, cp,D and s inside the integrals as we have not assumed
anything about how these coefficients vary within the domain, or within the
element.

Note that the element matrices and vectors have a virtually identical form to
those derived in session 1 in one dimension. In fact, there are only two significant
differences. First, integration domain is now defined in two-dimensions. As we
shall see, one can use the same numerical integration as used in the 1D problems.
Second, the shape functions have derivatives in both the x and y directions.

Before continuing it is useful explicitly define the form (i.e., the dimensions)
of some of the matrices defined above. For example, the shape functions N are
defined as

N(x, y) =
[
N1(x, y) N2(x, y) N3(x, y) N4(x, y)

]
, (15)

and the shape function derivatives are defined as

∇N(x, y) =


∂N1

∂x

∂N2

∂x

∂N3

∂x

∂N4

∂x
∂N1

∂y

∂N2

∂y

∂N3

∂y

∂N4

∂y

 . (16)

The conductivity matrix is defined as 1:

D =

[
kxx kxy
kyx kyy

]
. (17)

Thus, one can see that the dimensions of the element matrices MM and KM
are 4× 4 whereas the element vector F has dimensions 4× 1.

The next step is to discretise the time derivative in Equation (11) using finite
differences. This is carried out in an identical manner to that already performed
in 1D (see script 1) leading to

MM

(
Tn+1 −Tn

∆t

)
+ KMTn+1 = F, (18)

where Tn+1 is the new temperature at the nodes (i.e. the unknowns) and Tn is
the vector of the old (known) temperatures. Rearranging, one can write this as(

MM

∆t
+ KM

)
Tn+1 =

MM

∆t
Tn + F, (19)

or more compactly as
LTn+1 = RTn + F, (20)

where MM, KM and F have been previously defined.

1We note that to be physically valid we require that kxxkyy − kxykyx > 0 and that
kxy = kyx.
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g_num=  1 2 3    5   6   7    9   10  11
5 6 7    9   10 11  13  14 15
6 7 8    10 11 12  14  15 16
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0.0 0.0 0.0 0.0 3.0 3.0 3.0 3.0 6.0 6.0 6.0 6.0 9.0 9.0 9.0 9.0

Relationship between
elements and global
node numbers

Global coordinates of nodes

2-D FEM MESH - one degree of freedom per node

Figure 1: A two-dimensional finite element mesh with one degree of freedom on
each node.
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3 INTEGRATION OF THE ELEMENT MATRICES From 1D to 2D

3 Integration of the element matrices

The element matrices just derived contain integrals of the shape functions, or
derivatives of the shape functions, both expressed in terms of global coordinates
(x and y). To evaluate such matrices two transformations are required. First,
since we will provide shape functions (and their derivatives) in terms of local co-
ordinates, it is necessary to devise some means of expressing the shape functions
(and their derivatives) appearing in the integrals in terms of local coordinates.
Second, the area over which the integration has to be carried out must be ex-
pressed in terms of local coordinates (with an appropriate change in the limits
of integration).

As in one dimension, we will use Gauss-Legendre quadrature to approximate
the integrals defining the element stiffness matrices. The formula for Gauss-
Legendre quadrature in two-dimensions is

ˆ 1

−1

ˆ 1

−1

f(ξ, η) dξdη ≈
nx∑
i=1

ny∑
j=1

f(ξi, ηj)wiwj =

nip∑
n=1

f(ξn, ηn)Wn (21)

where nx and ny are number of integration points in each direction, ξi and ηj
are the local spatial coordinates of the integration points, and wi and wj , or
Wn are the weights. The quadrature weights and locations of the integration
points are once again obtained from a table such as that provided in script 2.
Note that the integration in two dimensions is very similar to the integration
in one dimension. One simply sums over the total number of integration points
nip(= nx× ny) and multiplies by the weights Wn.

Derivatives are converted from one coordinate system to another by means
of the chain rule, expressed in matrix form as

∂

∂ξ

∂

∂η

 =


∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η



∂

∂x
∂

∂y

 = J


∂

∂x
∂

∂y

 , (22)

where J is the Jacobian matrix. The Jacobian matrix can be found by differen-
tiating the global coordinates with respect to the local coordinates. In practice
this requires one to multiple the coordinates of a particular element with the
derivatives of the shape functions. For example, if we considered the 4 node
quadrilateral element we would have;

J =


∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η



x1 y1

x2 y2

x3 y3

x4 y4

 , (23)

where (x1, y1) is the x, y coordinates of node 1, etc. The derivatives of the shape
functions with respect to the global coordinates can thus be found via

∂

∂x
∂

∂y

 = J−1


∂

∂ξ

∂

∂η

 , (24)
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where J−1 is the inverse of the Jacobian matrix. The shape functions themselves
do not have to be converted from the local to the global coordinate system. This
is because we have chosen a special type of “isoparametric” element (which
essentially means that the shape functions defining the geometry are the same
as those interpolating the unknown function).

