Introduction to Finite Element Modelling in Geosciences:

Code Verification

Day 4
Patrick Sanan

(See Chapter 9 in the Course Notes)



Verification and Validation

Verification :

e Ensure that your code is solving the equations correctly

e Does the code produce approximate solutions that converge at the correct rate?
e A useful way to gain confidence in your code's correctness

Validation :

e ensure that your code produces physically-meaningful results
(not covered here)



Convergence

If we can construct an exact solution to the continuous problem,
we can use it to verify our code
The FEM is well-known to converge, if implemented correctly!
Convergence is expressed in terms of the grid spacing and an
error norm n
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If an analytical expression is available, one can compute the
solution at different spacings and examine how quickly it
converges
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The rate of convergence can be computed by fitting a straight
line to a log-log plot of the grid spacing versus the error

But what if we don't have an exact solution to compare to?



The Method of Manufactured
Solutions (MMS)

A very general approach

e Choose your solution

 Plug it into your equations

Extract the required boundary and forcing terms
e Now you have an exact solution to work with!

Choosing your solution: make sure that it's complex enough! Don't just use polynomials.
Using exponential or sinusoidal functions is often effective.



MMS: Example

Say our equation is the Poisson (steady-state heat) equation on the unit square.
This example uses a constant conductivity, for simplicity, but the method works for any
coefficients.

Choose our solution (not just a polynomial!) :
Tyvivs = sin(x) cos(2y)

Plug in:

) 2
o“T 0 T) = —5sin(x) cos(2y)

flz,y) =k (C%Q | 0

Make sure boundary conditions are compatible, for example using Dirichlet BCs:

T(:Cv O) — TMMS(ij 0)7 T(QZ’, 1) — TMMS(ij 1)7
T(07 y) = Tnvwms (07 y)7 T(L y) — TMMS(L y) Voilal
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MMS: Example (continued)

Use our usual MATLAB code to solve the problem

FEM_2D_TempDiff_MMS_PDS.m ar
FEM code or 2D tempera
Ma
= clear
= close
= clc
Manufactured Solutior
- MMS_val = @(x,y) sin(x).xcos(2xy);
= MMS_f = @(x,y,kappa) -kappa.*sin(x).xcos(2xy) - 4.xkappa.*sin(x).%cos(2xy); d/dx(k dT/dx) + d/dy(k dT/dy)
GEOMETRICAL PARAMETERS
= x = 10;
= Ly = 10;
PHYSICAL PARAMETERS
= kappa = 113
- res_array = 2.7°(3:7);
- El_array = NaN(1,length(res_array));
= E2_array = NaN(1,length(res_array));
= dxdy = NaN(1,length(res_array));
= for ires = 1:length(res_array)
= disp(['Resolution iteration step ' num2str(ires) of num2str(length(res_array))])
NUMERICAL PARAMETERS
= nelx = res_array(ires);
- nely = res_array(ires);
= n_per_el = 4;
- pts_per_el = 4;
,,,,, Lated from above
= el_tot = nelxxnely;
= nx =  nelx+1;
= ny =  nely+l;
= n_tot = nx*ny;
NUMERICAL GRID
= dx = Lx/nelx;
= dy = Ly/nely;
= xcoord = st seoali X
= ycoord = @:dy:Ly;
= [x2d,y2d] = ndgrid(xcoord,ycoord);
- dxdy(ires) = dxxdy;
= GCOORD = [x2d(:)"';y2d(:)"'];
LOCAL-TO-GLOBAL MAPPING

- NoN = reshape(1l:n_tot,nx,ny);



Compute the L2 Error
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Q(Th(fL‘,y) — T(z,y))°d®

Important: to compute this properly, one must use a higher-order integration rule of
each element. For example, use the trapezoid rule on a sub-grid.

Error
/\"‘\%EM Solution

We cheat in the next slide, using a low-order rule and an incorrect normalization, and
still get the expected convergence rate. This is not always the case!



The expected convergence rate is given in the course notes
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We run our code and plot the L2 error norms

1.9883{ R = 0.0056976
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MMS: Example (continued)
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