
Introduction to Finite Element

Modelling in Geosciences:

Time For Programming

D. A. May & M. Frehner,
ETH Zürich

July 7, 2014

1 Overview

The purpose of this session is to learn how to program the finite element method
(FEM) in one dimension using MATLAB. To illustrate this we use the diffusion
equation (discretised in the previous session) which is governed by the following
element equations (

MM

∆t
+ KM

)
Tn+1 =

MM

∆t
Tn + F, (1)

where

MM =

[
∆x
3

∆x
6

∆x
6

∆x
3

]
, (2)

KM = κ

[
1

∆x
−1
∆x

−1
∆x

1
∆x

]
, (3)

F = s

[
∆x
2

∆x
2

]
+

[
N1qA

∣∣
xA

N2qB
∣∣
xB

]
, (4)

and

T =

[
T1

T2

]
. (5)

The superscripts n and n + 1 refer to the old (known) and future (unknown)
temperatures, respectively. These equations can be written more compactly as

KLTn+1 = KRTn + F, (6)

where the element stiffness matrix KL is

KL =
MM

∆t
+ KM (7)

and the element right hand side matrix KR is

KR =
MM

∆t
. (8)

1

Intro. to FE Modelling in Geosciences

Remember that for a 2-node element, these relations form a system of two
equations for the two unknown node temperatures T1 and T2. It is important
to distinguish these element equations from the global equations formed by
summing the element equations node-by-node within a finite element mesh,
denoted as

KLGTn+1 = KRGTn + FG = b, (9)

where the subscript G indicates that the matrices and vectors are global ma-
trices. The size of the matrices KLG and KRG are nn × nn (where nn is the
number of nodes in the finite element mesh) whereas the matrices MM and
KM have dimensions 2× 2.

2 FE Procedure

The basic steps that must be performed in order to solve these equations within
a computer program can be summarized as follows:

1. Define all physical parameters (e.g., diffusivity, source term, length of
spatial domain) and numerical parameters (e.g., number of elements and
nodes).

2. Define the spatial coordinate x and the time domain where you want to
obtain the solution.

3. Define the relationship between the element node numbers and the global
node numbers.

4. Define boundary node indices and the values of the potential (e.g., tem-
perature) at the boundary nodes.

5. Initialise the global matrices KLG, KRG and FG so that their dimensions
are defined and that the matrices are filled with zeros.

6. Within an element loop, define the element matrices MM and KM and
the element load vector F (see Equations (2), (3) and (4)). Use these to
compute KL and KR. Sum these matrices (and F) node-by-node to form
the global stiffness matrices KLG and KRG and the global vector FG

(see Equation (9)). If the element properties do not depend on time these
global matrices only need to be calculated once and can be saved for later
use.

7. Within a time loop, perform the operations on the right hand side of
Equation (9) (i.e., firstly multiply KRG with the old temperature vector
Tn and then add the resulting vector to FG to form the right-hand-side
vector b).

8. Apply boundary conditions.

9. Solve equation 9 for the new temperature, and then continue to the next
time step.

We will now describe each of these steps in more detail. In the following, we
will indicate where MATLAB commands are used via the syntax

>alpha = 1.0;

2

2 FE PROCEDURE Time For Programming

[1] Parameter definition

This step requires little further explanation. All physical (e.g., κ, domain length,
etc.) and numerical (number of nodes, timestep) parameters must be defined in
this section using commands of the form

>kappa = 10.0;

[2] Define spatial and time domain

Similarly this step requires little further explanation. The spatial coordinate
vector x can be defined in MATLAB using the command

>x = [0 : dx : lx];

where lx is the length of the spatial domain and dx is the element length. One
can create a similar vector for time.

[3] Local to global mapping

In order to sum the element equations node-by-node to form the global matrices
one must define the relationship between local node numbers and global node
numbers. We achieve this by creating a matrix called g num which has the
following form for a 5-node (4 element) finite element mesh (comprising four
2-node elements):

g num =

[
1 2 3 4
2 3 4 5

]
which in MATLAB is defined via the command,

>g_num = [1, 2, 3, 4 ; 2, 3, 4, 5];

The matrix g num has the dimensions nod × nels where nod is the number of
nodes per element and nels is the total number of elements in the mesh (both
of which must be defined in Section [1] above). Thus, for example, the two local
node numbers 1 and 2 in element 3 correspond to the global node numbers 3
and 4 respectively (i.e., g num(1, 3) = 3 and g num(2, 3) = 4).

