Introduction to Finite Element
 Modelling in Geosciences:
 Formula Sheet

D. A. May \& M. Frehner,
ETH Zürich

July 6, 2014

Vector operations

$$
\begin{gather*}
\operatorname{grad}(u)=\nabla u=\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y}
\end{array}\right] u \tag{1}\\
\operatorname{div}(\mathbf{v})=\left[\begin{array}{ll}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right] \cdot \mathbf{v}=\nabla^{T} \mathbf{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y} \tag{2}
\end{gather*}
$$

Integration by parts (1D)

$$
\begin{equation*}
\int_{a}^{b} f(x) \frac{d g(x)}{d x} d x=-\int_{a}^{b} \frac{d f(x)}{d x} g(x) d x+[f(x) g(x)]_{a}^{b} \tag{3}
\end{equation*}
$$

Integration by parts (higher dimensions)

$$
\begin{align*}
\int_{\Omega} f \frac{\partial g}{\partial x_{i}} d V & =-\int_{\Omega} \frac{\partial f}{\partial x_{i}} g d V+\oint_{\partial \Omega} f g n_{i} d S \tag{4}\\
\int_{\Omega} \boldsymbol{f} \cdot \nabla g d V & =-\int_{\Omega} g \nabla \cdot \boldsymbol{f} d V+\oint_{\partial \Omega} g \boldsymbol{f} \cdot \boldsymbol{n} d S \tag{5}\\
\int_{\Omega} \nabla f \cdot \nabla g d V & =-\int_{\Omega} f \nabla^{2} g d V+\oint_{\partial \Omega} f \nabla g \cdot \boldsymbol{n} d S \tag{6}
\end{align*}
$$

Tensor products

Given a vector of 1D functions, $P(s)=\left(P_{1}(s), P_{2}(s), \ldots, P_{m}(s)\right)$, we can define a 2D tensor product with the coordinates (ξ, η)

$$
\begin{align*}
N_{11}(\xi, \eta) & =P_{1}(\xi) P_{1}(\eta) \\
N_{21}(\xi, \eta) & =P_{2}(\xi) P_{1}(\eta) \\
N_{31}(\xi, \eta) & =P_{3}(\xi) P_{1}(\eta) \\
\vdots & \\
N_{m 1}(\xi, \eta) & =P_{m}(\xi) P_{1}(\eta) \tag{7}\\
N_{12}(\xi, \eta) & =P_{1}(\xi) P_{2}(\eta) \\
\vdots & \\
N_{m 2}(\xi, \eta) & =P_{m}(\xi) P_{2}(\eta) \\
\vdots & \\
N_{m m}(\xi, \eta) & =P_{m}(\xi) P_{m}(\eta)
\end{align*}
$$

In general we have,

$$
\begin{equation*}
N_{i j}=P_{i}(\xi) P_{j}(\eta), \quad \text { for all } 1 \leq i, j \leq m \tag{8}
\end{equation*}
$$

A 3D tensor product can similarily be defined with the coordinates (ξ, η, ζ) via

$$
\begin{equation*}
N_{i j k}=P_{i}(\xi) P_{j}(\eta) P_{k}(\zeta), \quad \text { for all } 1 \leq i, j, k \leq m \tag{9}
\end{equation*}
$$

We note that the 1D basis used need not be the same length, for example one could define

$$
\begin{equation*}
N_{i j k}=U_{i}(\xi) V_{j}(\eta) W_{k}(\zeta) \tag{10}
\end{equation*}
$$

where $U(s)=\left(U_{1}(s), \ldots, U_{m}(s)\right), V(s)=\left(V_{1}(s), \ldots, V_{n}(s)\right), W(s)=\left(W_{1}(s), \ldots, W_{p}(s)\right)$ and where $m \neq n \neq p$.

