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ETH Zürich

July 8, 2014

1 A prototype PDE

Consider the Poisson equation

∇2u+ f = 0. (1)

In order to obtain a unique solution of Eq (1) in some domain Ω, we require
the prescription of the boundary conditions. We will denote the boundary of
Ω via ∂Ω and the interior of the domain as Ω̄ = Ω \ ∂Ω. Dirichlet boundary
conditions specific the value of u along some region of the boundary which we
denote by ∂ΩD. A Neumann boundary specifies the value of ∇u along some
boundary segment ∂ΩN . At every point in space x along the entire boundary
of Ω, a boundary condition must be specified. That is, ∂Ω = ∂ΩD ∪ ∂ΩN and
these segments do not overlap, i.e. ∂ΩD ∩ ∂ΩN = ∅. Formally we can state this
problem as:
Find u such that

∇2u+ f = 0 in Ω̄ (2)

subject to

u = gD on ∂ΩD and ∇u · n = gN on ∂ΩN , (3)

where n is the outward pointing normal to the boundary ∂Ω.

2 The weak form

To construct the weak form we introduce a test function v and we will require
that ˆ

Ω

(
∇2u+ f

)
v dV = 0. (4)

Using Green’s theorem, the above can be equivalently stated as

ˆ
Ω

∇u · ∇v dV =

ˆ
Ω

vf dV +

˛
∂Ω

v
∂u

∂n
dS. (5)
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We now discuss some details related to the weak form defined in Eq. (5).
From Eq. (4) it is apparent that any solution u which satisfies Eq. (1) satisfies
Eq. (4) for any choice of v. To consider whether the converse is true, we
first observe that the required smoothness of u has been reduced, that is the
derivative operating on u has changed from second order to first order. Thus
Eq. (5) may have a solution say u′, but u′ may not be smooth enough to also
be a solution of Eq. (1). For this reason, solutions of Eq. (5) are referred to
as weak solutions. Given their weak nature, many possible weak solutions will
exist which satisfy Eq. (5). We will discuss the class of functions from which
weak solutions live within in the following paragraphs.

As of yet we have not discussed what types of functions are valid choices
for u and v. One restriction on selecting v comes from the observation that
the weak form in Eq. (5) contains a flux term ∂u

∂n = ∇u · n, defined over the
entire boundary. Recalling the problem statement required to obtain a solution
to the PDE (see Eq. (3)), we observe that the flux term in the weak form
exactly matches the Neumann boundary condition, except that that Neumann
condition is only enforced over the boundary segment ∂ΩN and not over all
∂Ω. Therefore, to enforce that the weak form is consistent with the boundary
conditions of the PDE we require that v = 0 along the Dirichlet boundary ∂ΩD.
Thus, for solutions of the PDE which only possess Dirichlet boundaries, i.e.
ΩN = ∅, the surface integral in the weak form vanishes as v is constructed to
be identically zero along this boundary region. The Dirichlet boundary also
provides a restriction on the choice of u, name that any function used to define
the weak solution must satisfy u = gD on ∂ΩD. Using this restrictions on u, v,
we can state the weak form problem as:
Find u such thatˆ

Ω

∇u · ∇v dV =

ˆ
Ω

vf dV +

˛
∂ΩN

v gN dS in Ω̄. (6)

Another property to consider in choosing a valid v, and in defining the class
of permissible functions within which weak solutions to Eq. (6) live within,
come from the consideration of function smoothness. To define smoothness, we
use an L2 measure defined as

||u||2 :=

(ˆ
Ω

u2 dV

)1/2

. (7)

Any function u which satisfies

||u||2 <∞

is said to live within the space (i.e. the set of all functions) of L2 functions.
Considering the left hand side of Eq. (6) we observed that the equation is well-
defined (doesn’t blow up) if all the derivatives of u and v are in L2. Accordingly,
if this true and both f and gN also live within L2, then the right hand side of
Eq. (6) will also be well bounded.

3 Discrete weak form

We will assume that the problem domain Ω, has been partitioned into Me
elements and Nn nodes. One each node, i we will define a test function v(x) =
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φ̂i(x). Inserting this expression into Eq. (6) yields

Nn∑
i

ˆ
Ω

∇u · ∇φ̂i dV =

Nn∑
i

ˆ
Ω

φ̂if dV +

˛
∂ΩN

φ̂i gN dS. (8)

The discrete solution space is then defined via

u(x) = φ1(x)u1 + φ2(x)u2 + · · · =
Nn∑
i=1

φi(x)ui,

where each ui represents the approximate to u at the node i. Upon substitution
we have

Nn∑
i

Nn∑
j

ˆ
Ω

∇φ̂i · ∇φjuj dV =

Nn∑
i

ˆ
Ω

φ̂if dV +

˛
∂ΩN

φ̂i gN dS. (9)

By making the choice that the trial functions should be identical to the discrete
solution space, that is choosing φ̂i = φi, we obtain the Galerkin approximation,

Nn∑
i

Nn∑
j

ˆ
Ω

∇φi · ∇φjuj dV =

Nn∑
i

ˆ
Ω

φif dV +

˛
∂ΩN

φi gN dS. (10)

The equation above defines a system of linear equation which can be more
compactly expressed via a matrix-vector form.

4 Further reading

• For a discussion about the weak form, see sections 1.1 to 1.3 of Elman,
Silvester & Wathan.

• For a discussion about evaluating the discrete weak form, see sections 1.4
of Elman, Silvester & Wathan.

• For a discussion on the same concepts with, read and work through pages
1-13 of Hughes.
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