[4] Define boundary conditions

One must define to which global nodes boundary conditions are to be applied
(and what the boundary value is). This can be done with the following com-
mands:

>bcdof = [1, nn];

and

>bcval = [0.0, 0.0];

The array bcdof specifies which which nodes, namely the first (1) and last (nn),
in the mesh are to be constrained. The array bcval defines the value of the
temperature constraint we wish to apply at each boundary node.

3

Intro. to FE Modelling in Geosciences

[5] Initialisation

One must initialise the global matrices KLG, KRG and global vector FG using
commands of the form

>KLG = zeros(nn, nn);

and

>FG = zeros(nn, 1);

where nn is the number of equations in the finite element mesh (which also
equals the total number of nodes in this problem).

[6] Element matrix assembly

The element matrices MM and KM can be formed using commands of the
form

>MM = [dx/3.0, dx/6.0 ; dx/6.0, dx/3.0];

whereas the vector F can be formed with the command

>F = s*[dx/2.0 ; dx/2.0];

Once these are defined, the matrices KL and KR can be computed according
to Equations (7) and (8). The next task is, within a loop over all elements, to
sum the element matrices node-by-node to form the global matrices. This step
is achieved using the matrix g num just described. For example, in order to
form the matrix KLG one can use the following commands:

>KLG(g_num(:,iel),g_num(:,iel)) = KLG(g_num(:,iel),g_num(:,iel)) + KL;

whereas to form the vector FG one can use

>FG(g_num(:, iel)) = FG(g_num(:, iel)) + F;

The variable iel is the current element number which varies within the loop
from 1 to nels.

[7] Form right-hand-side vector

Within a time loop one can now form the global right-hand-side vector b with
the command

>b = KRG * T + FG;

where T is the vector (with dimensions nn × 1) of old temperatures and the
other vectors and matrices are described above.

4

3 EXERCISES Time For Programming

[8] Implement boundary conditions

The boundary conditions can be imposed using the following sequence of com-
mands:

> for i=1:length(bcdof)

> KLG(bcdof(i), :) = 0.0;

> KLG(bcdof(i),bcdof(i)) = 1.0;

> b(bcdof(i)) = bcval(i);

> end

We make a loop over all nodes that have a (fixed or Dirichlet) boundary condi-
tion. First, we put zeros in the row where the boundary conditions should be
imposed. These row indices are listed in the array bcdof . After that we put a
value 1.0 on the diagonal of that row, and put the corresponding value of that
boundary condition in the right-hand-side vector.

[9] Solution

The final step which must be carried out is to solve the system of equations
(i.e., Equation (9)) simultaneously, which can be performed using the Matlab
command

>T = KLG \ b;

This operation will compute the solution vector T , which contains the temper-
ature within the domain at the n+ 1 timestep. A new time step can be begun
by repeating Steps 7,8,9.

3 Exercises

1. Write a code that can solve the 1D diffusion problem with the finite ele-
ment method. For simplicity we will assume that the boundary integral
term is zero. Note that this assumption implies that we are solving the
diffusion with zero flux boundary conditions.

2. Modify the code, to take into account source terms, variable grid spacing,
and variable thermal diffusivity (assume properties to be constant within
one element).

5

Intro. to FE Modelling in Geosciences

3. A simple (time-dependent) analytical solution for the diffusion equation
exists for the case when the forcing term s = 0, and the initial temperature
distribution is given by

T (x, t = 0) = Tmax exp

[
−x

2

σ2

]
.

Here σ is the half-width of the distributions and Tmax is the maximum
amplitude of the temperature perturbation at x = 0. The solution for this
problem is given by

T (x, t) =
Tmax√

1 + 4tκ/σ2
exp

[
−x2

σ2 + 4tκ

]
.

This solution is derived assuming that T → 0 at x = ±∞. Program the
analytical solution and compare the analytical solution with the numerical
solution with the same initial condition. Use Tmax = 100, σ = 1 and
−5 ≤ x ≤ 5.

dx

node 1 node 2

x=0 x=dx

1-D element

x=0 x=dx

node 1 node 2

N(x) N1 N2

node 1 node 2 node 3 node 4 node 5

element 1 element 2 element 3 element 4

x=0 x=Lx

a)

b)

c)

Figure 1: a) a 2-node, one dimensional finite element with b) linear shape
functions, and c) a small one dimensional mesh consisting of four elements and
a total of five nodes. See text for discussion.

6

