
Introduction to Finite Element

Modelling in Geosciences:

Introduction to MATLAB

D. A. May & M. Frehner,
ETH Zürich

July 6, 2014

1 Introduction

This main goal of this part of the course is to learn how to solve the partial dif-
ferential equations we spoke about earlier in the lecture. Most of the equations
that are of interest to you as an Earth Scientist are known. However, they can
typically not be solved analytically (or if they can - it is a pain). At the same
time, however, it is relatively straightforward to solve them with the help of a
computer. Although there are a variety of numerical techniques that one can
use, the main focus here is on the Finite Difference Method.

The focus here is on the practical problem of going from an equation to a
solution. At the beginning of each lecture, a short introduction will be given
and the rest of the lecture consists in writing code and solving exercises. The
computer language we will use is MATLAB, which has a number of neat features,
such as plotting or solving of linear systems of equations.

2 Useful linear algebra

MATLAB is entirely vector or linear algebra based. It is therefore useful to
remind you of some of the linear algebra that you learned a long time ago.
Let’s define a vector b as:

b =
(

5 10 17
)

and a 3 by 2 matrix D as:

D =

 1 2
4 3
5 6


1



Intro. to FE Modelling in Geosciences

The transpose (denoted with T ) is given by:

DT =

(
1 4 5
2 3 6

)

bT =

 5
10
17


Matrix-vector multiplication:

DTbT =

(
1 4 5
2 3 6

) 5
10
17

 =

(
130
142

)

Vector-vector multiplication:

bbT =
(

5 10 17
) 5

10
17

 =
(

414
)

Matrix-matrix multiplication:

DTD =

(
1 4 5
2 3 6

) 1 2
4 3
5 6

 =

(
42 44
44 49

)

In numerical modeling, we frequently end up with linear system of equations of
the form:

Ac = Rhs

where A is a n×m matrix and Rhs is a n×1 vector who’s coefficients are both
known, and c is a m × 1 vector with unknown coefficients. If we take A = D
and Rhs = bT , c is (check!):

c =

(
1
2

)

3 Exploring MATLAB

MATLAB is a vector based computer language, which is available for Windows,
MAC, Unix and Linux. It comes with it’s own programming language, which is
a bit slow but still extremely useful due to it’s simplicity.

3.1 Getting started

To start the program on the SUN machines type matlab at the unix prompt.
The MATLAB command window starts.

1. Type 2+3. You’ll get the answer. Type 2 + 3*9 + 5ˆ2.
2. Type

2



3 EXPLORING MATLAB MATLAB intro

>>x=3
>>y=x.ˆ2
>>z=x*y
>>pi
>>a=x*pi

3. Type demo and explore some examples.
4. Type help. You see a list of all help functions. Type help log10 to get

information about the log10 command.

3.2 Vectors/arrays and plotting

5. Create an array of x-coordinates

>>dx=2
>>x=[0:dx:10]

6. Y-coordinates as a function of x

>>y=x.ˆ2 + exp(x/2)

7. Plot it:

>>plot(x,y)

8. Exercise: make a plot of a parametric function. What is it?

>>t=0:.1:2*pi
>>x=sin(t); y=cos(t); plot(x,y,’o-’)
>>xlabel(’x’)
>>ylabel(’y’)
>>axis image, title(’fun with plotting’)

Exercise: make an ellipse out of it with short radius 1 and long radius 2. Also
change the color of the curve to red.

3.3 Matrixes and 3D plotting

First create x and y arrays, for example: x=[1:5];y=x;
9. Play with matrix product of x and y

>>x.*y

performs an element by element product of the two vectors (note the dot)

>>x.’

returns the transpose

>>x*y.’

the ”dot” or scalar product of two matrixes

>>x’*y

the matrix product - returns a matrix.
Some commands (try them):

3



3.4 Matlab scripting Intro. to FE Modelling in Geosciences

>>ones(1,5), ones(6,1)
>>length(x)
>>whos

10. Create 2D matrixes.
A useful function is meshgrid, which creates 2D arrays:

>>[x2d,y2d] = meshgrid(0:.1:5,1:.1:8)

You can get the size of an array with:

>>size(x2d)

11. Plotting of the function sin(x2d.*y2d).

>>z2d = sin(x2d.*y2d)
>>surf(x2d,y2d,z2d)
>>mesh(x2d,y2d,z2d)
>>contour(x2d,y2d,z2d), colorbar
>>contourf(x2d,y2d,z2d), colorbar

Some cool stuff (1)

>>[x2d,y2d,z2d] = peaks(30);
>>surf(x2d,y2d,z2d); shading interp
>>light; lighting phong

Some cool stuff (2): perform the example given at the end of

>>help coneplot;

Other useful commands:
clf : clear current active figure
close all: close all figure windows

3.4 Matlab scripting

By now you must be tired from typing all those commands all the time. Luckily
there is a matlab script language which basically allows you to type the com-
mands in a text editor. Matlab scripts are textfiles that end with the suffix
”.m”.
12. Open a text editor (e.g. emacs) and create a file ”mysurf.m”.
13. Type the plotting commands from the last section in the text file. A good
programming convention is to start the script with clear, which clears the mem-
ory of MATLAB.
Another good programming practice is to put lots of comments inside a matlab
script. A comment can be placed after %, e.g. % this is my first matlab
script.
14. Start the script from within MATLAB by going to the directory where the
textfile is saved. type mysurf from within MATLAB and you should see the
plot.

4



3 EXPLORING MATLAB MATLAB intro

3.5 Loops

Create an array na=100; a=sin(5*[1:na]/na); plot(a).
15. Ask instructions on using ”for”:

>>help for

16. Compute the sum of an array:

>>mysum=0; for i=1:length(a), mysum = mysum + a(i);
end; mysum

17. Compare the result with the MATLAB inbuilt function sum

>>sum(a)

18. Exercise. Create x-coordinate array: dx=0.01; y=cos([0:dx:10]). Com-
pute the integral of y=cos(x) on the x-interval 0 < x < 10. Use sum(y) and
write a matlab-script. Compare it with sin(10), the analytical solution.

3.6 Cumulative sum

19. Create a number of sedimentary layers with variable thickness.

>>thickness = rand(1,10); plot(thickness)

20. Compute the depth of the interface between different layers.

>>depth(1)=0; for i=2:length(thickness), depth(i) = depth(i-
1)+thickness(i); end; plot(depth)

21. Compare the results with the built in matlab function cumsum:

>>bednumber=1:length(depth)
>>plot(bednumber,depth,bednumber,cumsum(thickness))

22. What causes the discrepancy? Try to remove it, ask help cumsum

3.7 IF command

23. Ask help if. Find maxima of the above array thickness, and compare it
with the in built function max(thickness)

3.8 FIND command

24. Ask help find. Find which bed has the maximum thickness: find(thickness==max(thickness)).
25. Find the number of beds with a maximum thickness less than 0.5.

3.9 Matrix operations

26. Exercise: Reproduce the linear algebra exercises in the beginning of this
document. Hint: If you want to solve the system of linear equations Ac=Rhs
for c, you can use the backslash operator: c = A\Rhs

5


