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From 1d to 2d

» Most problems of scientific or engineering interest are posed in 2 or
more dimensions

P> The good news is that almost everything remains the same, regardless
or dimension

>
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Choose physics (weak/variational form)

Mesh domain

Choose basis functions

Define element matrices and vectors

Assemble element matrices/vectors into global matrices/vectors
Solve the system

Plot, postprocess, analyze, ...

» Conceptual complication: quadrature in 2D (this lecture)

» Practical complication: indexing (See e.g. Figure 5.1 in the notes)

» (Conceptual complication: Neumann Boundary conditions in 2d) (Not
emphasized in this course)
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Numerical Quadrature in 2d

» 2d quadrature rules over reference elements can be defined as
products of 1d rules.
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Numerical Quadrature in 2d

P It's convenient to introduce a linear numbering, so that you can loop
over all points in your code
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Isoparametric Elements
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Isoparametric Elements
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» In constructing our method, we can make two independent choices
1. What our basis functions N; are, on each physical element
2. How to map from a reference element, to help with quadrature.

» Key: Use the same mapping (¢, earlier) to define the basis functions,
by siimply mapping basis functions on the reference element.

» This ends up being very convenient, computationally, as you'll see
when writing your codes.

P> Terminology: the word “element” is sometimes used to mean the
basis functions, as well as the physical subdomains!
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Isoparametric Elements: Jacobian Computation

x = Ni(&,m)xe + Na(&m)x2 + - ..
y = Ni(§&,n)xo+ No(E,m)yn + ...
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Isoparametric Elements: Jacobian Computation
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> Note that the matrix on the left is constant for each quadrature point
in the reference domain.

» Note that the matrix on the right is constant for each element.
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Derivatives of shape functions

» In assembling our stiffness matrix, we need to evaluate integrals of
the form

/E(VN(x*))TD(VNj(X*))dz

(Compare with (5.13) in the notes)
This is a matrix, with entries

N ON
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» How to we compute things like aNa? (i.e. the entries in VN (5.16))
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Derivatives of shape functions

» Recall how the Jacobian appears in the chain rule (5.23)
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Derivatives of shape functions

» We know the derivatives of the basis functions in the reference

domain, e.g. %Agh

> So, we invert the previous relationship (5.24)
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» You can use this to compute e.g. %ﬁ".
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Derivatives of shape functions

» Programming tip in MATLAB: If you are clever in how your arrange
your matrix representing the derivatives of N; in the reference
domain, you can use the backlash operator to apply J~! to each
column of a matrix, without calling inv().
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What would a non-isoparametric element look like?

isoparametric

e
subparametric

e
ref

» Use quadratic basis functions
» Define the yellow points as the midpoints of the edges

» Thus, the physical element is defined by 4 points, even though there

are 9 basis functions, so this is called a subparametric element
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