Finite Element Modelling for Geosciences: 1d to 2d and Isoparametric Elements

Patrick Sanan

ETH Zurich

From 1d to 2d

- Most problems of scientific or engineering interest are posed in 2 or more dimensions
- ► The good news is that almost everything remains the same, regardless or dimension
 - Choose physics (weak/variational form)
 - Mesh domain
 - Choose basis functions
 - Define element matrices and vectors
 - Assemble element matrices/vectors into global matrices/vectors
 - Solve the system
 - Plot, postprocess, analyze, . . .
- Conceptual complication: quadrature in 2D (this lecture)
- Practical complication: indexing (See e.g. Figure 5.1 in the notes)
- (Conceptual complication: Neumann Boundary conditions in 2d) (Not emphasized in this course)

Numerical Quadrature in 2d

2d quadrature rules over reference elements can be defined as products of 1d rules.

Numerical Quadrature in 2d

► It's convenient to introduce a linear numbering, so that you can loop over all points in your code

$$\int_{-1}^{1} \int_{-1}^{1} f(\xi, \eta) d\vec{\eta} \approx \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} w_i w_j f(\xi_i, \eta_j)$$
$$= \sum_{k=1}^{N_{ip}} f(\xi_k, \eta_k) W_k, \quad N_{ip} \doteq n_x n_y$$

Isoparametric Elements

Isoparametric Elements

- ▶ In constructing our method, we can make two independent choices
 - 1. What our basis functions N_i are, on each physical element
 - 2. How to map from a reference element, to help with quadrature.
- Ney: Use the **same** mapping $(\phi, \text{ earlier})$ to define the basis functions, by simply mapping basis functions on the reference element.
- ► This ends up being very convenient, computationally, as you'll see when writing your codes.
- ► Terminology: the word "element" is sometimes used to mean the basis functions, as well as the physical subdomains!

Isoparametric Elements: Jacobian Computation

$$x = N_{1}(\xi, \eta)x_{1} + N_{2}(\xi, \eta)x_{2} + \dots$$

$$y = N_{1}(\xi, \eta)x_{2} + N_{2}(\xi, \eta)y_{2} + \dots$$
...

$$\begin{bmatrix} x \\ y \\ \vdots \end{bmatrix} = \begin{bmatrix} N_1(\vec{\xi}) \ N_2(\vec{\xi}) \ N_3(\vec{\xi}) \ \dots \end{bmatrix} \begin{bmatrix} x_1 & y_1 & \dots \\ x_2 & y_2 & \dots \\ x_3 & y_3 & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

$$\mathbf{J} = \begin{bmatrix} \frac{\partial N_1}{\partial \xi} & \frac{\partial N_2}{\partial \xi} & \frac{\partial N_3}{\partial \xi} & \cdots & \frac{\partial N_9}{\partial \xi} \\ \frac{\partial N_1}{\partial \eta} & \frac{\partial N_2}{\partial \eta} & \frac{\partial N_3}{\partial \eta} & \cdots & \frac{\partial N_9}{\partial \eta} \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \\ \vdots & \vdots \\ x_9 & y_9 \end{bmatrix}$$

Isoparametric Elements: Jacobian Computation

$$\mathbf{J} = \begin{bmatrix} \frac{\partial N_1}{\partial \xi} & \frac{\partial N_2}{\partial \xi} & \frac{\partial N_3}{\partial \xi} & \cdots & \frac{\partial N_9}{\partial \xi} \\ \frac{\partial N_1}{\partial \eta} & \frac{\partial N_2}{\partial \eta} & \frac{\partial N_3}{\partial \eta} & \cdots & \frac{\partial N_9}{\partial \eta} \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \\ \vdots & \vdots \\ x_9 & y_9 \end{bmatrix}$$

- ▶ Note that the matrix on the left is constant for each quadrature point in the reference domain.
- Note that the matrix on the right is constant for each element.

▶ In assembling our stiffness matrix, we need to evaluate integrals of the form

$$\int_{\Omega^e} (\nabla \mathbf{N}(\vec{x}))^T \mathbf{D}(\nabla \mathbf{N}_j(\vec{x})) d\vec{x}$$

(Compare with (5.13) in the notes)

This is a matrix, with entries

$$\int_{\Omega^e} k_{ij}(\vec{x}) \frac{\partial N_a}{\partial x_i}(\vec{x}) \frac{\partial N_b}{\partial x_j}(\vec{x}) d\vec{x}$$

► How to we compute things like $\frac{\partial N_a}{\partial x_i}$? (i.e. the entries in $\nabla \mathbf{N}$ (5.16))

Recall how the Jacobian appears in the chain rule (5.23)

$$\begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} & \cdots \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \vdots \end{bmatrix} = \mathbf{J} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \vdots \end{bmatrix}$$

- We know the derivatives of the basis functions in the reference domain, e.g. $\frac{\partial N_i}{\partial \xi}$
- ▶ So, we invert the previous relationship (5.24)

$$\begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \vdots \end{bmatrix} = \mathbf{J}^{-1} \begin{bmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \\ \vdots \end{bmatrix}$$

▶ You can use this to compute e.g. $\frac{\partial N_i}{\partial x}$.

$$\begin{bmatrix} \frac{\partial N_i(x,y)}{\partial x} \\ \frac{\partial N_i(x,y)}{\partial y} \\ \vdots \end{bmatrix} = \mathbf{J}^{-1} \begin{bmatrix} \frac{\partial N_i(\xi,\eta)}{\partial \xi} \\ \frac{\partial N_i(\xi,\eta)}{\partial \eta} \\ \vdots \end{bmatrix}$$

▶ Programming tip in MATLAB: If you are clever in how your arrange your matrix representing the derivatives of N_i in the reference domain, you can use the backlash operator to apply J⁻¹ to each column of a matrix, without calling inv().

What would a **non**-isoparametric element look like?

- Use quadratic basis functions
- Define the yellow points as the midpoints of the edges
- ► Thus, the physical element is defined by 4 points, even though there are 9 basis functions, so this is called a *subparametric* element