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1 Overview

Up to now we have only considered PDE’s which involve scalar unknowns (i.e.
temperature). When discretised, such problems possess one degree of freedom
(i.e., one unknown) per node. However, many PDE’s such as those describing
the behaviour of elastic solids or viscous fluids, have vector unknowns (e.g.,
the displacement or velocity in each direction). When discretised these PDE’s
translate to FEM problems with multiple degrees of freedom per node. The
purpose of this script is to introduce you the finite element programming of
problems having two-degrees of freedom per node. This approach is illustrated
by solving a solid mechanics problem.

2 Governing equations

The equations governing the two-dimensional displacement of a solid are derived
by combining the force balance and a constitutive relationship. Force balance:
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where 04,0y, and o, are stresses (gravity is ignored). In case of an elastic
medium, the constitutive relation is
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where E is the Youngs modulus, v the Poisson’s ratio and €., €yy, Vzy are
strains. In this case we assumed a linear elastic material subjected to plane
strain conditions. In the more general case, the constitutive relationship be-
comes more complex (one can, for example, incorporate anisotropy by changing



Intro. to FE Modelling in Geosciences

the rheological matrix in Equation (2). The relationship between strain and
displacement is given by
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where ux,uy are displacements in the x and y direction, respectively. Using
matrix notation, these three relations can be written as
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In the displacement formulation, such as the one presented here, one eliminates
6 and € in the following steps:
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This last relation is a pair or partial differential equations for the two unknowns,
ux and uy (i.e., the two components of the vector e).

3 FE discretisation

To proceed with a finite element discretization one introduces an element type
and set of shape functions. We use 4-node quadrilaterals and the corresponding
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bilinear shape functions. Thus, uz and uy within a single element are approxi-
mated as
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ux(z,y) ~ [Ni(z,y) Na(z,y) Ns(z,y) Na(z,y)] =Nu, (1)

and
uy(z,y) =~ [Ni(z,y) No(z,y) Na(z,y) Na(z,y)] |"?| =Nu,. (12)

Substituting these approximations into Equation (10), weighting each equation
with the shape functions, integrating over the element volume 2¢ and integrating
by parts where necessary yields the following set of discrete element equations:
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where ¢;; is an applied traction along the piece of the element edge 9Q2¢ contained
on the boundary of the domain 02 and
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The element matrix KM can be integrated using Gauss-Legendre quadrature
in the same way as done previously in the diffusion problem.

4 Assembly of the global matrix

In the diffusion problem we considered previously, each node represented only
one unknown and it was reasonably straightforward to “steer” the element ma-
trices to the correct location in the global matrix. Now that we have two
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2-D FEM MESH - two degrees of freedom per node

Global node and element numbering
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Figure 1: A small finite element mesh with two degrees of freedom per node.
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degrees of freedom per node we have to perform some additional steps to define
how we assemble the global matrix. Namely, we will require the specification
of three matrices, denoted g-num,nf and g_g. We have already encountered
g-num; this matrix defines the relationship between global element numbers
and global node numbers. The matrix nf is used to specify the relationship
between the global node numbers and the global equation numbers. Lastly, the
matrix g_¢g defines the relationship between the global element numbers and
the global equation numbers. Examples of these matrices for a small mesh
are shown in Figure 1. Once these matrices are constructed then the assem-
bly of the global matrix is straightforward. Within the main element loop,
g-num is used to retrieve the nodes within a particular element, which is nec-
essary for example to obtain the global node coordinates of each element (e.g.,
coord = g_coord(:, g.num(:,iel))"). The matrix nf is used if one wishes to refer
to a specific degree of freedom. For example, say our solution is stored in the
array displ. Then displ(nf(1,:)) can be used to refer to the first degree of free-
dom (i.e, ux) for each node in the mesh whereas displ(nf(2,:)) can be used to
refer to the second degree of freedom (i.e, uy). Finally, the matrix ¢g_g is used to
“steer” the integrated element matrix KM to the correct position in the global
matrix L (e.g., L(g-g(:,iel), g-g(:,iel)) = L(g-g(:,iel), g-g(:,iel)) + KM). Now
that the global matrix has been assembled one can impose boundary conditions
and solve the system of equations.

5 Exercises

1. Write a 2D, plane strain, elastic code to solve the equations above. Test
it with a pure-shear setup, in which you prescribe u, at the left and
right boundaries and set u, = 0 at the lower boundary. Leave all other
boundaries free. If you choose v = 0.49, the material behaves nearly
incompressible and you should see a pure shear displacement field.

2. Model the deformation of a thin elastic beam under the influence of gravity.
To do this, you will need to add gravity to the force balance equations
(which will result in right-hand side terms in your equations). Create a
setup in which you keep the left boundary of the domain fixed (u, = u, =
0 and all other boundaries free. Introduce time-evolution into the model by
updating the global coordinates with gcoord = gcoord—+displacement xdt,
where dt is the timestep.

3. Examine the stress field obtained from your FE solution. Plot the compo-
nents of the stress at each integration plot. Plot 0., at the nodal points
of your deformed mesh.

4. Use 2D quadratic shape functions instead of linear shape functions to
perform the same task. You will need to use 3 x 3 integration points with
the quadratic shape functions. Once this works (and you obtain the same
results as in the linear case), you will be well prepared to tackle the Stokes
equations (next exercise).



