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The Problem

P For very simple cases, we can evaluate integrals exactly, when building
our Finite Element system.
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> But in general this is not possible, once arbitrary coefficient functions

are involved .
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» What can we do?
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The Solution: Numerical Integration (aka Quadrature)

» How does one define integrals (areas under curves?)

» For well-behaved functions, recall the Trapezoidal rule or Simpson’s
rule:

a m b §
> The idea is to estimate the area by computing the area under a
low-order polynomial which interpolates the function.

» These are both Newton-Cotes formulae. They all use equally-spaced
“samples” of a function f

» If we have freedom to choose different sampling points, we can do
better!
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Numerical Integration (aka Quadrature)

» Gaussian Quadrature: Approximate an integral on a fixed domain as a
weighted sum of point values, at specially chosen points.
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» The choice of w; and x; determines the specific quadrature rule.
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» Easy to compute, as we only need to know f at a few points!
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Numerical Integration (aka Quadrature)

» Gaussian Quadrature can exactly integrate polynomials of low order.

» Approximate an integral as a weighted sum of point values:
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where p is a polynomial of degree kK =2n — 1 or less.
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Gauss-Legendre Quadrature

» Gaussian Quadrature rule over [—1,1].
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n & w;i k
1 0.0 2.0 1
2 +,/1 1.0 3
3 0.0 0.88888888888889

£0.774596669241483  0.55555555555556 5

4 +0.339981043584859 0.65214515486255
+0.861136311594053 0.34785484513745 7

(Table 4.1 in the notes)

» But... we don't just want to integrate over [—1,1]!
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Changes of Coordinates

>

Looking ahead, we consider changes of coordinates in several
dimensions.

Consider a single-element reference domain €2¢ cand a physical domain
Qe.

Let X = (x,y,...) denote points in the physical domain.

Let £ = (&,m,...) denote points in the reference domain, with each
coordinate in [—1,1].

Let ¢ be an invertible function mapping the reference domain to the
physical domain !. X = ¢(E)

LA bijection ¢ : Q2 > Q°
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The Jacobian

» The Jacobian (matrix) captures information about the derivative(s) of
¢.

» It describes how much local deformation occurs in mapping from the
reference element to the physical one.

» To condense the notation, let's use the common shorthand that X is a
function of &

X=(x,y,...), Ei(f,n,---), X = ¢(&)

» We'll write the Jacobian as
2 2\ ox 9y
JO= (Do) = | & &

» Terminology warning! You will see the term “Jacobian” used to refer
to the matrix above, its transpose, and its determinant.
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The Jacobian in the Chain Rule
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Change of Variables Formula
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Change of Variables (1D)

0 L -1 1
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Example: integrate a simple function.
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det(J(E) =
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Putting it Together

> Now, we can numerically approximate any 1D integral using
Gauss-Legendre quadrature (See exercise 4.2).

[ g = [ rtotenae (%560)) ae
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» Note how this is just a weighted sum of quantities in the reference
domain (functions of &;). This is crucial to the efficiency of the FEM.

> Warning! In simple examples, the Jacobian is constant over an
element. In general, this is not true, and you need it at each
qudrature point.
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What about Derivatives?

> If we use the chain rule and keep track of “where things live”, we can
use the usual change of coordinates formula

/abii(x)dx
= [ 9 0%

5

Lof
= [ Gl e der

» This involves inverse Jacobian terms (e.g. &fx) as well as the usual

Jacobian determinant term.

» Again, note that everything can be evaluated in the reference domain,
hence efficiently approximated using quadrature.

> See (4.13) in the notes.
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