Transformation of integration from the global to local coordinate system
is performed using the determinant of the Jacobian, det(J), according to the
following relation

ˆˆ
f(x, y) dxdy =

ˆ 1

−1

ˆ 1

−1

f(ξ, η) det(J(ξ, η)) dξdη. (25)

We note that in contrast to the one dimensional example, the Jacobian J is in
general not a constant. Only under special conditions is J a constant. Such
conditions for bilinear basis functions include when the elements have edges
which are parallel to the x and y axis, or the elements define parallelograms.
Combining this result with Equation (21) yields the final integration formula

ˆˆ
f(x, y) dxdy ≈

nip∑
i=1

f(ξi, ηi) det(J(ξi, ηi))Wi. (26)

Again we emphasize that det(J) should be evaluated at the quadrature point.
Finally, to complete the definition of the element stiffness matrices, we pro-

vide the definition for the shape functions associated with a bilinear, 2D quadri-
lateral element such as is shown in Figure 1. In local coordinates, they are
defined via

N1(ξ, η) =
1

4
(1− ξ) (1− η) (27)

N2(ξ, η) =
1

4
(1− ξ) (1 + η) (28)

N3(ξ, η) =
1

4
(1 + ξ) (1 + η) (29)

N4(ξ, η) =
1

4
(1 + ξ) (1− η) , (30)

and their derivatives with respect to ξ and η are (computed by hand, or with
MAPLE);

∂N1(ξ, η)

∂ξ
= −1

4
(1− η) ,

∂N1(ξ, η)

∂η
= −1

4
(1− ξ)

∂N2(ξ, η)

∂ξ
= −1

4
(1 + η) ,

∂N2(ξ, η)

∂η
=

1

4
(1− ξ)

∂N3(ξ, η)

∂ξ
=

1

4
(1 + η) ,

∂N3(ξ, η)

∂η
=

1

4
(1 + ξ)

∂N4(ξ, η)

∂ξ
=

1

4
(1− η) ,

∂N4(ξ, η)

∂η
= −1

4
(1 + ξ) .

(31)

In summary, the following steps must be carried out to perform integration
of the element matrices:
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4 ASSEMBLY OF THE GLOBAL STIFFNESS MATRIX From 1D to 2D

1. Define the number of integration points (nip) and obtain and save the
integration points and weights.

2. Do a loop over all elements and initialize the element matrices MM and
KM.

3. Within the element loop, do a loop over each integration point. Evaluate
the shape functions and their derivatives at the relevant integration point.

4. Calculate the Jacobian matrix by performing the operation in Equation
(23).

5. One must convert derivatives from the local coordinates to the global
coordinates by performing the operation in Equation (24).

6. Calculate the determinant of the Jacobian.

7. Perform the vector multiplication involving the shape functions or their
derivatives (evaluated at integration points), multiplied by the relevant
weights, which leads to the matrices MM and KM. The result should be
added to the multiplication from proceeding integration points.

8. Once one has exited the loop over integration points, the integration is
complete (i.e., the element matrices have been integrated).

9. Form the matrices L and R defined in Equation (20)

10. The element matrices can then be added to the global element stiffness
matrix. This process is then continued for each element.

4 Assembly of the global stiffness matrix

The final step that needs to be performed is the node-by-node summing-up of
the element matrices to form the global stiffness matrices. Once again, this is
carried out in a manner very similar to that already done in one dimension. The
only difference is that now one has to make more decisions in how the unknowns
in the mesh are numbered globally. An example of a small 2D finite element
mesh is shown in Figure 1. Note that each node represents one unknown (i.e.
temperature) and is given a global index (and a global coordinate).

The global numbering of the equations used in your finite element is not
unique. There are no strict rules as to how one should order the global indices.
On structured grids with quadrilateral elements (like in our example) the tra-
ditional rule of thumb was to begin numbering in the direction with the fewest
nodes in an effort to minimise the bandwidth of the global matrix and thus yield
more efficient solves. In practice, when using modern factorisation techniques
such as those employed in Matlab, this rule of thumb is no longer applicable.
Furthermore it does not generalise to unstructured meshes. Here we advocate
using the numbering scheme which is most convenient to implement. The re-
lationship between the elements and global node numbers should be specified
early in the program and saved in a matrix (for example in g num). This matrix
is then used to “steer” the entries within each element stiffness matrix into the
correct position within the global matrix.
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2-D FEM MESH - one degree of freedom per node

1 4

2 3

local node
numbering

1 2

6

3

7 8

4 5

1 2

3

g_num=  4 5 7
1 2 4
2 3 5
5 6 8

Relationship between elements
and global node numbers

Figure 2: A small three element finite element mesh. In the text the diffu-
sion equation is discretised for this mesh. The corresponding system of global
equations are shown in Equation (33).

8



4 ASSEMBLY OF THE GLOBAL STIFFNESS MATRIX From 1D to 2D

To illustrate this process with an example, we return to the 2D diffusion
equation and consider assembling the global stiffness matrix which corresponds
to a very small mesh which is illustrated in Figure 2. Referring to the element
matrices defined in Equation (20), we introduce the following notation:

L =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

 .
Moreover, a superscript is introduced to represent the element number. Thus,
for example, the term L3

11 is the term L11 from element 3. Similar notation is
assumed for R. The matrix g num for the mesh in Figure 2 is given by:

g num =


4 5 7
1 2 4
2 3 5
5 6 8

 . (32)

Note that there are three columns, one for each element, while there are four
rows, one for each node. As already stated, g num is used to place the element
matrices in the correct position in the global matrix. As an example, consider
the term L1

13. Since the term is from element 1, we must look at the first column
of g num where we see that the local node 13 (i.e., the first and third row) map
to the global indices 42. This indicates that L1

13 appears in the global matrix
LG at the position 42. Repeating this process for all terms leads to the global
equations which will denote by

LGT
n+1 = RGT

n + FG, (33)

where

Tk =



T1

T2

T3

T4

T5

T6

T7

T8



k

, (34)

LG =



L1
22 L1

23 0 L1
21 L1

24 0 0 0
L1

32 L1
33 + L2

22 L2
23 L1

31 L1
34 + L2

21 L2
24 0 0

0 L2
32 L2

33 0 L2
31 L2

34 0 0
L1

12 L1
13 0 L1

11 + L3
22 L1

14 + L3
23 0 L3

21 L3
24

L1
42 L1

43 + L2
12 L2

13 L1
41 + L3

32 L1
44 + L2

11 + L3
33 L2

14 L3
31 L3

34

0 L2
42 L2

43 0 L2
41 L2

44 0 0
0 0 0 L3

12 L3
13 0 L3

11 L3
14

0 0 0 L3
42 L3

43 0 L3
41 L3

44


(35)
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and

RG =



R1
22 R1

23 0 R1
21 R1

24 0 0 0
R1

32 R1
33 +R2

22 R2
23 R1

31 R1
34 +R2

21 R2
24 0 0

0 R2
32 R2

33 0 R2
31 R2

34 0 0
R1

12 R1
13 0 R1

11 +R3
22 R1

14 +R3
23 0 R3

21 R3
24

R1
42 R1

43 +R2
12 R2

13 R1
41 +R3

32 R1
44 +R2

11 +R3
33 R2

14 R3
31 R3

34

0 R2
42 R2

43 0 R2
41 R2

44 0 0
0 0 0 R3

12 R3
13 0 R3

11 R3
14

0 0 0 R3
42 R3

43 0 R3
41 R3

44


.

(36)
The process of summing the element matrix into the global matrix is easily
achieved in a computer program. For example, once the matrix Le for a certain
element e has been integrated, it is added to the global matrix using a command
such as

>LG( g_num( :, iel ), g_num( :, iel ) ) = ...

LG( g_num( :, iel ), g_num( :, iel ) ) + Le;

where iel is the current element index. Now that the global equations have
been constructed all that remains is to apply boundary conditions and solve
the system of equations. This is carried out in the same manner as the one
dimensional problem considered earlier.

5 Exercises

1. Write a 2D FE code that solves the diffusion equation using bilinear,
quadrilateral elements. Assume a constant, isotropic conductivity tensor.
Apply constant temperature at the top and bottom boundaries, and zero
flux at the side boundaries (i.e. set no boundary condition here).

2. Confirm that the code works when the grid is deformed (if not, it is likely
that you made a mistake defining the Jacobian or your global derivatives).
Define a mesh which has significant topography on the upper surface.
Compute the temperature distribution within this domain.

3. Modify the code to take into account i) a spatially variable, anisotropic
conductivity tensor, ii) variable grid spacing and iii) a spatially variable
heat source.
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